
Modbus RTU Serial Driver

© 2025 PTC Inc. All Rights Reserved.

Modbus RTU Serial Driver

Table of Contents

Modbus RTU Serial Driver 1

Table of Contents 2

Modbus RTU Serial Driver 4

Overview 4

Setup 4

Channel Properties — General 5

Tag Counts 5

Channel Properties — Communication Serialization 5

Channel Properties — Write Optimizations 7

Channel Properties — Serial Communications 7

Channel Properties — Advanced 9

Device Properties — General 10

Operating Mode 11

Tag Counts 11

Device Properties — Scan Mode 11

Device Properties — Ethernet Encapsulation 12

Device Properties — Timing 12

Device Properties — Auto-Demotion 13

Device Properties — Tag Generation 14

Device Properties — Settings 15

Device Properties — Block Sizes 18

Device Properties — Variable Import Settings 19

Device Properties — Framing 19

Device Properties — Error Handling 20

Device Properties — Redundancy 20

Automatic Tag Database Generation 21

Statistics Items 22

Data Types Description 24

Address Descriptions 25

Modbus Addressing 25

Magnetek GPD 515 Drive Addressing 27

Elliott Flow Computer Addressing 28

Daniels S500 Flow Computer Addressing 29

Dynamic Fluid Meter Addressing 29

Omni Flow Computer Addressing 30

Omni Custom Packets 34

Omni Raw Data Archive 36

Omni Text Reports 40

Omni Text Archive 42

Function Codes Description 44

Configuration API Service — Channel Properties 45

www. ptc.com

2

Modbus RTU Serial Driver

Configuration API Service — Device Properties 45

Event Log Messages 47

Bad address in block range. | Address range = <start> to <end>. 47

Bad array. | Array range = <start> to <end>. 47

Block address responded with exception code. | Address range = <start> to <end>, Exception code =
<code>. 48

Unable to write to address, device responded with exception code. | Address = '<address>', Exception
code = <code>. 48

Unable to read from address, device responded with exception code. | Address = '<address>', Excep-
tion code = <code>. 48

Tag import failed due to low memory resources. 48

File exception encountered during tag import. 48

Error parsing record in import file. | Record number = <number>, Field = <name>. 49

Description truncated for record in import file. | Record number = <number>. 49

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name = '<tag>'.49

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsupported
data type = '<type>'. 49

Could not read Omni text buffer due to memory allocation problem. 49

No Omni text archive data available in specified date range. 50

Write to Omni text report truncated. | Report number = <number>. 50

Could not read Omni text report due to packet number limit. | Report number = <number>. 50

Write failed. Maximum path length exceeded. | Tag address = '<address>', Maximum length = <num-
ber>. 50

Error writing Omni text data to file. | Tag address = '<address>', Reason = '<reason>'. 50

Omni text output file could not be opened. | Tag address = '<address>', Reason = '<reason>'. 51

Unable to write to address. Unexpected characters in response. | Tag address = '<address>'. 51

Unable to read from address. Unexpected characters in response. | Tag address = '<address>'. 51

Unable to read block address. Unexpected characters in response. | Address range = <start> to <end>. 51

Omni text output file could not be changed. | Tag address = '<address>', Reason = The path specified is
not allowed. 51

Omni text output file could not be changed. | Tag address = '<address>', Reason = The file extension
specified must be '.txt' or '.log'. 52

Importing tag database from file. | File name = '<name>'. 52

Error Mask Definitions 52

Modbus Exception Codes 53

Index 54

www. ptc.com

3

Modbus RTU Serial Driver

Modbus RTU Serial Driver
Help version 1.095

CONTENTS

Overview
What is the Modbus RTU Serial Driver?

Setup
How do I configure channels and devices for use with this driver?

Automatic Tag Database Generation
How can I configure tags for the Modbus RTU Serial Driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location on a Modbus device?

Event Log Messages
What messages are produced by the Modbus RTU Serial Driver?

Overview
The Modbus RTU Serial Driver provides a reliable way to connect Modbus serial devices to OPC client applic-
ations, including HMI, SCADA, Historian, MES, ERP, and countless custom applications. It is intended for use with
serial devices that support the Modbus RTU protocol. The Modbus RTU Serial Driver has been developed to sup-
port a wide range of Modbus RTU compatible devices.

Setup

Communication Protocol
Modbus RTU Protocol

Supported Communication Parameters
Baud Rate: 1200, 2400, 9600, and 19200
Parity: Odd, Even, and None
Data Bits: 8
Stop Bits: 1 and 2

Supported Devices

l Modbus-compatible devices
l Elliott Flow Computer
l Magnetek GPD 515 Drive
l Omni Flow Computer
l Daniel S500 Flow Computer
l Dynamic Fluid Meter (DFM) SFC3
l TSXCUSBMBP USB Adapter

Channel and Device Limits

l The maximum number of channels supported by this driver is 2048.
l Using a serial connection, the maximum recommended number of devices per channel is 32 (unless

hardware signal amplification devices are used).
l Using Ethernet Encapsulation, the maximum number of devices per channel is 255 .

www. ptc.com

4

Modbus RTU Serial Driver

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used in a
server project is called a channel. A server project may consist of many channels with the same communications
driver or with unique communications drivers. A channel acts as the basic building block of an OPC link. This group
is used to specify general channel properties, such as the identification attributes and operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information. The property is
required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during channel cre-
ation. It is a disabled setting in the channel properties. The property is required for creating a channel.

Note: With the server's online full-time operation, these properties can be changed at any time. This includes
changing the channel name to prevent clients from registering data with the server. If a client has already acquired
an item from the server before the channel name is changed, the items are unaffected. If, after the channel name
has been changed, the client application releases the item and attempts to re-acquire using the old channel name,
the item is not accepted. Changes to the properties should not be made once a large client application has been
developed. Utilize proper user role and privilege management to prevent operators from changing properties or
accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to OPC
applications. Because the server's diagnostic features require a minimal amount of overhead processing, it is
recommended that they be utilized when needed and disabled when not. The default is disabled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

Channel Properties — Communication Serialization
The server's multi-threading architecture allows channels to communicate with devices in parallel. Although this is
efficient, communication can be serialized in cases with physical network restrictions (such as Ethernet radios).
Communication serialization limits communication to one channel at a time within a virtual network.

The term "virtual network" describes a collection of channels and associated devices that use the same pipeline for
communications. For example, the pipeline of an Ethernet radio is the client radio. All channels using the same

www. ptc.com

5

Modbus RTU Serial Driver

client radio associate with the same virtual network. Channels are allowed to communicate each in turn, in a
"round-robin" manner. By default, a channel can process one transaction before handing communications off to
another channel. A transaction can include one or more tags. If the controlling channel contains a device that is not
responding to a request, the channel cannot release control until the transaction times out. This results in data
update delays for the other channels in the virtual network.

Channel-Level Settings

Virtual Network: Specify the channel's mode of communication serialization. Options include None and Network 1
- Network 500. The default is None. Descriptions of the options are as follows:

l None: This option disables communication serialization for the channel.
l Network 1 - Network 500: This option specifies the virtual network to which the channel is assigned.

Transactions per Cycle: Specify the number of single blocked/non-blocked read/write transactions that can occur
on the channel. When a channel is given the opportunity to communicate, this is the number of transactions attemp-
ted. The valid range is 1 to 99. The default is 1.

Global Settings

Network Mode: This property is used to control how channel communication is delegated. In Load Balanced
mode, each channel is given the opportunity to communicate in turn, one at a time. In Priority mode, channels are
given the opportunity to communicate according to the following rules (highest to lowest priority):

1. Channels with pending writes have the highest priority.

2. Channels with pending explicit reads (through internal plug-ins or external client interfaces) are prioritized
based on the read's priority.

3. Scanned reads and other periodic events (driver specific).

The default is Load Balanced and affects all virtual networks and channels.
 Devices that rely on unsolicited responses should not be placed in a virtual network. In situations where com-

munications must be serialized, it is recommended that Auto-Demotion be enabled.

Due to differences in the way that drivers read and write data (such as in single, blocked, or non-blocked trans-
actions); the application's Transactions per cycle property may need to be adjusted. When doing so, consider the
following factors:

l How many tags must be read from each channel?
l How often is data written to each channel?
l Is the channel using a serial or Ethernet driver?
l Does the driver read tags in separate requests, or are multiple tags read in a block?
l Have the device's Timing properties (such as Request timeout and Fail after x successive timeouts) been

optimized for the virtual network's communication medium?

www. ptc.com

6

Modbus RTU Serial Driver

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given this goal,
the server provides optimization properties to meet specific needs or improve application responsiveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the controller.
In this mode, the server continues to gather write requests and add them to the server's internal write
queue. The server processes the write queue and attempts to empty it by writing data to the device as
quickly as possible. This mode ensures that everything written from the client applications is sent to the tar-
get device. This mode should be selected if the write operation order or the write item's content must
uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can accu-
mulate in the write queue due to the time required to actually send the data to the device. If the server
updates a write value that has already been placed in the write queue, far fewer writes are needed to reach
the same final output value. In this way, no extra writes accumulate in the server's queue. When the user
stops moving the slide switch, the value in the device is at the correct value at virtually the same time. As
the mode states, any value that is not a Boolean value is updated in the server's internal write queue and
sent to the device at the next possible opportunity. This can greatly improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize the

operation of HMI data without causing problems with Boolean operations, such as a momentary push but-
ton.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization mode
and applies it to all tags. It is especially useful if the application only needs to send the latest value to the
device. This mode optimizes all writes by updating the tags currently in the write queue before they are
sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for every
one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read operation.
Although the application is performing a large number of continuous writes, it must be ensured that read data is still
given time to process. A setting of one results in one read operation for every write operation. If there are no write
operations to perform, reads are processed continuously. This allows optimization for applications with continuous
writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

Channel Properties — Serial Communications
Serial communication properties are available to serial drivers and vary depending on the driver, connection type,
and options selected. Below is a superset of the possible properties.
Click to jump to one of the sections: Connection Type, Serial Port Settings, and Operational Behavior.

Notes:

l With the server's online full-time operation, these properties can be changed at any time. Utilize proper user
role and privilege management to prevent operators from changing properties or accessing server features.

l Users must define the specific communication parameters to be used. Depending on the driver, channels
may or may not be able to share identical communication parameters. Only one shared serial connection
can be configured for a Virtual Network (see Channel Properties — Serial Communications).

www. ptc.com

7

Modbus RTU Serial Driver

Connection Type

Physical Medium: Choose the type of hardware device for data communications. Options include Modem,
COM Port, and None. The default is COM Port.

1. None: Select None to indicate there is no physical connection, which displays the Operation with no Com-
munications section.

2. COM Port: Select Com Port to display and configure the Serial Port Settings section.

3. Modem: Select Modem if phone lines are used for communications, which are configured in the Modem
Settings section.

4. Shared: Verify the connection is correctly identified as sharing the current configuration with another chan-
nel. This is a read-only property.

Serial Port Settings

COM ID: Specify the Communications ID to be used when communicating with devices assigned to the channel.
The valid range is 1 to 9991 to 16. The default is 1.

Baud Rate: Specify the baud rate to be used to configure the selected communications port.

Data Bits: Specify the number of data bits per data word. Options include 5, 6, 7, or 8.

Parity: Specify the type of parity for the data. Options include Odd, Even, or None.

Stop Bits: Specify the number of stop bits per data word. Options include 1 or 2.

Flow Control: Select how the RTS and DTR control lines are utilized. Flow control is required to communicate with
some serial devices. Options are:

l None: This option does not toggle or assert control lines.
l DTR: This option asserts the DTR line when the communications port is opened and remains on.
l RTS: This option specifies that the RTS line is high if bytes are available for transmission. After all buffered

bytes have been sent, the RTS line is low. This is normally used with RS232/RS485 converter hardware.
l RTS, DTR: This option is a combination of DTR and RTS.
l RTS Always: This option asserts the RTS line when the communication port is opened and remains on.
l RTS Manual: This option asserts the RTS line based on the timing properties entered for RTS Line Con-

trol. It is only available when the driver supports manual RTS line control (or when the properties are shared
and at least one of the channels belongs to a driver that provides this support). RTS Manual adds an
RTS Line Control property with options as follows:

l Raise: Specify the amount of time that the RTS line is raised prior to data transmission. The valid
range is 0 to 9999 milliseconds. The default is 10 milliseconds.

www. ptc.com

8

Modbus RTU Serial Driver

l Drop: Specify the amount of time that the RTS line remains high after data transmission. The valid
range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Poll Delay: Specify the amount of time that polling for communications is delayed. The valid range
is 0 to 9999. The default is 10 milliseconds.

Tip: When using two-wire RS-485, "echoes" may occur on the communication lines. Since this communication
does not support echo suppression, it is recommended that echoes be disabled or a RS-485 converter be used.

Operational Behavior

l Report Communication Errors: Enable or disable reporting of low-level communications errors. When
enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same errors are
not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the connection when there are no longer any tags being ref-
erenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been removed
before closing the COM port. The default is 15 seconds.

Modem Settings

l Modem: Specify the installed modem to be used for communications.
l Connect Timeout: Specify the amount of time to wait for connections to be established before failing a read

or write. The default is 60 seconds.
l Modem Properties: Configure the modem hardware. When clicked, it opens vendor-specific modem prop-

erties.
l Auto-Dial: Enables the automatic dialing of entries in the Phonebook. The default is Disable. For more

information, refer to "Modem Auto-Dial" in the server help.
l Report Communication Errors: Enable or disable reporting of low-level communications errors. When

enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same errors are
not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the modem connection when there are no longer any tags being
referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been removed
before closing the modem connection. The default is 15 seconds.

Operation with no Communications

l Read Processing: Select the action to be taken when an explicit device read is requested. Options include
Ignore and Fail. Ignore does nothing; Fail provides the client with an update that indicates failure. The
default setting is Ignore.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the Advanced
group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as a
Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may default to
Unmodified. Non-normalized float handling allows users to specify how a driver handles non-normalized IEEE-754
floating point data. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point values
with zero before being transferred to clients.

www. ptc.com

9

Modbus RTU Serial Driver

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-number, and
infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the option
that is displayed. According to the channel's float normalization setting, only real-time driver tags (such as values
and arrays) are subject to float normalization. For example, EFM data is not affected by this setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-Point
Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to the
next device after data is received from the current device on the same channel. Zero (0) disables the delay.

Note: This property is not available for all drivers, models, and dependent settings.

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers, users
must enter a device ID for each controller.

Identification

Name: Specify the name of the device. It is a logical user-defined name that can be up to 256 characters long and
may be used on multiple channels.

Note: Although descriptive names are generally a good idea, some OPC client applications may have a limited
display window when browsing the OPC server's tag space. The device name and channel name become part of
the browse tree information as well. Within an OPC client, the combination of channel name and device name
would appear as "ChannelName.DeviceName".
For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server help.

Description: Specify the user-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: Specify the user-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: Specify the type of device that is associated with this ID. The contents of the drop-down menu depend on
the type of communications driver being used. Models that are not supported by a driver are disabled. If the com-
munications driver supports multiple device models, the model selection can only be changed when there are no cli-
ent applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model selection to the
physical device. If the device is not represented in the drop-down menu, select a model that conforms closest to the
target device. Some drivers support a model selection called "Open," which allows users to communicate without
knowing the specific details of the target device. For more information, refer to the driver documentation.

ID: Specify the device's driver-specific station or node. The type of ID entered depends on the communications
driver being used. For many communication drivers, the ID is a numeric value. Drivers that support a Numeric ID
provide users with the option to enter a numeric value whose format can be changed to suit the needs of the applic-
ation or the characteristics of the selected communications driver. The format is set by the driver by default.
Options include Decimal, Octal, and Hexadecimal.

www. ptc.com

10

Modbus RTU Serial Driver

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are enabled by
default, this property can be used to disable a physical device. Communications are not attempted when a device is
disabled. From a client standpoint, the data is marked as invalid and write operations are not accepted. This prop-
erty can be changed at any time through this property or the device system tags.

Simulated: Place the device into or out of Simulation Mode. In this mode, the driver does not attempt to com-
municate with the physical device, but the server continues to return valid OPC data. Simulated stops physical com-
munications with the device, but allows OPC data to be returned to the OPC client as valid data. While in
Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated device is read
back and each OPC item is treated individually. The data is not saved if the server removes the item (such as when
the server is reinitialized). The default is No.

Notes:
1. Updates are not applied until clients disconnect and reconnect.

2. The System tag (_Simulated) is read only and cannot be written to for runtime protection. The System tag allows
this property to be monitored from the client.

3. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for OPC clients
or Scan Rate for native and DDE interfaces). This means that two clients that reference the same item with dif-
ferent update rates return different data.

4. When a device is simulated, updates may not appear faster than one (1) second in the client.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production environment.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

Device Properties — Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device communications.
Synchronous and asynchronous device reads and writes are processed as soon as possible; unaffected by the
Scan Mode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions of the
options are:

www. ptc.com

11

Modbus RTU Serial Driver

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan rate.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is increased,

the changes take effect immediately. When the scan rate value is decreased, the changes do not take
effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for subscribed
clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the device nor
perform a read to get an item's initial value once it becomes active. It is the OPC client's responsibility to
poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device reads for individual
items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified in
their static configuration tag properties. Dynamic tags are scanned at the client-specified scan rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for newly activ-
ated tag references from stored (cached) data. Cache updates can only be provided when the new item reference
shares the same address, scan rate, data type, client access, and scaling properties. A device read is used for the
initial update for the first client reference only. The default is disabled; any time a client activates a tag reference the
server attempts to read the initial value from the device.

Device Properties — Ethernet Encapsulation
Ethernet Encapsulation is designed to provide communication with serial devices connected to terminal servers on
the Ethernet network. A terminal server is essentially a virtual serial port. The terminal server converts TCP/IP mes-
sages on the Ethernet network to serial data. Once the message has been converted to a serial form, users can
connect standard devices that support serial communications to the terminal server.

For more information, refer to "How to... Use Ethernet Encapsulation" in server help.
Ethernet Encapsulation is transparent to the driver; configure the remaining properties as if connecting to the

device directly on a local serial port.

IP Address: Enter the four-field IP address of the terminal server to which the device is attached. IPs are specified
as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0 to 255.
Each serial device may have its own IP address; however, devices may have the same IP address if there are mul-
tiple devices multi-dropped from a single terminal server.

Port: Configure the Ethernet port to be used when connecting to a remote terminal server.

Protocol: Set TCP/IP or UDP communications. The selection depends on the nature of the terminal server being
used. The default protocol selection is TCP/IP. For more information on available protocols, refer to the terminal
server's help documentation.

Notes

1. With the server's online full-time operation, these properties can be changed at any time. Utilize proper user
role and privilege management to prevent operators from changing properties or accessing server features.

2. The valid IP Address range is greater than (>) 0.0.0.0 to less than (<) 255.255.255.255.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the application's
needs. In many cases, the environment requires changes to these properties for optimum performance. Factors
such as electrically generated noise, modem delays, and poor physical connections can influence how many errors
or timeouts a communications driver encounters. Timing properties are specific to each configured device.

www. ptc.com

12

Modbus RTU Serial Driver

Communications Timeouts

Request Timeout: This property specifies an interval used by all drivers to determine how long the driver waits for
a response from the target device to complete. The valid range is 50 to 9,999,999 milliseconds (167.6667 minutes).
The default is usually 1000 milliseconds, but can vary depending on the driver. The default timeout for most serial
drivers is based on a baud rate of 9600 baud or better. When using a driver at lower baud rates, increase the
timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout: This property specifies how many times the driver issues a communications request
before considering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is
typically 3, but can vary depending on the driver's specific nature. The number of attempts configured for an applic-
ation depends largely on the communications environment. This property applies to both connection attempts and
request attempts.

Timing

Inter-Request Delay: This property specifies how long the driver waits before sending the next request to the tar-
get device. It overrides the normal polling frequency of tags associated with the device, as well as one-time reads
and writes. This delay can be useful when dealing with devices with slow turnaround times and in cases where net-
work load is a concern. Configuring a delay for a device affects communications with all other devices on the chan-
nel. It is recommended that users separate any device that requires an inter-request delay to a separate channel if
possible. Other communications properties (such as communication serialization) can extend this delay. The valid
range is 0 to 300,000 milliseconds; however, some drivers may limit the maximum value due to a function of their
particular design. The default is 0, which indicates no delay between requests with the target device.

Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not responding.
By placing a non-responsive device offline for a specific time period, the driver can continue to optimize its com-
munications with other devices on the same channel. After the time period has been reached, the driver re-
attempts to communicate with the non-responsive device. If the device is responsive, the device is placed on-scan;
otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted system tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the device
is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

www. ptc.com

13

Modbus RTU Serial Driver

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is reached. Dur-
ing this period, no read requests are sent to the device and all data associated with the read requests are set to bad
quality. When this period expires, the driver places the device on-scan and allows for another attempt at com-
munications. The valid range is 100 to 3600000 milliseconds. The default is 10000 milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the off-scan
period. Disable to always send write requests regardless of the demotion period. Enable to discard writes; the
server automatically fails any write request received from a client and does not post a message to the Event Log.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation. Select
communications drivers can be configured to automatically build a list of tags that correspond to device-specific
data. These automatically generated tags (which depend on the nature of the supporting driver) can be browsed
from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and uses the
data to generate tags within the server. If the device does not natively support named tags, the driver creates a list
of tags based on driver-specific information. An example of these two conditions is as follows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the tag
names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/O module types, the communications
driver automatically generates tags in the server that are based on the types of I/O modules plugged into
the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more information,
refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the On
Property Change option is shown. It is set to Yes by default, but it can be set to No to control over when tag gen-
eration is performed. In this case, the Create tags action must be manually invoked to perform tag generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as fol-
lows:

l Do Not Generate on Startup: This option prevents the driver from adding any OPC tags to the tag space of
the server. This is the default setting.

l Always Generate on Startup: This option causes the driver to evaluate the device for tag information. It
also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup: This option causes the driver to evaluate the target device for tag information
the first time the project is run. It also adds any OPC tags to the server tag space as needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save from
the Tools | Options menu.

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to do with
the tags that it may have previously added or with tags that have been added or modified after the communications
driver since their original creation. This setting controls how the server handles OPC tags that were automatically

www. ptc.com

14

Modbus RTU Serial Driver

generated and currently exist in the project. It also prevents automatically generated tags from accumulating in the
server.

For example, if a user changes the I/O modules in the rack with the server configured to Always Generate on Star-
tup, new tags would be added to the server every time the communications driver detected a new I/O module. If the
old tags were not removed, many unused tags could accumulate in the server's tag space. The options are:

l Delete on Create: This option deletes any tags that were previously added to the tag space before any
new tags are added. This is the default setting.

l Overwrite as Necessary: This option instructs the server to only remove the tags that the communications
driver is replacing with new tags. Any tags that are not being overwritten remain in the server's tag space.

l Do not Overwrite: This option prevents the server from removing any tags that were previously generated
or already existed in the server. The communications driver can only add tags that are completely new.

l Do not Overwrite, Log Error: This option has the same effect as the prior option, and also posts an error
message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the communications
driver as well as any tags that have been added using names that match generated tags. Users should avoid
adding tags to the server using names that may match tags that are automatically generated by the driver.

Parent Group: This property keeps automatically generated tags from mixing with tags that have been entered
manually by specifying a group to be used for automatically generated tags. The name of the group can be up to
256 characters. This parent group provides a root branch to which all automatically generated tags are added.

Allow Automatically Generated Subgroups: This property controls whether the server automatically creates sub-
groups for the automatically generated tags. This is the default setting. If disabled, the server generates the
device's tags in a flat list without any grouping. In the server project, the resulting tags are named with the address
value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system auto-

matically increments to the next highest number so that the tag name is not duplicated. For example, if the gen-
eration process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been modified,
Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be accessed from the
System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Device Properties — Settings

Data Access

Zero-Based Addressing: If the address-numbering convention for the device starts at one as opposed to zero, the
value can be specified when defining the device parameters. By default, user-entered addresses have one sub-
tracted when frames are constructed to communicate with a Modbus device. If the device does not follow this con-
vention, choose disable. The default behavior follows the convention of Modicon PLCs.

www. ptc.com

15

Modbus RTU Serial Driver

Zero-Based Bit Addressing: Within registers, memory types that allow bits within Words can be referenced as
Booleans. The addressing notation is <address>.<bit>, where <bit> represents the bit number within the Word.
This option provides two ways of addressing a bit within a given Word; zero- or one-based. Zero-based means that
the first bit begins at 0 (range=0-15); one-based means that the first bit begins at 1 (range=1-16).

Holding Register Bit Writes: When writing to a bit location within a holding register, the driver should only modify
the bit of interest. Some devices support a special command to manipulate a single bit within a register (function
code hex 0x16 or decimal 22). If the device does not support this feature, the driver must perform a Read / Modify /
Write operation to ensure that only the single bit is changed. When enabled, the driver uses function code 0x16,
regardless of this setting for single register writes. When disabled, the driver uses function code 0x06 or 0x10,
depending on the selection for Modbus Function 06 for single register writes. The default setting is disabled.
Note: When Modbus byte order is disabled, the byte order of the masks sent in the command is Intel byte order.

Modbus Function 06: This driver supports Modbus protocol functions to write holding register data to the target
device. In most cases, the driver switches between functions 06 and 16 based on the number of registers being writ-
ten. When writing a single 16-bit register, the driver generally uses Modbus function 06. When writing a 32-bit value
into two registers, the driver uses Modbus function 16. For the standard Modicon PLC, the use of either of these
functions is not a problem. There are, however, a large number of third-party devices using the Modbus protocol
and many support only Modbus function 16 to write to holding registers. This selection is enabled by default, allow-
ing the driver to switch between 06 and 16 as needed. If a device requires all writes to use only Modbus function
16, disable this selection.
Note: For bit within word writes, the Holding Register Bit Writes property takes precedence over this option. If

Holding Register Bit Writes is enabled, function code 0x16 is used regardless of this property. If not enabled, either
function code 0x06 or 0x10 is used for bit within word writes.

Modbus Function 05: This driver supports Modbus protocol functions to write output coil data to the target device.
In most cases, the driver switches between these two functions based on the number of coils being written. When
writing a single coil, the driver uses Modbus function 05. When writing an array of coils, the driver uses Modbus
function 15. For the standard Modicon PLC, the use of these functions is not a problem. There are, however, many
third-party devices that use the Modbus protocol and many only support the use of Modbus function 15 to write to
output coils regardless of the number of coils. This selection is enabled by default, allowing the driver to switch
between 05 and 15 as needed. If a device requires all writes to use only Modbus function 15, disable this selection.

Data Encoding

Modbus Byte Order: sets the data encoding of each register / 16-bit value. The byte order can be changed from
the default Modbus byte ordering to Intel byte ordering using this selection. The default is enabled, which is the nor-
mal setting for Modbus-compatible devices. If the device uses Intel byte ordering, disable this property to read Intel-
formatted data.

Note: This setting does not apply to the Omni model. It always uses Modbus byte order.

First Word Low: sets the data encoding of 32-bit values and the double word of 64-bit values. Two consecutive
registers' addresses in a Modbus device are used for 32-bit data types. The driver can read the first word as the low
or the high word of the 32-bit value based on this option. The default is enabled, first word low, to follow the con-
vention of the Modicon Modsoft programming software.

Note: This setting does not apply to the Omni model. It always uses Modbus byte order.

First DWord Low: sets the data encoding of 64-bit values. Four consecutive registers' addresses in a Modbus
device are used for 64-bit data types. The driver can read the first DWord as the low or the high DWord of the 64-bit
value. The default is enabled, first DWord low, to follow the default convention of 32-bit data types.

Note: This setting does not apply to the Omni model. It always uses Modbus byte order.

Modicon Bit Order: when enabled, the driver reverses the bit order on reads and writes to registers to follow the
convention of the Modicon Modsoft programming software. For example, a write to address 40001.0/1 affects bit
15/16 in the device when this option is enabled. This option is disabled (disabled) by default.

For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits, depending on the driver
using zero-based or one-based bit addressing within registers.
MSB = Most Significant Bit
LSB = Least Significant Bit

www. ptc.com

16

Modbus RTU Serial Driver

Modicon Bit Order Enabled

MSB LSB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Modicon Bit Order Disabled

MSB LSB
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Treat Longs as Decimals: when enabled, the driver encodes and decodes double-precision unsigned Long and
DWord data types as values that range from 0 to 99999999. This format specifies that each word represents a
value between 0 and 9999. Values read above the specified range are not clamped, but the behavior is undefined.
All read values are decoded using the formula [Read Value] = HighWord * 10000 + LowWord. Written values
greater than 99999999 are clamped to the maximum value. All written values are encoded using the formula Raw
Data = [Written Value]/10000 + [Written Value] % 10000.

Tips on Settings

Data Types Modbus Byte Order First Word Low First DWord Low
Word, Short, BCD Applicable N/A N/A

Float, DWord, Long,
LBCD Applicable Applicable N/A

Double Applicable Applicable Applicable

If needed, use the following information and the device's documentation to determine the correct settings of the
data encoding options.

The default settings are acceptable for the majority of Modbus devices.

Data Encoding Option Data Encoding
Modbus Byte Order High Byte (15..8) Low Byte (7..0)

Modbus Byte Order Low Byte (7..0) High Byte (15..8)

First Word Low
High Word (31..16)
High Word (63..48) of Double Word
in 64-bit data types

LowWord (15..0)
LowWord (47..32) of Double Word in
64-bit data types

First Word Low
LowWord (15..0)
LowWord (47..32) of Double Word in
64-bit data types

High Word (31..16)
High Word (63..48) of Double Word
in 64-bit data types

First DWord Low High Double Word (63..32) Low Double Word (31..0)

First DWord Low Low Double Word (31..0) High Double Word (63..32)

www. ptc.com

17

Modbus RTU Serial Driver

Device Properties — Block Sizes

Coils

Output Coils: Specifies the output block size in bits. Coils can be read from 8 to 2000 points (bits) at a time. A
higher block size means more points are read from the device in a single request. The block size can be reduced to
read data from non-contiguous locations within the device. The default setting is 32.

Input Coils: Specifies the input block size in bits. Coils can be read from 8 to 2000 points (bits) at a time. A higher
block size means more points are read from the device in a single request. The block size can be reduced to read
data from non-contiguous locations within the device. The default setting is 32.

Registers

Internal Registers: Specifies the internal register block size in bits. From 1 to 125 standard 16-bit Modbus registers
can be read at a time. A higher block size means more register values are read from the device in a single request.
The block size can be reduced to read data from non-contiguous locations within the device. The default setting is
32.

Holding Registers: Specifies the holding register block size in bits. From 1 to 125 standard 16-bit Modbus registers
can be read at a time. A higher block size means more register values are read from the device in a single request.
The block size can be reduced to read data from non-contiguous locations within the device. The default setting is
32.
Caution: A bad address in block error can occur if the register block sizes are set above 120 and a 32- or 64-bit

data type is used for any tag. To prevent this, decrease the block size value to 120.

Block Sizes

Block Read Strings: Enables group / block reads of string tags, which are normally read individually. String tags
are grouped together depending on the selected block size. Block reads can only be performed for Modbus model
string tags. The default setting is disabled.

www. ptc.com

18

Modbus RTU Serial Driver

Device Properties — Variable Import Settings
The Variable Import Settings parameters specify the location of the variable import file to be used for Automatic
Tag Database Generation.

For more information on CSV files for Modbus Drivers, refer to Creating CSV Files for Modbus Drivers.

Variable Import File: This parameter is used to browse to the exact location of the variable import file to use for
Automatic Tag Database Generation.

Include Descriptions: When enabled, imported tag descriptions are used if present in the file.

For more information on configuring the Automatic Tag Database Generation feature (and how to create a vari-
able import file), refer to Automatic Tag Database Generation.

Device Properties — Framing
Some terminal server devices add additional data to Modbus frames; as such, the Framing parameters can be
used to configure the driver to ignore the additional bytes in response messages.

Framing

Modbus TCP Framing: Select Enable if the driver should use Modbus TCP frames with MBAP headers. The
default is disabled.
Tip: This setting should be enabled when communicating with native Modbus TCP devices.

Leading Bytes: Specify the number of bytes to be attached to the beginning of Modbus responses. Values may
range from 0 to 8.

Trailing Bytes: Specify the number of bytes to be attached to the end of Modbus responses. Values may range
from 0 to 8.

www. ptc.com

19

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/creating_csv_files_for_kepware_modbus_drivers.pdf?sc_lang=en

Modbus RTU Serial Driver

Device Properties — Error Handling
The error handling parameters determine how to deal with errors from the device.

Deactivate Tags on Illegal Address: When enabled, the driver stops polling for a block of data if the device returns
Modbus exception code 2 (illegal address) or 3 (illegal data, such as number of points) in response to a read of that
block. When disabled, the driver continues to poll that data block. The default setting is enabled.

Reject Repeated Messages: When enabled, the driver interprets a repeated message as an invalid response and
retries the request. The default setting is enabled. When disabled, the driver expects repeated messages.

Note: Some message-relay equipment echoes Modbus requests back to the driver.

Device Properties — Redundancy

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

www. ptc.com

20

https://ptc-p-001.sitecorecontenthub.cloud/api/public/content/e96f85a9eef84807b06504cdd95b1084?v=3b0e1d04

Modbus RTU Serial Driver

Automatic Tag Database Generation
The Modbus RTU Serial Driver makes use of automatic tag database generation, which enables drivers to auto-
matically create tags that access data points used by the device's ladder program. While it is sometimes possible to
query a device for the information needed to build a tag database, this driver must use a Variable Import File
instead. Variable import files can be generated using the Concept and ProWORX device programming applic-
ations.

Creating the Variable Import File
The import file must be in semicolon-delimited text .TXT format, which is the default export file format of the many
device programming applications.

For specific information on creating the variable import file, consult Technical Note Creating CSV Files for Mod-
bus Drivers.

This driver requires additional settings in addition to the basic settings that are common to all drivers that support
automatic tag database generation. The specialized settings include the name and location of the variable import
file, which can be specified during the Variable Import Settings step of the Device Wizard or later by selecting
Device Properties| Variable Import Settings.

For more information, refer to Variable Import Settings.

Server Configuration
Automatic tag database generation can be customized to fit an application's specific needs. The primary control
options can be set during the Database Creation step of the Device Wizard or later by selecting Device Properties
| Tag Generation.

Operation
Depending on the configuration, tag generation may start automatically when the server project starts or be ini-
tiated manually at some other time. The Event Log show when the tag generation process started, any errors that
occurred while processing the variable import file, and when the process completed.

www. ptc.com

21

Modbus RTU Serial Driver

Statistics Items
Statistical items use data collected through additional diagnostics information, which is not collected by default. To
use statistical items, Communication Diagnostics must be enabled. To enable Communication Diagnostics, right-
click on the channel in the Project View and click Properties | Enable Diagnostics. Alternatively, double-click on
the channel and select Enable Diagnostics.

Channel-Level Statistics Items
The syntax for channel-level statistics items is <channel>._Statistics.

Note: Statistics at the channel level are the sum of those same items at the device level.

Item
Data
Type

Access Description

_CommFailures DWord Read/Write The total number of times communication has failed (or has run
out of retries).

_ErrorResponses DWord Read/Write The total number of valid error responses received.

_Expec-
tedResponses DWord Read/Write The total number of expected responses received.

_LastResponseTime String Read Only The time at which the last valid response was received.

_LateData DWord Read/Write

The total number of times that a tag is read later than expected
(based on the specified scan rate). This value does not increase
due to a DNR error state. A tag is not counted as late (even if it
was) on the initial read after a communications loss. This is by
design.

_MsgResent DWord Read/Write The total number of messages sent as a retry.

_MsgSent DWord Read/Write The total number of messages sent initially.

_MsgTotal DWord Read Only The total number of messages sent (both _MsgSent + _
MsgResent).

_PercentReturn Float Read Only The proportion of expected responses (Received) to initial
sends (Sent) as a percentage.

_PercentValid Float Read Only The proportion of total valid responses received (_TotalRe-
sponses) to total requests sent (_MsgTotal) as a percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to the _Reset Tag
causes all diagnostic counters to be reset at this level.

_RespBadCheck-
sum DWord Read/Write The total number of responses with checksum errors.

_RespTimeouts DWord Read/Write The total number of messages that failed to receive any kind of
response.

_RespTruncated DWord Read/Write The total number of messages that received only a partial
response.

_TotalResponses DWord Read Only The total number of valid responses received (_ErrorRe-
sponses + _ExpectedResponses).

Statistical items are not updated in simulation mode (see device general properties).

Device-Level Statistics Items
The syntax for device-level statistics items is <channel>.<device>._Statistics.

Item
Data
Type

Access Description

_CommFailures DWord Read/Write The total number of times communication has failed (or has run
out of retries).

_ErrorResponses DWord Read/Write The total number of valid error responses received.

_Expec- DWord Read/Write The total number of expected responses received.

www. ptc.com

22

Modbus RTU Serial Driver

Item
Data
Type

Access Description

tedResponses

_LastResponseTime String Read Only The time at which the last valid response was received.

_LateData DWord Read/Write

The total number of times that a tag is read later than expected
(based on the specified scan rate). This value does not increase
due to a DNR error state. A tag is not counted as late (even if it
was) on the initial read after a communications loss. This is by
design.

_MsgResent DWord Read/Write The total number of messages sent as a retry.

_MsgSent DWord Read/Write The total number of messages sent initially.

_MsgTotal DWord Read Only The total number of messages sent (both _MsgSent + _
MsgResent).

_PercentReturn Float Read Only The proportion of expected responses (Received) to initial
sends (Sent) as a percentage.

_PercentValid Float Read Only The proportion of total valid responses received (_TotalRe-
sponses) to total requests sent (_MsgTotal) as a percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to the _Reset Tag
causes all diagnostic counters to be reset at this level.

_RespBadCheck-
sum DWord Read/Write The total number of responses with checksum errors.

_RespTimeouts DWord Read/Write The total number of messages that failed to receive any kind of
response.

_RespTruncated DWord Read/Write The total number of messages that received only a partial
response.

_TotalResponses DWord Read Only The total number of valid responses received (_ErrorRe-
sponses + _ExpectedResponses).

Statistical items are not updated in simulation mode (see device general properties).

www. ptc.com

23

Modbus RTU Serial Driver

Data Types Description

Data Type Description
Boolean Single bit

Word
Unsigned 16-bit value
bit 0 is the low bit
bit 15 is the high bit

Short

Signed 16-bit value
bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord
Unsigned 32-bit value
bit 0 is the low bit
bit 31 is the high bit

Long

Signed 32-bit value
bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD
Two byte packed BCD
Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD
Four byte packed BCD
Value range is 0-99999999. Behavior is undefined for values beyond this
range.

String
Null terminated ASCII string
Supported on Modbus model, includes HiLo LoHi byte order, 8 Byte and 16
Byte Omni Flow Computer string data.

Double*

64-bit floating point value
The driver interprets four consecutive registers as a double precision value by
making the last two registers the high DWord and the first two registers the
low DWord.

Double Example
If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0
of the 64-bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit
data type.

Float*
32-bit floating point value
The driver interprets two consecutive registers as a single precision value by
making the last register the high word and the first register the low word.

Float Example
If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of
the 32-bit data type and bit 15 of register 40002 would be bit 31 of the 32-bit
data type.

*The descriptions assume the default first DWord low data handling of 64-bit data types, and first word low data
handling of 32-bit data types.

www. ptc.com

24

Modbus RTU Serial Driver

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain specific
address information for the model of interest.

Modbus Addressing
Magnetek GPD 515 Drive Addressing
Elliott Flow Computer Addressing
Daniels S500 Flow Computer Addressing
Dynamic Fluid Meter Addressing
Omni Flow Computer Addressing
Statistics

See Also: Function Codes Description

Modbus Addressing
The default data types for dynamically defined tags are shown in bold. The Function Codes are displayed in
decimal.

For more information, refer to Function Codes Description.

5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits represent the
device's data item. The maximum value of the data item is a two-byte unsigned integer (65,535). Internally, this
driver requires six digits to represent the entire address table and item. It is important to note that many Modbus
devices may not support the full range of the data item. To avoid confusion when entering an address for such a
device, this driver "pads" the address (adds a digit) according to what was entered in the address field. If a primary
table type is followed by up to 4 digits (example: 4x, 4xx, 4xxx or 4xxxx), the address stays at or pads, with extra zer-
oes, to five (5) digits. If a primary table type is followed by five (5) digits (example: 4xxxxx), the address does not
change. Internally, addresses entered as 41, 401, 4001, 40001 or 400001 are all equivalent representations of an
address specifying primary table type 4 and data item 1.

Primary Table Description
0 Output Coils

1 Input Coils

3 Internal Registers

4 Holding Registers

Modbus Addressing in Decimal Format

Address Range Data Type Access*
Function
Code

Output Coils 000001-065536 Boolean Read/Write 01, 05, 15

Input Coils 100001-165536 Boolean Read Only 02

Internal Registers

300001-365536
300001-365535
300001-365533
3xxxxx.0/1-3xxxxx.15/16***

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean

Read Only 04

Internal Registers
As String with HiLo
Byte Order

300001.2H-365536.240H
.Bit is string length, range 2 to 240 bytes.

String** Read Only 04

Internal Registers
As String with LoHi
Byte Order

300001.2L-365536.240L
.Bit is string length, range 2 to 240 bytes.

String** Read Only 04

Holding Registers 400001-465536 Word, Short, BCD Read/Write 03, 06, 16

www. ptc.com

25

Modbus RTU Serial Driver

Address Range Data Type Access*
Function
Code

400001-465535
400001-465533
4xxxxx.0/1-4xxxxx.15/16***

Float, DWord, Long,
LBCD
Double
Boolean

03, 06,
16, 22

Holding Registers
As String with HiLo
Byte Order

400001.2H-465536.240H
.Bit is string length, range 2 to 240 bytes.

String** Read/Write 03, 16

Holding Registers
As String with LoHi
Byte Order

400001.2L-465536.240L
.Bit is string length, range 2 to 240 bytes.

String** Read/Write 03, 16

*All Read/Write addresses may be set as Write Only by prefixing a "W" to the address such as "W40001." This pre-
vents the driver from reading the register at the specified address. Any attempts by the client to read a Write Only
tag results in obtaining the last successful write value to the specified address. If no successful writes have
occurred, the client receives 0/NULL for numeric/string values for an initial value.

Caution: Setting the Client Access privileges of Write Only tags to Read Only causes writes to these tags to fail
and the client to always receive 0/NULL for numeric/string values.

**For more information, refer to String Support.
***For more information, refer to Zero-Based Bit Addressing in Settings.

Modbus Addressing in Hexadecimal Format

Address Range Data Type Access
Function
Code

Output Coils H000001-H0FFFF Boolean Read/Write 01, 05, 15

Input Coils H100001-H1FFFF Boolean Read Only 02

Internal Registers

H300001-H310000
H300001-H3FFFF
H300001-H3FFFD
H3xxxxx.0/1-H3xxxxx.F/10*

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean

Read Only 04

Internal Registers
As String with HiLo
Byte Order

H300001.2H-H3FFFF.240H.
Bit is string length, range 2 to 240 bytes.

String** Read Only 04

Internal Registers
As String with LoHi
Byte Order

H300001.2L-H3FFFF.240L.
Bit is string length, range 2 to 240 bytes.

String** Read Only 04

Holding Registers

H400001-H410000
H400001-H4FFFF
H400001-H4FFFD
H4xxxxx.0/1-H4xxxxx.F/10*

Word, Short, BCD,
Float, DWord, Long,
LBCD, Double,
Boolean

Read/Write
03, 06, 16
03, 06,
16, 22

Holding Registers
As String with HiLo
Byte Order

H400001.2H-H4FFFF.240H.
Bit is string length, range 2 to 240 bytes.

String** Read/Write 03, 16

Holding Registers
As String with LoHi
Byte Order

H400001.2L-H4FFFF.240L.
Bit is string length, range 2 to 240 bytes.

String** Read/Write 03, 16

*For more information, refer to Zero-Based Bit Addressing in Settings.
**For more information, refer to String Support.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using holding
registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data within a given
register can be selected when the string is defined. The length of the string can be from 2 to 240 bytes and is

www. ptc.com

26

Modbus RTU Serial Driver

entered in place of a bit number. The length must be entered as an even number. The byte order is specified by
appending either a "H" or "L" to the address.

String Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter "40200.100H".

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter "40500.78L".

Note: The string's length may be limited by the maximum size of the write request that the device allows. If, while
utilizing a string tag, an error message of "Unable to write to address <address> on device <device>: Device
responded with exception code 3" is received in the server event window, this means that the device did not like the
string's length. If possible, shorten the string.

Normal Address Examples

1. The 255th output coil would be addressed as '0255' using decimal addressing or 'H0FF' using hexadecimal
addressing.

2. Some documentation refers to Modbus addresses by function code and location. For instance, function
code 3; location 2000 would be addressed as '42000' or 'H47D0'. The leading '4' represents holding
registers or function code 3.

3. Some documentation refers to Modbus addresses by function code and location. For instance, setting func-
tion code 5 location 100 would be addressed as '0100' or 'H064'. The leading '0' represents output coils or
function code 5. Writing 1 or 0 to this address would set or reset the coil.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean and Strings.
Arrays are also supported for input and output coils (Boolean data types). There are two methods of addressing an
array. The following examples use holding register locations:

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one.

For arrays, rows multiplied by cols cannot exceed the block size that has been assigned to the device for the
register / coil type. For register arrays of 32-bit data types, rows multiplied by cols multiplied by 2 cannot exceed the
block size.

Packed Coil Address Type
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is avail-
able for both input coils and output coils, polled mode only. The only valid data type is Word. The syntax is:

Output coils: 0xxxxx#nn Word Read/Write
Input coils: 1xxxxx#nn Word Read Only

where xxxxx is the address of the first coil (decimal and hex values allowed), and nn is the number of coils to be
packed into an analog value (1-16, decimal only).

The bit order is such that the start address is the LSB (least significant bit) of analog value.

Magnetek GPD 515 Drive Addressing
This table provides the general ranges of data available from the Magnetek GPD 515 Drive. For information on how
specific Drive parameters can be accessed using Modbus RTU addressing, refer to the Magnetek Modbus RTU
Technical Manual, part number TM4025. In all cases, the letter H (used to signify Hex addressing) should precede
the desired address. The default data types for dynamically defined tags are shown in bold where appropriate.

Magnetek GPD 515 Addressing Hexadecimal Format
Address Range Data Type Access

Command Registers Bit Level Access H40001-H4000F H4xxxx.0/1-
H4xxxx.F/10*

Word, Short
Boolean Read/Write

www. ptc.com

27

Modbus RTU Serial Driver

Address Range Data Type Access

Monitor Registers Bit Level Access H40010-H4001A H4xxxx.0/1-
H4xxxx.F/10*

Word, Short
Boolean Read Only

Drive Parameter Registers (Monitor Only)
Bit Level Access

H40020-H40097 H4xxxx.0/1-
H4xxxx.F/10*

Word, Short
Boolean Read Only

Drive Parameter Registers Bit Level
Access

H40100-H4050D H4xxxx.0/1-
H4xxxx.F/10*

Word, Short
Boolean Read/Write

Special Registers H4FFDD ACCEPT H4FFFD
ENTER Word, Short Write Only

 For more information, refer to Zero-Based Bit Addressing in Settings.

Example
To access the driver's Operation Status, address 02BH, enter the following address: H4002B.

Note: When adding a Magnetek Device to the OPC Server project, users must make sure that the setting Zero-
Based Addressing is disabled. If this parameter is not set correctly, the Modbus RTU driver offsets all of the Mag-
netek addresses by 1.

Array Support
Arrays are supported for holding register locations for all data types except Boolean. There are two methods of
addressing an array. The following examples use holding register locations:

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one.

Rows multiplied by cols cannot exceed the block size that has been assigned to the device for the register type.

Elliott Flow Computer Addressing
The default data types for dynamically defined tags are shown in bold where appropriate.

Address Range Data Type Access
Output Coils 000001-065536 Boolean Read/Write

Input Coils 100001-165536 Boolean Read Only

Internal Registers
300001-365536
300001-365535
3xxxxx.0/1-3xxxxx.15/16*

Word, Short,
BCD
Float, DWord,
Long, LBCD
Boolean

Read Only

Holding Registers
400001-465536
400001-465535
4xxxxx.0/1-4xxxxx.15/16*

Word, Short,
BCD**
Float, DWord,
Long, LBCD
Boolean

Read/Write

For more information, refer to Zero-Based Bit Addressing in Settings.
**Address ranges 405001 to 405315 and 407001 to 407315 are 32-bit registers. Addresses in the range of 405001
to 405315 use a default data type of Long.

Addresses in the range of 407001 to 407315 use a default data type of Float. Since these address registers are 32-
bit, only Float, DWord, Long, or LBCD data types are allowed. Arrays are not allowed.

Array Support
Arrays are supported for internal and holding register locations for all data types except Boolean. There are two
methods of addressing an array. The following examples use holding register locations:

4xxxx [rows] [cols]
4xxxx [cols] this method assumes "rows" is equal to one.

www. ptc.com

28

Modbus RTU Serial Driver

Rows multiplied by cols cannot exceed the block size that has been assigned to the device for the register type. For
arrays of 32-bit data types, rows multiplied by cols multiplied by 2 cannot exceed the block size.

Daniels S500 Flow Computer Addressing
The default data types for dynamically defined tags are shown in bold where appropriate. The Function Codes are
displayed in decimal.

For more information, refer to Function Codes Description.

Address
Hex
Range

Decimal
Range

Data
Type

Function
Codes

Access

Totals 000-0FF 4096-4351 Double 03 Read Only

Calculated /Measured Vari-
ables 100-24F 4352-4687 Float 03, 16 Read/Write

Calculation Constants 250-28F 4688-4751 Float 03, 16 Read/Write

Keypad Default Values 290-2AF 4752-4783 Float 03, 16 Read/Write

Alarm and Scaling Constants 2B0-5FF 4784-5631 Float 03, 16 Read/Write

Status /Control 700-7FF 5888-6143 Boolean 01, 05 Read/Write

Alarms 800-FFF 6144-8191 Boolean 02 Read Only

Dynamic Fluid Meter Addressing
The default data types for dynamically defined tags are shown in bold where appropriate.

Dynamic Fluid Meter Addressing Decimal Format
Address Range Data Type Access

Holding Registers (16 bit)

400000-407000
400000-406999
408001-465535
408001-465534
4xxxxx.0/1-4xxxxx.15/16*

Word, Short,
BCD
Float, DWord,
Long, LBCD
Word, Short,
BCD
Float, DWord,
Long, LBCD
Boolean

Read/Write

Holding Registers (32 bit) 407001-408000 Float Read/Write

Holding Registers As String with HiLo Byte
Order

400000.2H-407000.240H
408001.2H-465535.240H
.Bit is string length, range 2 to
240 bytes.

String Read/Write

Holding Registers As String with LoHi Byte
Order

400000.2L-407000.240L
408001.2L-465535.240L
.Bit is string length, range 2 to
240 bytes.

String Read/Write

For more information, refer to Zero-Based Bit Addressing in Settings.

Dynamic Fluid Meter Addressing Hexadecimal Format
Address Range Data Type Access

Holding Registers (16 bit)
H400000-H401B58
H400000-H401B57
H401F41-H40FFFF

Word, Short,
BCD
Float, DWord,
Long, LBCD

Read/Write

www. ptc.com

29

Modbus RTU Serial Driver

Address Range Data Type Access

H401F41-H40FFFE
H4xxxxx.0/1-H4xxxxx.F/10*

Word, Short,
BCD
Float, DWord,
Long, LBCD
Boolean

Holding Registers (32 bit) H401B59-H401F40 Float Read/Write

Holding Registers As String with HiLo Byte
Order

H400000.2H-H401B58.240H
H401F41.2H-H40FFFF.240H
.Bit is string length, range 2 to
240 bytes.

String Read/Write

Holding Registers As String with LoHi Byte
Order

H400000.2L-H401B58.240L
H401F41.2L-H0FFFF.240L
.Bit is string length, range 2 to
240 bytes.

String Read/Write

For more information, refer to Zero-Based Bit Addressing in Settings.

Note: This driver requires that all addresses begin with "4" for the Dynamic Fluid Meter model. This 4 may not
always be written explicitly in the Dynamic Fluid Meter documentation. For example, users may see a reference to
"Unit ID at address 3001". This value must be addressed in the server as "403001".

String Support
The Dynamic Fluid Meter model supports reading and writing holding register memory as an ASCII string. When
using holding registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data
within a given register can be selected when the string is defined. The length of the string can be from 2 to 240
bytes and is entered in place of a bit number. The length must be entered as an even number. The byte order is spe-
cified by appending either a "H" or "L" to the address.

String Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter "40200.100H".

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter "40500.78L".

Note: The string's length may be limited by the maximum size of the write request that the device allows. If, while
utilizing a string tag, an error message of "Unable to write to address <address> on device <device>: Device
responded with exception code 3" is received in the server event window, this means the device did not like the
string's length. If possible, try shortening the string.

Omni Flow Computer Addressing
The default data types for dynamically defined tags are shown in bold.

Address Range Data Type Access
Digital I/O Point 1001-1024 Boolean Read/Write

Programmable Boolean Point 1025-1088 Boolean Read/Write

Meter Run Status and Alarm Points
1n01-001n59
1n76-1n99
n=Number of Meter Run

Boolean Read/Write

Micro Motion Alarm Status Points
1n60-1n75
n=Number of Meter Run

Boolean Read/Write

User Scratch Pad Boolean Points
1501-1599
1601 -1649

Boolean Read/Write

User ScratchPad One Shot Points 1650-1699 Boolean Read/Write

www. ptc.com

30

Modbus RTU Serial Driver

Address Range Data Type Access
Command Boolean Points/Variables 1700-1798 Boolean Read/Write

Meter Station Alarm and Status Points 1801-1899 Boolean Read/Write

Prover Alarm and Status Points 1901-1967 Boolean Read/Write

Meter Totalizer Roll-over Flags
2n01-2n37
n=Number of Meter Run

Boolean Read/Write

Misc. Meter Station Alarm and Status 2601-2623 Boolean Read/Write

Station Totalizer Roll-over Flags 2801-2851 Boolean Read/Write

Station Totalizer Decimal Resolution
2852-2862
2865-2999

Boolean Read/Write

16-Bit Integer Data Addresses Range Data Type Access

Custom Data Packet #1 3001-3040 Short, Word,
BCD Read/Write

Custom Data Packet #2 3041-3056 Short, Word,
BCD Read/Write

Custom Data Packet #3 3057-3096 Short, Word,
BCD Read/Write

Misc. 16-bit Integer Data
3097-3099
3737-3799
3875-3899

Short, Word,
BCD Read/Write

Meter Run 16-bit Integer Data
3n01-3n52
n=Number of Meter Run

Short, Word,
BCD Read/Write

Scratchpad 16-bit Integer Data 3501-3599 Short, Word,
BCD Read/Write

User Display #1 3601-3608 Short, Word,
BCD Read/Write

User Display #2 3609-3616 Short, Word,
BCD Read/Write

User Display #3 3617-3624 Short, Word,
BCD Read/Write

User Display #4 3625-3632 Short, Word,
BCD Read/Write

User Display #5 3633-3640 Short, Word,
BCD Read/Write

User Display #6 3641-3648 Short, Word,
BCD Read/Write

User Display #7 3649-3656 Short, Word,
BCD Read/Write

User Display #8 3657-3664 Short, Word,
BCD Read/Write

Access Raw Data Archive Records 3701-3736 Short, Word,
BCD Read/Write

Meter Station 16-bit Integer Data 3800-3842 Short, Word,
BCD Read/Write

Meter #1 Batch Sequence 3843-3848 Short, Word,
BCD Read/Write

Meter #2 Batch Sequence 3849-3854 Short, Word,
BCD Read/Write

Meter #3 Batch Sequence 3855-3860 Short, Word,
BCD Read/Write

www. ptc.com

31

Modbus RTU Serial Driver

16-Bit Integer Data Addresses Range Data Type Access

Meter #4 Batch Sequence 3861-3866 Short, Word,
BCD Read/Write

Flow Computer Time/Date 3867-3874 Short, Word,
BCD Read/Write

Prover 16-bit Integer Data 3901-3999 Short, Word,
BCD Read/Write

8-Character ASCII String Data Range Data Type Access

Meter Run ASCII Data
4n01-4n39
n=Number of Meter Run

String Read/Write

Scatch Pad ASCII Data 4501-4599 String Read/Write

User Display Definition Variables 4601 -4640 String Read/Write

Station Auxiliary Input Variables 4707-4710 String Read/Write

Meter Station ASCII Data 4801-4851 String Read/Write

Meter #1 Batch ID 4852-4863 String Read/Write

Meter #2 Batch ID 4864-4875 String Read/Write

Meter #3 Batch ID 4876-4887 String Read/Write

Meter #4 Batch ID 4888-4899 String Read/Write

Prover ASCII String Data 4901-4942 String Read/Write

32-Bit Integer Data Range Data Type Access

Meter Run 32-bit Integer Data
5n01-5n99
n=Number of Meter Run

Long, DWord,
LBCD, Float Read/Write

Scratch Pad 32-bit Integer Data 5501-5599 Long, DWord,
LBCD, Float Read/Write

Station 32-bit Integer Data 5801-5818 Long, DWord,
LBCD, Float Read/Write

Meter #1 Batch Size 5819-5824 Long, DWord,
LBCD, Float Read/Write

Meter #2 Batch Size 5825-5830 Long, DWord,
LBCD, Float Read/Write

Meter #3 Batch Size 5831-5836 Long, DWord,
LBCD, Float Read/Write

Meter #4 Batch Size 5837-5842 Long, DWord,
LBCD, Float Read/Write

Additional 32-bit Meter Run Data 5843-5899 Long, DWord,
LBCD, Float Read/Write

Prover 32-bit Integer Data 5901-5973 Long, DWord,
LBCD, Float Read/Write

Compact Prover TDVOL/TDFMP Pulses 5974-5999 Long, DWord,
LBCD, Float Read/Write

32-Bit IEEE Floating Point Data Range Data Type Access

Reserved Data 6001-7000 Float, Long,
DWord, LBCD Read/Write

Digital to Analog Outputs 7001-7024 Float, Long,
DWord, LBCD Read/Write

User Variables 7025-7088 Float, Long,
DWord, LBCD Read/Write

www. ptc.com

32

Modbus RTU Serial Driver

32-Bit IEEE Floating Point Data Range Data Type Access

Programmable Accumulator 7089-7099 Float, Long,
DWord, LBCD Read/Write

Meter Run Data
7n01 - 7n99
n=Number of Meter Run

Float, Long,
DWord, LBCD Read/Write

Scratch Pad Data 7501-7599 Float, Long,
DWord, LBCD Read/Write

PID Control Data 7601-7623 Float, Long,
DWord, LBCD Read/Write

Miscellaneous Meter Run Data 7624-7699 Float, Long,
DWord, LBCD Read/Write

Miscellaneous Variables 7701-7799 Float, Long,
DWord, LBCD Read/Write

Meter Station Data 7801-7899 Float, Long,
DWord, LBCD Read/Write

Prover Data 7901-7918 Float, Long,
DWord, LBCD Read/Write

Configuration Data for Prover 7919-7958 Float, Long,
DWord, LBCD Read/Write

Last Prove Data 7959-7966 Float, Long,
DWord, LBCD Read/Write

Data Rejected During Prove 7967-7990 Float, Long,
DWord, LBCD Read/Write

Prove Run Data 7991-8050 Float, Long,
DWord, LBCD Read/Write

Prove Average Data 8051-8079 Float, Long,
DWord, LBCD Read/Write

Prove Run-Client Meter Data 8080-8199 Float, Long,
DWord, LBCD Read/Write

Proving Series Data 8200-8223 Float, Long,
DWord, LBCD Read/Write

Data of Meter Being Proved 8224-8230 Float, Long,
DWord, LBCD Read/Write

Mass Prove Data 8231-8500 Float, Long,
DWord, LBCD Read/Write

Miscellaneous Meter Run #1 8501-8599 Float, Long,
DWord, LBCD Read/Write

Miscellaneous Meter Run #2 8601-8699 Float, Long,
DWord, LBCD Read/Write

Miscellaneous Meter Run #3 8701-8799 Float, Long,
DWord, LBCD Read/Write

Miscellaneous Meter Run #4 8801-8899 Float, Long,
DWord, LBCD Read/Write

Station Previous Batch Average Data 8901-8999 Float, Long,
DWord, LBCD Read/Write

16-Bit Integer Configuration Data Range Data Type Access

Meter Run #1 13001-13013 Short, Word,
BCD Read/Write

Meter Run #2 13014-13026 Short, Word,
BCD Read/Write

Meter Run #3 13027-13039 Short, Word, Read/Write

www. ptc.com

33

Modbus RTU Serial Driver

16-Bit Integer Configuration Data Range Data Type Access
BCD

Meter Run #4 13040-13052 Short, Word,
BCD Read/Write

Prover Configuration 13053-13073 Short, Word,
BCD Read/Write

General Flow Configuration 13074-13084 Short, Word,
BCD Read/Write

Serial Port Configuration 13085-13128 Short, Word,
BCD Read/Write

PID Configuration 13129-13160 Short, Word,
BCD Read/Write

PLC Data 13161-13299 Short, Word,
BCD Read/Write

Peer to Peer Setup 13300-13499 Short, Word,
BCD Read/Write

Raw Data Archive 13500-13999 Short, Word,
BCD Read/Write

16-Character ASCII String Data Range Data Type Access
Flow Computer Configuration 14001-14499 String Read/Write

32-Bit Integer Data Range Data Type Access

Flow Computer Configuration 15001-16999 Long, DWord,
LBCD, Float Read/Write

32-Bit IEEE Floating Point Data Range Data Type Access

Flow Computer Configuration 17001-18999 Float, Long,
DWord, LBCD Read/Write

Supported Extended Omni Types
Custom Packets
Raw Data Archive
Text Reports
Text Archive

Omni Custom Packets
The Omni Flow Computer allows users to map various ranges of memory to a single data structure that can be read
with a single, highly efficient read command. These data structures are called Custom Packets.

Packet Configuration
Each custom packet may contain up to twenty groups of data points. Each group is defined by its starting index and
the number of data points. The total size of the custom packet must not exceed 250 bytes. The addresses used to
define the custom packets are listed below.

Custom Packet 1 (address 1)
3001 Group 1-Starting index
3002 Group 1-Number of points
 to
3039 Group 20-Starting index
3040 Group 20-Number of points

Custom Packet 2 (address 201)
3041 Group 1-Starting index

www. ptc.com

34

Modbus RTU Serial Driver

3042 Group 1-Number of points
 to
3055 Group 20-Starting index
3056 Group 20-Number of points

Custom Packet 3 (address 401)
3057 Group 1-Starting index
3058 Group 1-Number of points
 to
3095 Group 20-Starting index
3096 Group 20-Number of points

Note: Data is returned from the device as 16-bit registers. Digital I/O must be mapped in blocks of 16 bits.

Custom Packet Address Syntax
Tags can be created to access data at a given offset within a custom packet. The address syntax is as follows. The
default data types are shown in bold.

Address Range Data Type Access

CPn_o
n = Packet Number (1-3)
o = Word offset (0-125)

Word, Short, BCD, DWord,
Long, LBCD, Float, String Read Only

CPn_o.b

n = Packet Number (1-3)
o = Word offset (0-125)
b = Bit number (0/1-
15/16)*

Boolean Read Only

For more information, refer to Zero-Based Bit Addressing in Settings.

Notes:

1. Only 8 character ASCII string data is supported.

2. If a 16 character ASCII string data address is contained in group configuration, then data can be read as
two 8-character ASCII string data items.

Example
Define Custom Packet #1 to map to the following:

l 16 bits of digital I/O (1001-1016).
l Fifteen 32-bit integers of Meter Run 1 Batch data (5101 -5115).
l Twelve 32-bit floats of Analog Outputs (7001-7012).
l Four 8-character ASCII strings of Meter Run (4101-4104).
l Six 8-character ASCII strings of Meter Station (4808-4813).
l Two 16-character ASCII strings of Flow Configuration data (14001-14002).

Note: This makes a total of 222 bytes. The custom packet configuration registers would have the following val-
ues:

3001 = 1001
3002 = 16
3003 = 5101
3004 = 15
3005 = 7001
3006 = 12
3007 = 4101
3008 = 4
3009 = 4808
3010 = 6
3011 = 14001
3012 = 2

Tags to access the Digital I/O data would have the following addresses (all 16 values contained in word 0):

www. ptc.com

35

Modbus RTU Serial Driver

CP1_0.0 (Word 0 of Custom Packet 1, bit 0-mapped to 1009)
CP1_0.1 (Word 0 of Custom Packet 1, bit 1-mapped to 1010)
...
CP1_0.6 (Word 0 of Custom Packet 1, bit 6-mapped to 1015)
CP1_0.7 (Word 0 of Custom Packet 1, bit 7-mapped to 1016)
CP1_0.8 (Word 0 of Custom Packet 1, bit 8-mapped to 1001)
CP1_0.9 (Word 0 of Custom Packet 1, bit 9-mapped to 1002)
...
CP1_0.14 (Word 0 of Custom Packet 1, bit 14-mapped to 1007)
CP1_0.15 (Word 0 of Custom Packet 1, bit 15-mapped to 1008)

Tags to access the Meter Run 1 Batch data would have the following addresses (each 32-bit value uses 2 words):
CP1_1 (Word 1 of Custom Packet 1-mapped to 5101)
CP1_3 (Word 3 of Custom Packet 1-mapped to 5102)
...
CP1_29 (Word 29 of Custom Packet 1-mapped to 5115)

Tags to access the Analog Output data would have the following addresses (each 32-bit value uses 2 words):
CP1_31 (Word 31 of Custom Packet 1-mapped to 7001)
CP1_33 (Word 33 of Custom Packet 1-mapped to 7002)
...
CP1_53 (Word 53 of Custom Packet 1-mapped to 7012)

Tags to access the Meter Run 8 character ASCII String data would have the following addresses (each String value
uses 4 words):
CP1_55 (Word 55 of Custom Packet 1-mapped to 4101)
...
CP1_67 (Word 67 of Custom Packet 1-mapped to 4104)

Tags to access the Meter Station 8 character ASCII String data would have the following addresses (each String
value uses 4 words):
CP1_71 (Word 71 of Custom Packet 1-mapped to 4808)
...
CP1_91 (Word 91 of Custom Packet 1-mapped to 4813)

Tags to access the Flow Configuration 16 character ASCII String data would have the following addresses (each
String value uses 4 words):
CP1_95 (Word 95 of Custom Packet 1-mapped to 14001 characters 1-8)
CP1_99 (Word 99 of Custom Packet 1-mapped to 14001 characters 9-16)
CP1_103 (Word 103 of Custom Packet 1-mapped to 14002 characters 1-8)
CP1_107 (Word 107 of Custom Packet 1-mapped to 14002 characters 9-16)

Omni Raw Data Archive
The Omni Flow Computer may be configured to map various ranges of memory to a single data structure, and then
store that structure in an archive when triggered. Users may configure up to ten archives. There are two additional
fixed format archives for Alarm and Audit data. Each archive is a circular buffer, where each new record replaces
the oldest record.

Record Configuration and Retrieval
Users may configure the record structure of Raw Data Archives 1 to 10. Archives 11 and 12 are of fixed format and
contain Alarm and Audit data respectively.
For a full discussion of Raw Data Archives, refer to Omni Technical Bulletin 96073.

Each record may contain up to sixteen groups of data points. Each group is defined by its starting index and the
number of data points. The addresses used to define the archive records are listed below. The total size of the
record must not exceed 250 bytes. The device uses the first 6 bytes for date and time stamp data, leaving 244
bytes for raw data. Each record has its own Boolean trigger. Data is stored when the trigger goes from low to high.

Before a group starting index, number of points in group or trigger for a raw data archive can be changed, archiving
must halt. The Allow Archive Configuration Flag must be set in the device. Be aware that doing this likely causes
the data archive in the device to be reinitialized, including all Raw Data Archives and the Text Archive.

13920 Archive Run-0=stop, 1= start

www. ptc.com

36

Modbus RTU Serial Driver

13921 Reconfigure Archives-0=no configuration changes allowed, 1=configuration changes allowed

This driver may be used to read a Raw Data Archive one record at a time. To read a record, first write the desired
record index to the "Requested record" register. Once this value is set, users may read the record with an "RA" tag.
Users should ensure that the specified record index does not exceed the maximum number of records allowed for
that archive. If the "Last record updated" value is zero, there have been no records saved in the archive since it was
last initialized.

Raw Data Archive 1 (address 701)
13500 Group 1-Starting Index
13501 Group 1-Number of Points
 to
13530 Group 16-Starting Index
13531 Group 16-Number of points

13900 Trigger Boolean

3701 Maximum number of records
3702 Last record updated
3703 Requested record

Raw Data Archive 2 (address 702)
13540 Group 1-Starting Index
13541 Group 1-Number of Points
 to
13570 Group 16-Starting Index
13571 Group 16-Number of points

13901 Trigger Boolean

3704 Maximum number of records
3705 Last record updated
3706 Requested record

Raw Data Archive 3 (address 703)
13580 Group 1-Starting Index
13581 Group 1-Number of Points
 to
13610 Group 16-Starting Index
13611 Group 16-Number of points

13902 Trigger Boolean

3707 Maximum number of records
3708 Last record updated
3709 Requested record

Raw Data Archive 4 (address 704)
13620 Group 1-Starting Index
13621 Group 1-Number of Points
 to
13650 Group 16-Starting Index
13651 Group 16-Number of points

13903 Trigger Boolean

3710 Maximum number of records
3711 Last record updated
3712 Requested record

Raw Data Archive 5 (address 705)
13660 Group 1-Starting Index
13661 Group 1-Number of Points
 to
13690 Group 16-Starting Index

www. ptc.com

37

Modbus RTU Serial Driver

13691 Group 16-Number of points

13904 Trigger Boolean

3713 Maximum number of records
3714 Last record updated
3715 Requested record

Raw Data Archive 6 (address 706)
13700 Group 1-Starting Index
13701 Group 1-Number of Points
 to
13730 Group 16-Starting Index
13731 Group 16-Number of points

13905 Trigger Boolean

3716 Maximum number of records
3717 Last record updated
3718 Requested record

Raw Data Archive 7 (address 707)
13740 Group 1-Starting Index
13741 Group 1-Number of Points
 to
13770 Group 16-Starting Index
13771 Group 16-Number of points

13906 Trigger Boolean

3719 Maximum number of records
3720 Last record updated
3721 Requested record

Raw Data Archive 8 (address 708)
13780 Group 1-Starting Index
13781 Group 1-Number of Points
 to
13810 Group 16-Starting Index
13811 Group 16-Number of points

13907 Trigger Boolean

3722 Maximum number of records
3723 Last record updated
3724 Requested record

Raw Data Archive 9 (address 709)
13820 Group 1-Starting Index
13821 Group 1-Number of Points
 to
13850 Group 16-Starting Index
13851 Group 16-Number of points

13908 Trigger Boolean

3725 Maximum number of records
3726 Last record updated
3727 Requested record

Raw Data Archive 10 (address 710)
13860 Group 1-Starting Index
13861 Group 1-Number of Points
 to
13890 Group 16-Starting Index
13891 Group 16-Number of points

www. ptc.com

38

Modbus RTU Serial Driver

13909 Trigger Boolean

3728 Maximum number of records
3729 Last record updated
3730 Requested record

Raw Data Archive 11 Alarm (address 711)
Not configurable

3731 Maximum number of records
3732 Last record updated
3733 Requested record

Raw Data Archive 12 Archive (address 712)
Not configurable

3734 Maximum number of records
3735 Last record updated
3736 Requested record

Note: Data is returned from the device as 16-bit registers. Digital I/O must be mapped in blocks of 16 bits.

Raw Data Archive Address Syntax
Tags can be created to access data at a given offset within a Raw Data Archive record. The address syntax is as fol-
lows. The default data types are shown in bold.

Address Range Data Type Access

RAn_o
n = Archive Number (1-12)
o = Word offset (0-125)

Word, Short, BCD,
DWord, Long, LBCD,
Float, String

Read Only

RAn_o.b
n = Archive Number (1-12)
o = Word offset (0-125)
b = Bit number (0/1-15/16)*

Boolean Read Only

For more information, refer to Zero-Based Bit Addressing in Settings.

Notes:

1. Only 8 character ASCII string data is supported.

2. If a 16 character ASCII string data address is contained in group configuration, then data can be read as
two 8-character ASCII string data items.

Timestamp Format
The first 6 bytes of each record contains the time and date that the record was placed in the archive.

Byte Description

1
Month (1-12)*
Day (1-31)

2
Day (1-31)*
Month (1-12)

3 Year (0-99)

4 Hour (0-23)

5 Minute (0-59)

6 Seconds (0-59)

*Date format is set with register 3842 (0=dd/mm/yy, 1= mm/dd/yy).

www. ptc.com

39

Modbus RTU Serial Driver

Alarm/Event Log Record Structure (Address 711)
Field Data Type Description
1 3-Byte Date dd/mm/yy or mm/dd/yy.

2 3-Byte Time hh/mm/ss.

3 16-bit Integer Modbus Index # of alarm or event.

4 1 Byte Alarm Type.

5 1 Byte 0=OK, 1=Alarm.

6 IEEE Float Value of transducer variable at the time of alarm or
event.

7 32-bit Integer Volume totalizer at the time of the alarm or event.

8 32-bit Integer Mass totalizer at the time of the alarm or event.

Alarm Types
Type Description
0 Log event, sound beeper and display in LCD any edge change in bit identified by field #3.

1 Log event, sound beeper and display in LCD rising edge changes in bit identified by field
#3.

2 Event Log any edge change in bit identified by field #3. No beeper or LCD display action.

3 Event Log rising edge changes in bit identified by field #3. No beeper or LCD display
action.

Audit Event Log Record Structure (Address 712)
Field Data Type Description
1 3-Byte Date dd/mm/yy or mm/dd/yy.

2 3-Byte Time hh/mm/ss.

3 16-bit Integer Event number, increments for each event, rolls at
65535.

4 16-bit Integer Modbus index of variable changed.

5 IEEE Float Numeric variable value before change-old value.

6 IEEE Float Numeric variable value after change-new value.

7 16-Char ASCII String variable value before change-old value.

8 16-Char ASCII String variable value after change-new value.

9 32-bit Integer Volume totalizer at time of change.

10 32-bit Integer Mass totalizer at the time of the change.

Note: Fields 5 and 6 are set to 0.0 when the variable type changed is a string. Fields 7 and 8 contain null char-
acters when the variable type change is not a string. When fields 7 and 8 contain 8-character strings, the remaining
8 characters are padded with nulls.

Omni Text Reports
The Omni Flow computer can generate several different types of text reports. Each of these reports can be read by
this driver and sent to the OPC Client as a string value.

Text Report Types
There are a number of report types that can be retrieved from the Omni Flow Computer. They may be read using a
"TR" tag. The report types are as follows.

Custom Report Templates
9001 Report Template-Snapshot / Interval
9002 Report Template-Batch
9003 Report Template-Daily
9004 Report Template-Prove

www. ptc.com

40

Modbus RTU Serial Driver

Previous Batch Reports
9101 Batch Report-Last
9102 Batch Report-Second from Last
...
9108 Batch Report-Eighth from last

Previous Prove Reports
9201 Prove Report-Last
9202 Prove Report-Second from last
...
9208 Prove Report-Eighth from last

Previous Daily Reports
9301 Previous Day's Report-Last
9302 Previous Day's Report-Second from last
...
9308 Previous Day's Report-Eighth from last

Last Snapshot Report
9401 Last Local Snapshot / Interval Report

Miscellaneous Report Buffer
9402 Miscellaneous Report Buffer

Preview Monthly Reports
9501 Previous Month's Report - Last
9502 Previous Month's Report - Second from last
...
9508 Previous Month's Report - Eighth from last

Text Report Address Syntax
Address Range Data Type Access
TRn
TRn T (triggered read)

n = Report address (9001-
9508) String Read/Write

Example
To read or write to the Snapshot Report Template (address 9001), create a tag with address "TR9001".

Note: Because it can take several seconds to read a Text Report, the "TR" tags should be kept inactive in the
OPC client. Alternatively, triggered reads can be used instead. No other tags on the channel can be read or written
to while the driver is reading or writing a Text Report.

Triggered Text Report Reads
As noted above, it is recommended that the Text Report tag be kept inactive, even though it is not always possible.
A triggered read capability has been added as an alternative, allowing the Text Report tag to remain active. It also
controls when the actual device reads occur with an auxiliary trigger tag.

A triggered read may not begin immediately, depending on when in the Text Report tag's update cycle the trigger is
set. After the read attempt has been completed, the driver clears the trigger state. The Text Report tag shows the
value and data quality that resulted from the last triggered read attempt.

Text Report Read Trigger Address Syntax
Address Range Data Type Access

TRIG_TRn n = Report address (9001-
9508) Boolean Read/Write

Example
To read the Last Batch Report (address 9101) on trigger, create two tags. The first is a Text Report tag with
address "TR9101 T", and the second is a Text Report Read Trigger tag with address "TRIG_TR9101".

www. ptc.com

41

Modbus RTU Serial Driver

Note: The Text Report tag address looks like a normal Text Report address followed by a space and the letter "T"
for "triggered read". This "T" must be present in the address for triggered reads to work.

To trigger a read, set the trigger tag value to true (non-zero). After the read attempt has been completed, the driver
sets the trigger value to false (0). If the read was successful, the Text Report tag's data quality is Good. If the read
failed, the Text Report tag's data quality is Bad, and the value is the last value successfully read.

Saving Text Report Data To Disk
The driver has the ability to save Text Report data to disk. This feature is enabled by using Text Report Path tags.
These tags are used to write file path strings to the driver's memory. Each report type has its own path buffer. After
a successful Text Report read, the driver checks the associated path buffer. If a valid path is stored there, the driver
saves the report data as ASCII text in that file. The file is created if needed. The file is overwritten on subsequent
Text Report reads.

The path buffers are initialized to empty strings on server start up. The driver does not write Text Report data to file
until a valid path is saved in the associated path buffer. Path data is not persistent. The path strings must be rewrit-
ten each time the server is restarted. The path values can be changed at any time, allowing users to save data to
different files on each read if desired.

Path strings may be up to 255 characters long.

Text Report Path Address Syntax
Address Range Data Type Access

PATH_TRn n = Report address (9001-
9508) String Read/Write

Example
To read the Last Batch Report (address 9101) and save the result to disk, create two tags. The first is a Text Report
tag with address "TR9101", and the second is a path tag with address "PATH_TR9101".

To save the report data in a file called "LastBatch.txt" (which is to be created in the folder "C:\Om-
niData\BatchReports") set up the client so that the first thing that it does is write "C:\Om-
niData\BatchReports\LastBatch.txt" to the path tag. Once this is done, read the Text Report tag. If the path is not
set before the first read of the Text Report, the driver is not able to save the data to disk.

Note: To disable this feature, write an empty string to the path tag.

Omni Text Archive
The Omni Flow Computer can also store reports in an archive. This driver can read a range of reports from the
archive and send them to the OPC client as a string value.

Reading the Text Archive
Before the text archive can be read, two settings must be made in the device: the archive start date, and the num-
ber of days to retrieve. These 32-bit integer values are at addresses 15128 and 15127 respectively. The date
format may be specified using the value at address 3842 (0 = dd/mm/yy, 1 = mm/dd/yy). Shortly after the number of
days is set, the device begins preparing the data. When the data is ready to be read, the number of days value
becomes negative. The Text Archive can be read at any time after the number of days is set. The driver waits for
the value to become negative.

Text Archive Address Syntax
Address Range Data Type Access
TA
TA T (triggered read)

N/A String Read Only

Note: Because it can take several minutes to read a Text Archive, the "TA" tag should be kept inactive in the
OPC client. Alternatively, triggered reads can be used instead. This tag should only be read using asynchronous
reads, since the maximum synchronous read timeout cannot be increased high enough in the server to read a typ-
ical text archive request. No other tags on the channel can be read or written to while the Text Archive is being
read.

www. ptc.com

42

Modbus RTU Serial Driver

If a Text Archive read fails midway, users should reset the device's read buffer by writing 999 to the number of days
register (15127), and then repeat the normal Text Archive read procedure. Otherwise, the driver may not get the
first part of the requested archive range.

Triggered Text Archive Reads
It is recommended that the Text Archive tag be kept inactive even though it is not always possible. A triggered read
capability has been added as an alternative, thus allowing the Text Archive tag to remain active. It also controls
when the actual device reads occur with an auxiliary trigger tag. The trigger value is stored in the driver's memory
and may be read and set using a tag with the address syntax described below.

A triggered read may not begin immediately depending on when in the Text Archive tag's update cycle the trigger is
set. After the read attempt has been completed, the driver clears the trigger state. The Text Archive tag shows the
value and data quality that resulted from the last triggered read attempt.

Text Archive Read Trigger Address Syntax
Address Range Data Type Access
TRIG_TA N/A Boolean Read/Write

Example
To read the Text Archive on trigger, create two tags. The first is a Text Archive tag with address "TA T", and the
second is a Text Archive Read Trigger tag with address "TRIG_TA". Users must create start date and number of
days tags.

Note: The Text Archive tag address looks like a normal Text Archive address followed by a space and the letter
"T" for "triggered read". This "T" must be present in the address for triggered reads to work.

To trigger a read, set the trigger tag value to true (non-zero). After the read attempt has been completed, the driver
sets the trigger value to false (0). If the read was successful, the Text Archive tag's data quality is Good. If the read
failed, the Text Archive tag's data quality is Bad and the value is the last value successfully read.

Saving Text Archive Data to Disk
The driver has the ability to save Text Archive data to disk. This feature is enabled using a Text Archive Path tag.
This tag is used to write a file path string to the driver's memory. After a successful Text Archive read, the driver
checks the associated path buffer. If a valid path is stored there, the driver saves the Text Archive data as ASCII
text in that file. The file is created if needed. The file is overwritten on subsequent Text Archive reads.

The path buffer is initialized to an empty string on server start up. The driver does not write Text Archive data to file
until a valid path is saved in the associated path buffer. Path data is not persistent. Users must to rewrite the path
string each time the server is restarted. The path value can be changed at any time, allowing the data to be saved
to different files on each read (if desired).

The path string may be up to 255 characters long. The directory cannot be the root drive (C:\\TextArchive.txt),
within the Windows directory, or within the Program Files directory other than the server installation location. The
file extension must be either .txt or .log.

Text Archive Path Address Syntax
Address Range Data Type Access
PATH_TA N/A String Read/Write

Example
To read the Text Archive and save the result to disk, create two tags. The first is a Text Archive tag with address
"TA", and the second is a path tag with address "PATH_TA". Users must create start date and number of days tags
as described above.

To save the Text Archive data in a file called "TextArchive.txt" (which is to be created in the folder "C:\Om-
niData\ArchiveData") set up the client so that the first thing that it does is write "C:\Om-
niData\ArchiveData\TextArchive.txt" to the path tag. Once this is done, read the Text Archive tag. If the path is not
set before the first read of the Text Archive, the driver is not able to save the data to disk.

www. ptc.com

43

Modbus RTU Serial Driver

Note: To disable this feature, write a empty string to the path tag.

Function Codes Description

Modbus Addressing Model
Decimal Hexadecimal Description
01 0x01 Read Coil Status

02 0x02 Read Input Status

03 0x03 Read Holding Registers

04 0x04 Read Internal Registers

05 0x05 Force Single Coil

06 0x06 Preset Single Register

15 0x0F Force Multiple Coils

16 0x10 Preset Multiple Registers

22 0x16 Masked Write Register

Daniels S500 Flow Computer Addressing Model
Decimal Hexadecimal Description
01 0x01 Read Coil Status

02 0x02 Read Input Coil

03 0x03 Read Holding Registers

05 0x05 Force Single Coil

16 0x10 Preset Multiple Registers

www. ptc.com

44

Modbus RTU Serial Driver

Configuration API Service — Channel Properties
The following properties define a channel using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

Note: Changing this property causes the API endpoint URL to change.

common.ALLTYPES_DESCRIPTION

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.CHANNEL_DIAGNOSTICS_CAPTURE

Ethernet Communication Properties

servermain.CHANNEL_ETHERNET_COMMUNICATIONS_NETWORK_ADAPTER_STRING

Advanced Properties

servermain.CHANNEL_NON_NORMALIZED_FLOATING_POINT_HANDLING

Write Optimizations

servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD

servermain.CHANNEL_WRITE_OPTIMIZATIONS_DUTY_CYCLE

See Also: The server help system Configuration API Service section.

Configuration API Service — Device Properties
The following properties define a device using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

common.ALLTYPES_DESCRIPTION

servermain.DEVICE_CHANNEL_ASSIGNMENT

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.DEVICE_MODEL * Not required, but verify the default is acceptable

servermain.DEVICE_ID_STRING * Required parameter

servermain.DEVICE_DATA_COLLECTION

servermain.DEVICE_SIMULATED

Scan Mode

servermain.DEVICE_SCAN_MODE

servermain.DEVICE_SCAN_MODE_RATE_MS

www. ptc.com

45

Modbus RTU Serial Driver

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_PROVIDE_INITIAL_UPDATES_FROM_CACHE

Auto Demotion

servermain.DEVICE_AUTO_DEMOTION_ENABLE_ON_COMMUNICATIONS_FAILURES

servermain.DEVICE_AUTO_DEMOTION_DEMOTE_AFTER_SUCCESSIVE_TIMEOUTS

servermain.DEVICE_AUTO_DEMOTION_PERIOD_MS

servermain.DEVICE_AUTO_DEMOTION_DISCARD_WRITES

Tag Generation

servermain.DEVICE_TAG_GENERATION_ON_STARTUP

servermain.DEVICE_TAG_GENERATION_DUPLICATE_HANDLING

servermain.DEVICE_TAG_GENERATION_GROUP

servermain.DEVICE_TAG_GENERATION_ALLOW_SUB_GROUPS

Tip: To Invoke Automatic Tag Generation, send a PUT with an empty body to the TagGeneration service end-
point on the device.
See Also: For more information, see Services help.

Timing
servermain.DEVICE_CONNECTION_TIMEOUT_SECONDS

servermain.DEVICE_REQUEST_TIMEOUT_MILLISECONDS

servermain.DEVICE_RETRY_ATTEMPTS

servermain.DEVICE_INTER_REQUEST_DELAY_MILLISECONDS

See Also: The server help system Configuration API Service section.

www. ptc.com

46

Modbus RTU Serial Driver

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Consult the
OPC server help on filtering and sorting the Event Log detail view. Server help contains many common messages,
so should also be searched. Generally, the type of message (informational, warning) and troubleshooting inform-
ation is provided whenever possible.

Tip: Messages that originate from a data source (such as third-party software, including databases) are presen-
ted through the Event Log. Troubleshooting steps should include researching those messages online and in
vendor documentation.

Bad address in block range. | Address range = <start> to <end>.
Error Type:
Error

Possible Cause:

1. An attempt was made to reference a nonexistent location in the specified device.

2. An attempt was made to read more registers than allowed by the protocol.

Possible Solution:

1. Verify the tags assigned to addresses in the specified range on the device and eliminate ones that ref-
erence invalid locations.

2. Decrease the register block size value to 125.

 See Also:

1. Error Handling

2. Block Sizes

Bad array. | Array range = <start> to <end>.
Error Type:
Error

Possible Cause:
An array of addresses was defined that spans past the end of the address space.

Possible Solution:

1. Verify the size of the device's memory space and redefine the array length accordingly.

2. Verify the tags assigned to addresses in the specified range on the device and eliminate ones that ref-
erence invalid locations.

3. Reduce the array size value to 125.

 See Also:

1. Error Handling

2. Block Sizes

www. ptc.com

47

Modbus RTU Serial Driver

Block address responded with exception code. | Address range = <start> to
<end>, Exception code = <code>.
Error Type:
Warning

Possible Cause:
See Modbus Exception Codes for a description of the exception code.

Possible Solution:
See Modbus Exception Codes.

Unable to write to address, device responded with exception code. | Address =
'<address>', Exception code = <code>.
Error Type:
Warning

Possible Cause:
See Modbus Exception Codes for a description of the exception code.

Possible Solution:
See Modbus Exception Codes.

Unable to read from address, device responded with exception code. | Address =
'<address>', Exception code = <code>.
Error Type:
Warning

Possible Cause:
See Modbus Exception Codes for a description of the exception code.

Possible Solution:
See Modbus Exception Codes.

Tag import failed due to low memory resources.
Error Type:
Warning

Possible Cause:
The driver can not allocate memory required to process variable import file.

Possible Solution:
Shut down all unnecessary applications and retry.

File exception encountered during tag import.
Error Type:
Warning

Possible Cause:
The variable import file could not be read.

Possible Solution:
Regenerate the variable import file.

www. ptc.com

48

Modbus RTU Serial Driver

Error parsing record in import file. | Record number = <number>, Field = <name>.
Error Type:
Warning

Possible Cause:
The specified field in the variable import file could not be parsed because it is invalid or longer than expected.

Possible Solution:
Edit the variable import file to change the offending field.

Description truncated for record in import file. | Record number = <number>.
Error Type:
Warning

Possible Cause:
The tag description given in specified record is too long.

Possible Solution:
The driver truncates descriptions as needed. To prevent this error, edit the variable import file to shorten the
description.

Imported tag name is invalid and has been changed. | Tag name = '<tag>',
Changed tag name = '<tag>'.
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Possible Solution:
The driver constructs valid names based on the variable import file. To prevent this error and maintain name con-
sistency, change the name of the exported variable.

A tag could not be imported because the data type is not supported. | Tag name =
'<tag>', Unsupported data type = '<type>'.
Error Type:
Warning

Possible Cause:
The driver does not support the data type specified in the variable import file.

Possible Solution:
Change the data type specified in the variable import file to one that is supported. If the variable is for a structure,
manually edit the file to define each tag required for the structure or configure the required tags manually in the
server.

 See Also:
Exporting Variables from Concept

Could not read Omni text buffer due to memory allocation problem.
Error Type:
Warning

Possible Cause:

www. ptc.com

49

Modbus RTU Serial Driver

The driver can not allocate memory required for an Omni Text Record or Text Archive read operation.

Possible Solution:
Shut down all unnecessary applications and retry.

No Omni text archive data available in specified date range.
Error Type:
Warning

Possible Cause:
No data is in the text archive for the date range specified by the Start Date register (15128) and the Number of Days
register (15127).

Possible Solution:
This is not necessarily an error. Verify there is no data available for specified range.

Write to Omni text report truncated. | Report number = <number>.
Error Type:
Warning

Possible Cause:
An attempt was made to write more than 8192 bytes to a text report. This is a limit imposed by the protocol.

Possible Solution:
Do not write strings greater than the 8192 byte limit. If the string is longer, only the first 8192 characters are written
to the device.

Could not read Omni text report due to packet number limit. | Report number =
<number>.
Error Type:
Warning

Possible Cause:
Text reports are expected to be 8192 bytes or less. This is a limit imposed by the protocol. The driver read 8192
bytes before encountering the expected end of file character.

Possible Solution:
Verify that the report template used by the device generates reports of 8192 bytes or less.

Write failed. Maximum path length exceeded. | Tag address = '<address>', Max-
imum length = <number>.
Error Type:
Warning

Possible Cause:
Path length is limited to the indicated number of characters.

Possible Solution:
Use a shorter path.

Error writing Omni text data to file. | Tag address = '<address>', Reason =
'<reason>'.
Error Type:
Warning

www. ptc.com

50

Modbus RTU Serial Driver

Possible Cause:
The driver could not write the Omni text data to disk for the indicated reason.

Possible Solution:
Consult the operating system documentation for appropriate corrective measures for the reason indicated.

Omni text output file could not be opened. | Tag address = '<address>', Reason =
'<reason>'.
Error Type:
Warning

Possible Cause:
The file specified in an Omni Text Path tag could not be created or opened.

Possible Solution:
Consult the operating system documentation about the reason indicated for appropriate corrective measures. The
most likely cause is an invalid path.

 See Also:

1. Omni Text Reports

2. Omni Text Archive

Unable to write to address. Unexpected characters in response. | Tag address =
'<address>'.
Error Type:
Warning

Unable to read from address. Unexpected characters in response. | Tag address =
'<address>'.
Error Type:
Warning

Unable to read block address. Unexpected characters in response. | Address
range = <start> to <end>.
Error Type:
Warning

Omni text output file could not be changed. | Tag address = '<address>', Reason =
The path specified is not allowed.
Error Type:
Warning

Possible Cause:
The directory specified in an Omni Text Path tag is not allowed.

Possible Solution:
Consult the driver help content and supply a path to a secure location.

 See Also:

www. ptc.com

51

Modbus RTU Serial Driver

1. Omni Text Reports

2. Omni Text Archive

Omni text output file could not be changed. | Tag address = '<address>', Reason =
The file extension specified must be '.txt' or '.log'.
Error Type:
Warning

Possible Cause:
The extension specified in an Omni Text Path tag is not allowed and must be .txt or .log.

Possible Solution:
Specify a valid extension.

 See Also:

1. Omni Text Reports

2. Omni Text Archive

Importing tag database from file. | File name = '<name>'.
Error Type:
Informational

Error Mask Definitions

B = Hardware break detected
F = Framing error
E = I/O error
O = Character buffer overrun
R = RX buffer overrun
P = Received byte parity error
T = TX buffer full

www. ptc.com

52

Modbus RTU Serial Driver

Modbus Exception Codes
The following data is from Modbus Application Protocol Specifications documentation.

Code
Dec/Hex

Name Meaning

01/0x01 ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the
server. This may be because the function code is only applicable to newer
devices, and was not implemented in the unit selected. It could also indicate
that the server is in the wrong state to process a request of this type, for
example, because it is unconfigured and is being asked to return register val-
ues.

02/0x02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the
server. More specifically, the combination of reference number and transfer
length is invalid. For a controller with 100 registers, a request with offset 96 and
length 4 would succeed. A request with offset 96 and length 5 generates excep-
tion 02.

03/0x03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for server.
This indicates a fault in the structure of the remainder of a complex request,
such as that the implied length is incorrect. It specifically does not mean that a
data item submitted for storage in a register has a value outside the expect-
ation of the application program, since the Modbus protocol is unaware of the
significance of any particular value of any particular register.

04/0x04
SERVER
DEVICE
FAILURE

An unrecoverable error occurred while the server was attempting to perform
the requested action.

05/0x05 ACKNOWLEDGE

The server has accepted the request and is processing it, but a long duration of
time is required to do so. This response is returned to prevent a timeout error
from occurring in the client. The client can next issue a Poll Program Complete
message to determine if processing is completed.

06/0x06 SERVER
DEVICE BUSY

The server is engaged in processing a long-duration program command. The
client should retransmit the message later when the server is free.

07/0x07 NEGATIVE
ACKNOWLEDGE

The server cannot perform the program function received in the query. This
code is returned for an unsuccessful programming request using function code
13 or 14 decimal. The client should request diagnostic or error information from
the server.

08/0x08 MEMORY
PARITY ERROR

The server attempted to read extended memory, but detected a parity error in
the memory. The client can retry the request, but service may be required on
the server device.

10/0x0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways indicates that the gateway was
unable to allocate an internal communication path from the input port to the out-
put port for processing the request. This usually means that the gateway is mis-
configured or overloaded.

11/0x0B

GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways indicates that no response was
obtained from the target device. This usually means that the device is not
present on the network.

Note: For this driver, the terms server and unsolicited are used interchangeably.

www. ptc.com

53

Modbus RTU Serial Driver

Index

A

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsupported data
type = '<type>'. 49

Address Descriptions 25

Allow Sub Groups 15

Attempts Before Timeout 13

Auto-Demotion 13

Auto-Dial 9

Automatic Tag Database Generation 21

B

Bad address in block range. | Address range = <start> to <end>. 47

Bad array. | Array range = <start> to <end>. 47

Baud Rate 4, 8

BCD 24

Block address responded with exception code. | Address range = <start> to <end>, Exception code =
<code>. 48

Block Read Strings 18

Block Sizes 18

Boolean 24

C

Channel-Level Settings 6

Channel Assignment 10

Channel Properties — Advanced 9

Channel Properties — Communication Serialization 5

Channel Properties — General 5

Channel Properties — Serial Communications 7

Channel Properties — Write Optimizations 7

Close Idle Connection 9

Coils 25

COM ID 8

COM Port 8

Communication Protocol 4

Communications Timeouts 12-13

Connect Timeout 9

Connection Type 8

Could not read Omni text buffer due to memory allocation problem. 49

www. ptc.com

54

Modbus RTU Serial Driver

Could not read Omni text report due to packet number limit. | Report number = <number>. 50

Create 15

D

Daniel S500 Flow Computer 4

Daniels S500 Flow Computer Addressing 29

Data Bits 4, 8

Data Collection 11

Data Encoding 16

Data Types Description 24

Deactivate Tags on Illegal Address 20

Delete 15

Demote on Failure 13

Demotion Period 14

Description truncated for record in import file. | Record number = <number>. 49

Device Properties — Auto-Demotion 13

Device Properties — Ethernet Encapsulation 12

Device Properties — General 10

Device Properties — Redundancy 20

Device Properties — Tag Generation 14

Diagnostics 5

Discard Requests when Demoted 14

Do Not Scan, Demand Poll Only 12

Double 24

Driver 10

Drop 9

DTR 8

Duty Cycle 7

DWord 24

Dynamic Fluid Meter (DFM) SFC3 4

Dynamic Fluid Meter Addressing 29

E

Elliott Flow Computer 4

Elliott Flow Computer Addressing 28

Error Handling 20

Error Mask Definitions 52

Error parsing record in import file. | Record number = <number>, Field = <name>. 49

Error writing Omni text data to file. | Tag address = '<address>', Reason = '<reason>'. 50

Ethernet Encapsulation 12

Event Log Messages 47

www. ptc.com

55

Modbus RTU Serial Driver

F

File exception encountered during tag import. 48

First DWord Low 16

First Word Low 16

Float 24

Flow Control 8

Framing 19, 52

Function Codes Description 44

G

General 10

Generate 14

Global Settings 6

H

Hardware break 52

Holding Register Bit Writes 16

Holding Registers 18

I

I/O error 52

ID 10

Identification 5, 10

Idle Time to Close 9

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name = '<tag>'. 49

Importing tag database from file. | File name = '<name>'. 52

Include Descriptions 19

Initial Updates from Cache 12

Input Coils 18

Inter-Device Delay 10

Inter-Request Delay 13

Internal Registers 18

IP Address 12

L

LBCD 24

Leading 19

www. ptc.com

56

Modbus RTU Serial Driver

Load Balanced 6

Long 24

M

Magnetek GPD 515 Drive 4

Magnetek GPD 515 Drive Addressing 27

Modbus-compatible devices 4

Modbus Addressing 25

Modbus Byte Order 16

Modbus Exception Codes 53

Modbus Function 05 16

Modbus Function 06 16

Model 10

Modem 8-9

Modem Settings 9

Modicon Bit Order 16

N

Name 10

Network 1 - Network 500 6

Network Mode 6

No Omni text archive data available in specified date range. 50

Non-Normalized Float Handling 9

None 8

O

Omni Custom Packets 34

Omni Flow Computer 4

Omni Flow Computer Addressing 30

Omni Raw Data Archive 36

Omni Text Archive 42

Omni text output file could not be changed. | Tag address = '<address>', Reason = The file extension specified
must be '.txt' or '.log'. 52

Omni text output file could not be changed. | Tag address = '<address>', Reason = The path specified is not
allowed. 51

Omni text output file could not be opened. | Tag address = '<address>', Reason = '<reason>'. 51

Omni Text Reports 40

On Device Startup 14

On Duplicate Tag 15

On Property Change 14

Operating Mode 11

www. ptc.com

57

Modbus RTU Serial Driver

Operation with no Communications 9

Operational Behavior 9

Optimization Method 7

Output Coils 18

Overrun 52

Overview 4

Overwrite 15

P

Parent Group 15

Parity 4, 8, 52

Physical Medium 8

Poll Delay 9

Port 12

Priority 6

Protocol 12

R

Raise 8

Read Processing 9

Redundancy 20

Registers 25

Reject Repeated Messages 20

Replace with Zero 9

Report Communication Errors 9

Request Timeout 13

Respect Tag-Specified Scan Rate 12

RS-485 9

RTS 8

RX buffer overrun 52

S

Scan Mode 11

Serial Communications 7

Serial Port Settings 8

Settings 15

Setup 4

Shared 8

Short 24

Simulated 11

www. ptc.com

58

Modbus RTU Serial Driver

Statistics Items 22

Stop Bits 4, 8

String 24

Supported Devices 4

T

Tag Counts 5, 11

Tag Generation 14

Tag import failed due to low memory resources. 48

Timeouts to Demote 13

Trailing 19

Transactions per Cycle 6

Treat Longs as Decimals 17

TSXCUSBMBP USB Adapter 4

TX buffer full 52

U

Unable to read block address. Unexpected characters in response. | Address range = <start> to <end>. 51

Unable to read from address, device responded with exception code. | Address = '<address>', Exception code =
<code>. 48

Unable to read from address. Unexpected characters in response. | Tag address = '<address>'. 51

Unable to write to address, device responded with exception code. | Address = '<address>', Exception code =
<code>. 48

Unable to write to address. Unexpected characters in response. | Tag address = '<address>'. 51

Unmodified 10

V

Variable Import File 19

Variable Import Settings 19

Virtual Network 6

W

Word 24

Write All Values for All Tags 7

Write failed. Maximum path length exceeded. | Tag address = '<address>', Maximum length = <number>. 50

Write Only Latest Value for All Tags 7

Write Only Latest Value for Non-Boolean Tags 7

Write to Omni text report truncated. | Report number = <number>. 50

www. ptc.com

59

Modbus RTU Serial Driver

Z

Zero-Based Addressing 15

Zero-Based Bit Addressing 16

www. ptc.com

60

	Modbus RTU Serial Driver
	Table of Contents
	Modbus RTU Serial Driver
	Overview

	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Communication Serialization
	Channel Properties — Write Optimizations
	Channel Properties — Serial Communications
	Channel Properties — Advanced
	Device Properties — General
	Operating Mode
	Tag Counts

	Device Properties — Scan Mode
	Device Properties — Ethernet Encapsulation
	Device Properties — Timing
	Device Properties — Auto-Demotion
	Device Properties — Tag Generation
	Device Properties — Settings
	Device Properties — Block Sizes
	Device Properties — Variable Import Settings
	Device Properties — Framing
	Device Properties — Error Handling
	Device Properties — Redundancy

	Automatic Tag Database Generation
	Statistics Items

	Data Types Description
	Address Descriptions
	Modbus Addressing
	Magnetek GPD 515 Drive Addressing
	Elliott Flow Computer Addressing
	Daniels S500 Flow Computer Addressing
	Dynamic Fluid Meter Addressing
	Omni Flow Computer Addressing
	Omni Custom Packets
	Omni Raw Data Archive
	Omni Text Reports
	Omni Text Archive

	Function Codes Description
	Configuration API Service — Channel Properties
	Configuration API Service — Device Properties

	Event Log Messages
	Bad address in block range. | Address range = <start> to <end>.
	Bad array. | Array range = <start> to <end>.
	Block address responded with exception code. | Address range = <start> to <en...
	Unable to write to address, device responded with exception code. | Address =...
	Unable to read from address, device responded with exception code. | Address ...
	Tag import failed due to low memory resources.
	File exception encountered during tag import.
	Error parsing record in import file. | Record number = <number>, Field = <name>.
	Description truncated for record in import file. | Record number = <number>.
	Imported tag name is invalid and has been changed. | Tag name = '<tag>', Chan...
	A tag could not be imported because the data type is not supported. | Tag nam...
	Could not read Omni text buffer due to memory allocation problem.
	No Omni text archive data available in specified date range.
	Write to Omni text report truncated. | Report number = <number>.
	Could not read Omni text report due to packet number limit. | Report number =...
	Write failed. Maximum path length exceeded. | Tag address = '<address>', Maxi...
	Error writing Omni text data to file. | Tag address = '<address>', Reason = '...
	Omni text output file could not be opened. | Tag address = '<address>', Reaso...
	Unable to write to address. Unexpected characters in response. | Tag address ...
	Unable to read from address. Unexpected characters in response. | Tag address...
	Unable to read block address. Unexpected characters in response. | Address ra...
	Omni text output file could not be changed. | Tag address = '<address>', Reas...
	Omni text output file could not be changed. | Tag address = '<address>', Reas...
	Importing tag database from file. | File name = '<name>'.
	Error Mask Definitions

	Modbus Exception Codes

	Index

