
© 2025 PTC Inc. All Rights Reserved.

ThingWorx Kepware Server

Table of Contents

Table of Contents 2

16

Introduction 17

System Requirements 18

Application Data 20

Components 21

Process Modes 21

Interfaces and Connectivity 22

OPC DA 22

OPC AE 23

OPC UA Interface 23

OPC UA Certificate Management 24

OPC .NET 25

DDE 25

FastDDE / SuiteLink 26

iFIX Native Interfaces 26

ThingWorx Native Interface 26

ThingWorx Native Interface Certificate Management 27

Navigating the User Interface 27

Options — General 30

Options — Runtime Connection 32

Project Properties 32

Project Properties — General 33

Project Properties — OPC DA 33

Project Properties — OPC UA 35

Project Properties — DDE 37

Project Properties — OPC .NET 38

Project Properties — OPC AE 38

Project Properties — FastDDE / SuiteLink 39

Project Properties — iFIX PDB Settings 40

Project Properties — OPC HDA 41

Project Properties — ThingWorx 42

Store and Forward — Fill Rate Example 46

Store and Forward — System Tags 47

Accessing the Administration Menu 49

Settings 50

Settings — Administration 50

Settings — Configuration 51

Settings — Runtime Process 51

www. ptc.com

2

ThingWorx Kepware Server

Settings — Runtime Options 52

Settings — Logs 53

Settings — ProgID Redirect 55

Settings — User Manager 56

Settings — User Manager — ThingWorx Interface Users 61

Settings — User Manager — UA Gateway User 63

UA Gateway User Management 63

Settings — Configuration API Service Transaction Log 64

Settings — Configuration API Service Configuration 65

Settings — Certificate Store 68

UA Gateway Certificate Management 69

Settings — Service Ports 70

Service Port Assignments 71

Components and Concepts 72

What is a Channel? 72

Channel Properties — General 73

Tag Counts 73

Channel Properties — Advanced 73

Channel Properties — Ethernet Communications 74

Channel Properties — Serial Communications 74

Channel Properties — Ethernet Encapsulation 77

Channel Properties — Communication Serialization 77

Channel Properties — Network Interface 78

Channel Properties — Write Optimizations 79

Device Discovery Procedure 79

What is a Device? 80

Device Properties — General 81

Operating Mode 81

Tag Counts 82

Device Properties — Scan Mode 82

Device Properties — Auto-Demotion 83

Device Properties — Communication Parameters 83

Device Properties — Ethernet Encapsulation 84

Device Properties — Tag Generation 84

Device Properties — Time Synchronization 86

Device Properties — Timing 87

Device Properties — Redundancy 87

What is a Tag? 88

Tag Properties — General 89

Multiple Tag Generation 90

Tag Properties — Scaling 94

Dynamic Tags 95

Static Tags (User-Defined) 96

www. ptc.com

3

ThingWorx Kepware Server

What is a Tag Group? 96

Tag Group Properties 96

What is the Alias Map? 97

Alias Properties 98

What is the Event Log? 99

Event Log 99

Tag Management 100

CSV Import and Export 101

System Tags 102

Property Tags 114

Statistics Tags 115

Modem Tags 117

Communication Serialization Tags 120

Communications Management 121

Using a Modem in the Server Project 122

Phonebook 123

Auto-Dial 124

Designing a Project 125

Running the Server 125

Starting a New Project 125

Adding and Configuring a Channel 126

Channel Creation Wizard 126

Adding and Configuring a Device 128

Device Creation Wizard 129

Adding User-Defined Tags (Example) 130

Browsing for Tags 131

Generating Multiple Tags 132

Adding Tag Scaling 135

Saving the Project 135

Opening an Encrypted Project 137

Testing the Project 138

How Do I... 143

Allow Desktop Interactions 143

Create and Use an Alias 143

Optimize a Server Project 145

Properly Name a Channel, Device, Tag, and Tag Group 146

Resolve Comm Issues when Server is Power Cycled 146

Use an Alias to Optimize a Project 147

Use DDE with the Server 148

Use Dynamic Tag Addressing 149

Use Ethernet Encapsulation 149

www. ptc.com

4

ThingWorx Kepware Server

Work with Non-Normalized Floating-Point Values 151

Configuration API Service 153

Security 153

Documentation 153

Configuration API Service — Architecture 154

Configuration API Service — Documentation Endpoint 154

Configuration API Service — Endpoint Mapping 154

Configuration API Service — Health Status Endpoint 156

Configuration API Service — About Endpoint 156

Configuration API Service — Concurrent Clients 157

Configuration API Service — Log Retrieval 157

Configuration API Service — Audit Logs 158

Configuration API Service — Event Logs 160

Configuration API Service — Content Retrieval 161

Configuration API Service — Server Administration 169

Configuration API Service — Data 170

Configuration API Service — Channel Properties 174

Configuration API Service — Creating a Channel 175

Configuration API Service — Updating a Channel 175

Configuration API Service — Removing Channel 176

Configuration API Service — Device Properties 176

Configuration API Service — Creating a Device 177

Configuration API Service — Updating a Device 178

Configuration API Service — Removing a Device 179

Configuration API Service — Creating a Tag 179

Configuration API Service — Updating a Tag 180

Configuration API Service — Removing a Tag 181

Configuration API Service — Creating a Tag Group 182

Configuration API Service — Updating a Tag Group 182

Configuration API Service — Removing a Tag Group 183

Configuration API Service — Property Validation Error Object 183

Configuration API Service — Creating a User 184

Configuration API Service — Updating a User 184

Configuration API Service — Creating a User Group 184

Configuration API Service — Updating a User Group 185

Configuration API Service — Removing a User or Group 185

Configuration API Service — User Management 185

Configuration API Service — Configuring User Group Project Permissions 189

Configuration API Service — Configuration API Settings 190

Configuration API Service — Bearer Authentication Settings 190

Configuration API Service — Invoking Services 191

www. ptc.com

5

ThingWorx Kepware Server

Configuration API Service — Automatic Tag Generation 192

Configuration API Service — Project Load 192

Configuration API Service — Project Save 193

Configuration API Service — Project Import / Export 194

Configuration API Service — UA Gateway 196

Default Connection to the OPC UA Server 200

Configuration API Service — Enabling and Disabling UA Gateway Connections 201

Configuration API Service — UA Gateway Certificate Management 202

Configuration API Service — Reinitialize Runtime Service 206

Configuration API Service — Response Codes 207

Device Demand Poll 207

Configuring from iFIX Applications 208

Overview: Creating Datablocks Inside iFIX Applications 208

Entering Driver Information in iFIX Database Manager 208

iFIX Signal Conditioning Options 211

Project Startup for iFIX Applications 217

Store and Forward Service 217

Built-In Diagnostics 217

OPC Diagnostics Viewer 218

OPC DA Events 221

OPC UA Services 227

Communication Diagnostics 229

Event Log Messages 231

Server Summary Information 232

The <name> device driver was not found or could not be loaded. 233

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>').
Remove the conflicting driver and restart the application. 234

Invalid project file. 234

Failed to open modem line '<line>' [TAPI error = <code>]. 234

Unable to add channel due to driver-level failure. 234

Unable to add device due to driver-level failure. 234

Version mismatch. 235

Invalid XML document: 235

Unable to load project <name>: 235

Unable to backup project file to '<path>' [<reason>]. The save operation has been aborted. Verify the
destination file is not locked and has read/write access. To continue to save this project without a
backup, deselect the backup option under Tools | Options | General and re-save the project. 235

<feature name> was not found or could not be loaded. 236

Unable to save project file <name>: 236

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range and try
again. 236

<feature name> is required to load this project. 236

The current language does not support loading XML projects. To load XML projects, change the
product language selection to English in Server Administration. 236

www. ptc.com

6

ThingWorx Kepware Server

Unable to load the project due to a missing object. | Object = '<object>'. 236

Invalid Model encountered while trying to load the project. | Device = '<device>'. 236

Cannot add device. A duplicate device may already exist in this channel. 237

Auto-generated tag '<tag>' already exists and will not be overwritten. 237

Unable to generate a tag database for device '<device>'. The device is not responding. 237

Unable to generate a tag database for device '<device>': 237

Auto generation produced too many overwrites, stopped posting error messages. 237

Failed to add tag '<tag>' because the address is too long. The maximum address length is <number>. 238

Line '<line>' is already in use. 238

Hardware error on line '<line>'. 238

No comm handle provided on connect for line '<line>'. 238

Unable to dial on line '<line>'. 238

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network adapter. 239

Rejecting attempt to change model type on a referenced device '<channel device>'. 239

TAPI line initialization failed: <code>. 239

Validation error on '<tag>': <error>. 239

Unable to load driver DLL '<name>'. 239

Validation error on '<tag>': Invalid scaling parameters. 240

Unable to apply modem configuration on line '<line>'. 240

Device '<device>' has been automatically demoted. 240

<Source>: Invalid Ethernet encapsulation IP '<address>'. 240

Unable to load plug-in DLL '<name>'. 241

The time zone set for '<device>' is '<zone>'. This is not a valid time zone for the system. Defaulting the
time zone to '<zone>'. 241

Unable to load driver DLL '<name>'. Reason: 241

Unable to load plug-in DLL '<name>'. Reason: 241

Channel requires at least one number in its phonebook for automatic dialing. | Channel = '<channel>'. 242

Channel requires Auto-Dial enabled and at least one number in its phonebook to use a shared modem
connection. | Channel = '<channel>'. 242

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 242

No tags were created by the tag generation request. See the event log for more information. 242

The tag import filename is invalid, file paths are not allowed. 242

TAPI configuration has changed, reinitializing... 243

<Product> device driver loaded successfully. 243

Starting <name> device driver. 243

Stopping <name> device driver. 243

Dialing '<number>' on line '<modem>'. 243

Line '<modem>' disconnected. 243

Dialing on line '<modem>' canceled by user. 243

Line '<modem>' connected at <rate> baud. 243

Remote line is busy on '<modem>'. 243

Remote line is not answering on '<modem>'. 243

No dial tone on '<modem>'. 243

The phone number is invalid (<number>). 244

Dialing aborted on '<modem>'. 244

www. ptc.com

7

ThingWorx Kepware Server

Line dropped at remote site on '<modem>'. 244

Incoming call detected on line '<modem>'. 244

Modem line opened: '<modem>'. 244

Modem line closed: '<modem>'. 244

<Product> device driver unloaded from memory. 244

Line '<modem>' connected. 244

Simulation mode is enabled on device '<device>'. 244

Simulation mode is disabled on device '<device>'. 244

Attempting to automatically generate tags for device '<device>'. 244

Completed automatic tag generation for device '<device>'. 244

Initiating disconnect on modem line '<modem>'. 245

A client application has enabled auto-demotion on device '<device>'. 245

Data collection is enabled on device '<device>'. 245

Data collection is disabled on device '<device>'. 245

Object type '<name>' not allowed in project. 245

Created backup of project '<name>' to '<path>'. 245

Device '<device>' has been auto-promoted to determine if communications can be re-established. 245

Failed to load library: <name>. 245

Failed to read build manifest resource: <name>. 245

The project file was created with a more recent version of this software. 245

A client application has disabled auto-demotion on device '<device>'. 246

Phone number priority has changed. | Phone Number Name = '<name>', Updated Priority = '<pri-
ority>'. 246

Tag generation results for device '<device>'. | Tags created = <count>. 246

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten = <count>. 246

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten =
<count>. 246

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 246

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 246

User group has been created. | Group = '<name>'. 246

User added to user group. | User = '<name>', Group = '<name>'. 246

User group has been renamed. | Old name = '<name>', New name = '<name>'. 246

Permissions definition has changed on user group. | Group = '<name>'. 246

User has been renamed. | Old name = '<name>', New name = '<name>'. 247

User has been disabled. | User = '<name>'. 247

User group has been disabled. | Group = '<name>'. 247

User has been enabled. | User = '<name>'. 247

User group has been enabled. | Group = '<name>'. 247

Password for user has been changed. | User = '<name>'. 247

The endpoint '<url>' has been added to the UA Server. 247

The endpoint '<url>' has been removed from the UA Server. 247

The endpoint '<url>' has been disabled. 247

The endpoint '<url>' has been enabled. 247

User information replaced by import. | File imported = '<absolute file path>'. 247

User has been deleted. | User = '<name>'. 247

www. ptc.com

8

ThingWorx Kepware Server

Group has been deleted. | Group = '<name>'. 248

Account '<name>' does not have permission to run this application. 248

Failed to import user information. 248

Changing runtime operating mode. 248

Runtime operating mode change completed. 248

Shutting down to perform an installation. 248

OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'. 248

OPC ProgID has been removed from the ProgID Redirect list. | ProgID = '<ID>'. 248

The invalid ProgID entry has been deleted from the ProgID Redirect list. | ProgID = '<ID>'. 249

Password for administrator was reset by the current user. | Administrator name = '<name>', Current
user = '<name>'. 249

User moved from user group. | User = '<name>', Old group = '<name>', New group '<name>'. 249

User group has been created. | Group = '<name>'. 249

User added to user group. | User = '<name>', Group = '<name>'. 249

User information replaced by import. | File imported = '<absolute file path>'. 249

User group has been renamed. | Old name = '<name>', New name = '<name>'. 249

Permissions definition has changed on user group. | Group = '<name>'. 249

User has been renamed. | Old name = '<name>', New name = '<name>'. 249

User has been disabled. | User = '<name>'. 249

User group has been disabled. | Group = '<name>'. 249

User has been enabled. | User = '<name>'. 249

User group has been enabled. | Group = '<name>'. 250

Failed to reset password for administrator. | Administrator name = '<name>'. 250

Password reset for administrator failed. Current user is not a Windows administrator. | Administrator
name = '<name>', Current user = '<name>'. 250

Password for user has been changed. | User = '<name>'. 250

General failure during CSV tag import. 250

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'. 250

Invalid or missing user information. 250

Insufficient user permissions to replace the runtime project. 250

Runtime project update failed. 250

Failed to retrieve runtime project. 250

Unable to replace devices on channel because it has an active reference count. | Channel = '<name>'. 250

Failed to replace existing auto-generated devices on channel, deletion failed. | Channel = '<name>'. 251

Channel is no longer valid. It may have been removed externally while awaiting user input. | Channel =
'<name>'. 251

No device driver DLLs were loaded. 251

Device driver was not found or could not be loaded. | Driver = '<name>'. 251

Error importing CSV data. \n\nField buffer overflow reading identification record. 251

Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'. 251

Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'. 251

Error importing CSV data. \n\nMissing field identification record. 251

Error importing CSV record. \n\nField buffer overflow. | Record index = '<number>'. 251

Error importing CSV record. \n\nInsertion failed. | Record index = '<number>', Record name =
'<name>'. 251

Unable to launch application. | Application = '<path>', OS error = '<code>'. 251

www. ptc.com

9

ThingWorx Kepware Server

Error importing CSV record. \n\n'Mapped To' tag address is not valid for this project. | Record index =
'<number>', Tag address = '<address>'. 252

Error importing CSV record. \n\nAlias name is invalid. Names cannot contain double quotations or start
with an underscore. | Record index = '<number>'. 252

Invalid XML document: 252

Rename failed. There is already an object with that name. | Proposed name = '<name>'. 252

Failed to start channel diagnostics 252

Rename failed. Names can not contain periods, double quotations or start with an underscore. | Pro-
posed name = '<name>'. 252

Synchronization with remote runtime failed. 252

Account '<name>' does not have permission to run this application. 252

Error importing CSV record. Tag name is invalid. | Record index = '<number>', Tag name = '<name>'. 253

Error importing CSV record. Tag or group name exceeds maximum name length. | Record index =
'<number>', Max. name length (characters) = '<number>'. 253

Error importing CSV record. Missing address. | Record index = '<number>'. 253

Error importing CSV record. Tag group name is invalid. | Record index = '<index>', Group name =
'<name>'. 253

Close request ignored due to active connections. | Active connections = '<count>'. 253

Failed to save embedded dependency file. | File = '<path>'. 253

The configuration utility cannot run at the same time as third-party configuration applications. Close
both programs and open only the one you want to use. | Product = '<name>'. 253

Opening project. | Project = '<name>'. 253

Closing project. | Project = '<name>'. 253

Virtual Network Mode changed. This affects all channels and virtual networks. See help for more
details regarding the Virtual Network Mode. | New mode = '<mode>'. 253

Beginning device discovery on channel. | Channel = '<name>'. 253

Device discovery complete on channel. | Channel = '<name>', Devices found = '<count>'. 254

Device discovery canceled on channel. | Channel = '<name>'. 254

Device discovery canceled on channel. | Channel = '<name>', Devices found = '<count>'. 254

Unable to begin device discovery on channel. | Channel = '<name>'. 254

Shutting down for the purpose of performing an installation. 254

Runtime project has been reset. 254

Runtime project replaced. | New project = '<path>'. 254

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'. 254

Discovered device for Channel '<name>' renamed due to duplicate name. | Discovered name =
'<name>', New name = '<name>'. 254

Not connected to the event logger service. 254

Attempt to add item '<name>' failed. 254

No device driver DLLs were loaded. 255

Invalid project file: '<name>'. 255

Could not open project file: '<name>'. 255

Rejecting request to replace the project because it's the same as the one in use: '<name>'. 255

Filename must not overwrite an existing file: '<name>'. 255

Filename must not be empty. 255

Filename is expected to be of the form subdir/name.{json, <binary ext>, <secure binary ext>} 255

Filename contains one or more invalid characters. 255

Saving project files with Project File Encryption enabled as .OPF file type is not supported. Supported 255

www. ptc.com

10

ThingWorx Kepware Server

file types are .SOPF and .JSON.

Saving project files with Project File Encryption disabled as .SOPF file type is not supported. Sup-
ported file types are .OPF and .JSON. 255

Account '<name>' does not have permission to run this application. 255

A password is required for saving encrypted project files (.<secure binary extension>). 256

Saving .<binary extension> and .JSON project files with a password is not supported. To save encryp-
ted project files, use .<secure binary extension>. 256

A password is required for saving/loading encrypted project files (.<secure binary extension>). 256

Saving/loading .<binary extension> and .JSON project files with a password is not supported. To save
encrypted project files, use .<secure binary extension>. 256

File is expected to be located in the 'user_data' subdirectory of the installation directory and of the form
name.{json, <binary ext>, <secure binary ext>} 256

Addition of object to '<name>' failed: <reason>. 256

Move object '<name>' failed: <reason>. 256

Update of object '<name>' failed: <reason>. 256

Delete object '<name>' failed: <reason>. 257

Unable to load startup project '<name>': <reason>. 257

Failed to update startup project '<name>': <reason>. 257

Runtime project replaced with startup project defined. Runtime project will be restored from '<name>'
at next restart. 257

Ignoring user-defined startup project because a configuration session is active. 257

Write request rejected on read-only item reference '<name>'. 257

Unable to write to item '<name>'. 257

Write request failed on item '<name>'. The write data type '<type>' cannot be converted to the tag data
type '<type>'. 257

Write request failed on item '<name>'. Error scaling the write data. 257

Write request rejected on item reference '<name>' since the device it belongs to is disabled. 257

One or more changes were not applied to '<name>' since it is being referenced by a client. 257

<Name> successfully configured to run as a system service. 258

<Name> successfully removed from the service control manager database. 258

Runtime re-initialization started. 258

Runtime re-initialization completed. 258

Updated startup project '<name>'. 258

Runtime service started. 258

Runtime process started. 258

Runtime performing exit processing. 258

Runtime shutdown complete. 258

Shutting down to perform an installation. 258

Runtime project replaced from '<name>'. 258

Missing application data directory. 258

Runtime project saved as '<name>'. 259

Runtime project replaced. 259

Runtime service started. PID = <number> 259

Runtime process started. PID = <number> 259

Configuration session started by <name> (<name>). 259

Configuration session assigned to <name> has ended. 259

www. ptc.com

11

ThingWorx Kepware Server

Configuration session assigned to <name> promoted to write access. 259

Configuration session assigned to <name> demoted to read only. 259

Permissions change applied on configuration session assigned to <name>. 259

Failed to start Script Engine server. Socket error occurred binding to local port. | Error = <error>,
Details = '<information>'. 259

An unhandled exception was thrown from the script. | Function = '<function>', error = '<error>'. 260

Error executing script function. | Function = '<function>', error = '<error>'. 260

Script Engine service stopping. 260

Script Engine service starting. 260

Profile log message. | Message = '<log message>'. 260

Channel requires Auto-Dial enabled and at least one number in its phonebook to use a shared modem
connection. | Channel = '<channel>'. 260

The Config API SSL certificate contains a bad signature. 260

The Config API is unable to load the SSL certificate. 261

Unable to start the Config API Service. Possible problem binding to port. 261

The Config API SSL certificate has expired. 261

The Config API SSL certificate is self-signed. 261

The configured version of TLS for the Configuration API is no longer considered secure. It is recom-
mended that only TLS 1.2 or higher is used. 261

Configuration API started without SSL on port <port number>. 261

Configuration API started with SSL on port <port number>. 261

The OPC .NET server failed to start. Please see the windows application event log for more details.
Also make sure the .NET 3.5 Framework is installed. | OS Error = '<error reason>'. 261

The OPC .NET server failed to start because it is not installed. Please rerun the installation. 261

Timed out trying to start the OPC .NET server. Please verify that the server is running by using the
OPC .NET Configuration Manager. 261

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Manager to
reissue the certificate. 262

Failed to import server instance cert: '<cert location>'. Please use the OPC UA Configuration Manager
to reissue the certificate. 262

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue the cer-
tificate. 262

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>', Error =
<error code>, Details = '<description>'. 262

The UA Server failed to register with the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 262

Unable to start the UA server due to certificate load failure. 263

Failed to load the UA Server endpoint configuration. 263

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 263

The UA Server failed to initialize an endpoint configuration. | Endpoint Name: '<name>'. 264

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 264

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL: '<endpoint
url>'. 264

UA Gateway Event Log Messages 264

Created session with downstream server. | Endpoint URL = <Endpoint URL>. 265

Failure while establishing session with downstream server. | Endpoint URL = <Endpoint URL>, Status
code = <Status code>, Description = <Description>. 265

Reconnecting session with downstream server. | Endpoint URL = <Endpoint URL>. 265

www. ptc.com

12

ThingWorx Kepware Server

Closed session with downstream server. | Endpoint URL = <Endpoint URL>. 265

Cannot communicate with OPC UA gateway service. Port collision on UA gateway outbound port. Port
is already in use. | Port = <Port Number>. 265

The Application Instance Certificate is invalid and needs to be updated (UA clients must trust the new
certificate to connect). | Status code = <Status code>, Description = <Description>. 266

An invalid server endpoint has failed on server interface start. | Status code = <Status code>, Descrip-
tion = <Description>. 266

Startup failed. Port collision on UA Gateway inbound port : <Port number>. 266

Failed to add subscription for device | Endpoint URL = <Endpoint URL>, Status Code = <Status
Code>, Description = <Description>. 267

Client established a session with the server interface. | Client Application URL = <Application URL>. 267

Using .NET CLR <Version> 267

The ReadProcessed request timed out. | Elapsed Time = <seconds> (s). 268

The ReadAtTime request timed out. | Elapsed Time = <seconds> (s). 268

Attempt to add DDE item failed. | Item = '<item name>'. 268

DDE client attempt to add topic failed. | Topic = '<topic>'. 268

Unable to write to item. | Item = '<item name>'. 268

The area specified is not valid. Failed to set the subscription filter. | Area = '<area name>'. 268

The source specified is not valid. Failed to set the subscription filter. | Source = '<source name>'. 268

Connection to ThingWorx failed. | Platform = <host:port resource>, error = <reason>. 268

Error adding item. | Item name = '<item name>'. 269

Failed to trigger the autobind complete event on the platform. 269

Connection to ThingWorx failed for an unknown reason. | Platform = <host:port resource>, error =
<error>. 269

One or more value change updates lost due to insufficient space in the connection buffer. | Number of
lost updates = <count>. 269

Item failed to publish; multidimensional arrays are not supported. | Item name = '%s'. 270

Store and Forward datastore unable to store data due to full disk. 270

Store and Forward datastore size limit reached. 270

Connection to ThingWorx was closed. | Platform = <host:port resource>. 270

Failed to autobind property. | Name = '<property name>'. 271

Failed to restart Thing. | Name = '<thing name>'. 271

Write to property failed. | Property name = '<name>', reason = <reason>. 271

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 271

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 272

The server is configured to send an update for every scan, but the push type of one or more properties
are set to push on value change only. | Count = <count>. 272

The push type of one or more properties are set to never push an update to the platform. | Count =
<count>. 272

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item name
= '<name>'. 272

Write to property failed. | Thing name = '<name>', property name = '<name>', reason = <reason>. 272

Error pushing property updates to thing. | Thing name = '<name>'. 273

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-memory store
size (updates) = <count>. 273

Store and Forward datastore reset due to file IO error or datastore corruption. 273

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user name>'. 274

www. ptc.com

13

ThingWorx Kepware Server

Configuration Transfer to ThingWorx Platform failed. 274

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 274

Failed to delete stored updates in the Store and Forward datastore. 274

Configuration Transfer from ThingWorx Platform failed. 274

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 274

Check that your Application Key is properly formatted and valid. 275

The maximum number of configured Industrial Things has been reached, count = <number>. Consider
increasing the value of the Max Thing Count. 275

The maximum number of updates has been reached, count = <count>. 275

A publish to Thingworx has timed out. 275

Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<name>'. 276

Reinitializing ThingWorx connection due to a project settings change initiated from the platform. 276

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 276

Serviced one or more autobind requests. | Count = <count>. 276

Reinitializing ThingWorx connection due to a project settings change initiated from the Configuration
API. 276

Resumed pushing property updates to thing: the error condition was resolved. | Thing name =
'<name>'. 276

Configuration transfer from ThingWorx initiated. 277

Configuration transfer from ThingWorx aborted. 277

Initialized Store and Forward datastore. | Datastore location: '<location>'. 277

Successfully deleted stored data from the Store and Forward datastore. 277

Store and Forward mode changed. | Forward Mode = '<mode>'. 277

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location = '<location>'. 277

Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'. 277

FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic name>'. 277

Error attaching to datastore due to an invalid datastore path. | Path = '<path>' 278

Failed to start Store and Forward server. Socket error occurred binding to local port. | Error = <error>,
Details = '<information>'. 278

Store and Forward service stopping. 278

Store and Forward service starting. 278

File corruption encountered when attaching to datastore; datastore recreated. | Datastore path =
'<path>'. 278

Datastore overwritten due to a configuration change. | Datastore path = '<path>'. 278

Unable to attach to existing datastore because that datastore was created with an older version of the
server. Datastore recreated. | Datastore path = '<path>'. 279

Com port is in use by another application. | Port = '<port>'. 279

Unable to configure com port with specified parameters. | Port = COM<number>, OS error = <error>. 279

Driver failed to initialize. 279

Unable to allocate thread resource. Please check the memory usage of the application. 279

Com port does not exist. | Port = '<port>'. 280

Error opening com port. | Port = '<port>', OS error = <error>. 280

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 280

Winsock shut down failed. | OS error = <error>. 280

Winsock initialization failed. | OS error = <error>. 280

Winsock V1.1 or higher must be installed to use this driver. 280

www. ptc.com

14

ThingWorx Kepware Server

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 281

Device is not responding. 281

Device is not responding. | ID = '<device>'. 281

Serial communications error on channel. | Error mask = <mask>. 281

Invalid array size detected writing to tag <device name>.<address>. 282

Unable to write to address on device. | Address = '<address>'. 282

Items on this page may not be changed while the driver is processing tags. 282

Specified address is not valid on device. | Invalid address = '<address>'. 283

Address '<address>' is not valid on device '<name>'. 283

This property may not be changed while the driver is processing tags. 283

Unable to write to address '<address>' on device '<name>'. 283

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 283

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 283

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 284

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 284

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 284

%s | 284

<Name> Device Driver '<name>' 284

Index 285

www. ptc.com

15

ThingWorx Kepware Server

CONTENTS

Introduction
Interfaces and Connectivity
Accessing the Administration Menu
Navigating the Configuration
Basic Server Components
Tag Management
Communications Management
Built-In Diagnostics
Designing a Project
How Do I... ?
Event Log Messages

www. ptc.com

16

ThingWorx Kepware Server

Introduction
Version 1.829

This software-based server is designed for accurate communications, quick setup, and unmatched interoperability
between client applications, industrial devices, and systems. The server provides a wide range of plug-ins and
device drivers and components that suit most communication needs. The plug-in design and single user interface
provides consistent access from standards-based applications and non-standards-based applications with native
interfaces.

ThingWorx Kepware Server is a connectivity server that enables users to connect diverse automation devices and
sensors to a wide variety of digital solutions. It offers the stability, performance, and security that is essential for
industrial environments. With support for popular and secure Linux operating systems, it supports distributed archi-
tectures that improve reliability and security and reduce cost. Built by the industrial connectivity experts, ThingWorx
Kepware Server eliminates the interoperability challenges associated with implementing digital solutions.

www. ptc.com

17

ThingWorx Kepware Server

System Requirements
The server has minimum system requirements for both software and hardware. These requirements must be met
for the application to operate as designed.

This application supports the following Microsoft Windows operating systems:

l Windows 10 x64 (Pro and Enterprise Edition)3

l Windows 10 x86 (Pro and Enterprise Edition)
l Windows 10 (IoT Enterprise Edition)
l Windows Server 2019 x643,4

l Windows Server 2016 x643,4

l Windows Server 2012 x64 R23

l Windows Server 2012 x643

l Windows Server 20225

l Windows 115

Notes

1. When installed on a 64-bit operating system, the application runs in a subsystem of Windows called
WOW64 (Windows-on-Windows 64 bit). WOW64 is included on all 64-bit versions of Windows and is
designed to make differences between the operating systems transparent to the user. WOW64 requires
the following minimums:

l 2 GHz Processor

l 1 GB installed RAM (defer to the suggestion for the OS)

l 600 MB available disk space

l Ethernet Card

l Super VGA (800x600) or higher resolution video

2. Verify the latest security updates are installed for the operating system.

3. Runs in the 32-bit compatibility mode.

4. Windows Server Core deployments are not supported.

5. Hardware key licensing may present unexpected errors.

Additional resources are available on the Kepware and PTC websites. In particular, the following resources are
helpful in planning stages: Install Guide, Secure Deployment Guide. Contact a staff system engineer for guidance
on requirements and recommendations for more complex systems.

See Also: Requirements for OPC UA Gateway

See Also: For compatibility and upgrade information , see Release Adviser

www. ptc.com

18

https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Server/6.16/thingworx_kepware_server_installation_guide
https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Server/6.16/thingworx-kepware-server-secure-deployment-guide
https://reladvstage.ptcnet.ptc.com/admin/release

ThingWorx Kepware Server

UA Gateway Requirements

Prerequisites:
The UA Gateway service requires that the following .NET 8 runtime files be installed on the system before the
installation of ThingWorx Kepware Server to complete a successful installation of the UA Gateway service.

To allow the UA Gateway to register automatically with a Local Discovery Server (LDS), install the LDS on the
same machine as the UA Gateway.
An LDS application is provided by the OPC Foundation and can be downloaded from their website.

Required .NET 8 Runtime Installations:

l .NET Runtime 8.x (Windows x86 version)
l ASP.NET Core Runtime 8.x (Windows x86 version)

Tip: To detect if an acceptable version of .NET 8 is installed on a system, refer to the .NET version-detection util-
ities documented by Microsoft.

Notes:

l Only .NET 8 and its minor versions are supported. Other versions of .NET are not supported.
l If you install the above requirements after installing the server, you must run a Repair with the ThingWorx

Kepware Server installer.

Refer to the official Microsoft .NET 8 documentation to download the latest .NET runtime.

www. ptc.com

19

https://opcfoundation.org/
https://dotnet.microsoft.com/en-us/download/dotnet/8.0

ThingWorx Kepware Server

Application Data
Microsoft standard users must have the appropriate permissions on the Application Data directory. This folder con-
tains files critical to the proper functioning of the server, such as project files. Permissions on this folder dictate
which users are able to configure the product. By default, the server stores application data in C:\Pro-
gramData\<server>. This setting is configured during installation and can only be changed by reinstalling the
product. Permissions only need to be configured during a new installation as upgrades inherit the previously con-
figured Windows security settings. The dialog below shows where a new installation provides the opportunity to
configure the location of the application data folder.

Microsoft standard users must be granted both read and write permissions to the folder and its contents. Execute
permission is not required to run the server. The application does not provide tools to add permissions to this
folder; they must be granted using Windows Explorer. Users who don’t have permissions receive the following
error when attempting to start the application: “This account does not have permission to run this application.
Contact the system administrator”.

The server does not modify the permissions of the configured folder; it inherits the default permissions configured
at its location. The default (ProgramData) location inherits read-only permissions for the Users default Windows
group. Read permissions alone are not sufficient to configure the product; however, they do potentially allow users
who shouldn’t have access the ability to read contents of the folder. By default, Windows administrators have the
correct permissions.

To implement least privilege, follow these best practices:

l Only grant permissions to users or groups that require access to the application; do not grant permissions
to all users. It is common for members of the Users default windows group to contain more users than
should have access to the application.

l Remove the default permissions granted to users who shouldn’t have access. For example, if the default dir-
ectory is used, remove the inherited read-only permission granted to members of the “Users” default win-
dows group. This should be done unless ALL users on the machine should be able to work with the product.

www. ptc.com

20

ThingWorx Kepware Server

l Don’t manage permissions with individual users or the “Users” default windows group. Instead, create a cus-
tom user group and configure its permissions. Add users who should be granted permissions to that group.

Components
The server implements client / server architecture. The components include Configuration, Runtime, Admin-
istration, and Event Log.

Configuration
The Configuration is the client-user interface that is used to modify the runtime project. The Configuration can be
launched by multiple users and supports remote Runtime configuration.

CSV Import and Export
This server supports the import and export of tag data in a Comma Separated Variable (CSV) file. When using CSV
import and export, tags are created quickly in the desired application.

For more information, refer to CSV Import and Export.

Runtime
The Runtime is the server component that starts as a service by default. Clients can connect to the runtime
remotely or locally.

Administration
The Administration is used to view and/or modify settings and launch applications that pertain to user management
and the server. By default, the Administration is started and sent to the System Tray when a user account logs onto
the operating system.

Project
The Project file contains the channel, device, and tag definitions as well as preferences and other saved settings.

For more information, refer to Designing a Project.

Event Log
The Event Log service collects information, warning, error, and security events. These events are sent to the Con-
figuration's Event Log window for viewing.

For more information, refer to What is the Event Log?

See Also: Basic Server Components

Process Modes
The process mode can be changed while the server is running; however, doing so while a client is connected inter-
rupts the connection for a short period. The modes of operation are System Service and Interactive.

System Service
By default, the server is installed and runs as a service. When System Service is selected, the Runtime does not
require user intervention and starts when the operating system opens. This provides user independent access to
the server by the clients.

Interactive
When Interactive is selected, the Runtime remains stopped until a client attempts to connect to it. Once started, it
runs until all clients have disconnected and then shuts down. The Runtime also shuts down if the user account logs
off the operation system.

Note: The process mode may be changed to meet client applications' needs through the Administration settings
dialogs.

System Service is required for the following conditions:

l When iFIX is required to run on an operating system while UAC is enabled.

Interactive is required for the following conditions:

www. ptc.com

21

ThingWorx Kepware Server

l When a communication interface (such as DDE) must exchange information with the user desktop and the
server is installed on Windows.

See Also:
Settings - Runtime Process
How To... Allow Desktop Interactions

Interfaces and Connectivity
This communications server simultaneously supports the client / server technologies listed below.

Server - a software application designed to bridge the communication between a device, controller, or data source
with a client application. Servers can only respond to requests made by a client.

Client - a software program that is used to contact and obtain data from a server (either on the same computer or
on another computer). A client makes a request and the server fulfills the request. An example of a client would be
an e-mail program connecting to a mail server or an Internet browser client connecting to a web server.

Human Machine Interface (HMI) - a software application (typically a Graphical User Interface or GUI) that
presents information to the operator about the state of a process and to accept and implement the operator control
instructions. It may also interpret the plant information and guide the interaction of the operator with the system.

Man Machine Interface (MMI) - a software application (typically a Graphical User Interface or GUI) that presents
information to the operator about the state of a process and to accept and implement the operator control instruc-
tions. It may also interpret the plant information and guide the interaction of the operator with the system.

For more information on a specific interface, select a link from the list below.

DDE Interface
FastDDE/SuiteLink Interface
iFIX Native Interfaces
OPC AE Interface
OPC DA Interface
OPC UA Interface
ThingWorx Native Interface

OPC DA
Supported Versions
1.0a
2.05a
3.0

Overview
"OPC" stands for Open Productivity and Connectivity in industrial automation and the enterprise systems that sup-
port industry. It is a client/server technology where one application acts as the server (providing data) and another
acts as a client (using data).

OPC is composed of a series of standards specifications: OPC Data Access (DA) is the most prolific standard.
OPC DA is a widely accepted industrial communication standard that enables data exchange between multi-
vendor devices and control applications without proprietary restrictions. An OPC server can communicate data con-
tinuously among PLCs on the shop floor, RTUs in the field, HMI stations, and software applications on desktop
PCs. OPC compliance makes continuous real-time communication possible (even when the hardware and soft-
ware are from different vendors).

www. ptc.com

22

ThingWorx Kepware Server

OPC Data Access 1.0a was the original specification developed by the OPC Foundation in 1996. Although it con-
tinues to be supported by many of the OPC client applications in use today, OPC Data Access 2.0 Enhanced OPC
better utilizes the underlying Microsoft COM technology. OPC Data Access 3.0 is the latest version of the OPC DA
interface.

See Also: Project Properties — OPC DA

OPC AE
Supported Versions
1.0
1.10

Overview
OPC Alarms & Events (AE) is a specification developed by the OPC Foundation to standardize the way that alarm
and event information is shared among systems. Using the standard, AE clients can receive alarms and event
notices for equipment safety limits, system errors, and other abnormal situations.

Simple Events
Simple Events include the server events displayed in the Event Log (such as information, warning, error, and secur-
ity events). The server supports the following filtering options for Simple Events for AE clients:

l Event Type Simple.
l Event Category Filter by server-defined categories. Each event is assigned to one category. Descriptions

of the categories are as follows:

l Runtime Error Events Simple events that are shown as errors in the Event Log.
l Runtime Warning Events Simple events that are shown as warnings in the Event Log.
l Runtime Information Events Simple events that are shown as informational in the Event Log.

See Also: Project Properties — OPC AE

OPC UA Interface
Supported Version
1.02 optimized binary TCP

Overview
Note: Currently, neither UA via HTTP / SOAP web services nor for complex data is supported. For more inform-

ation, refer to the OPC UA Configuration Manager manual.

OPC Open Connectivity via Open Standards (OPC) is a set of standard interfaces based on Microsoft's OLE / COM
technology. The application of the OPC standard interface makes possible interoperability between automation /
control applications and field systems / devices. Unified Architecture (UA User Administration or Unified Archi-
tecture) provides a platform independent interoperability standard. It is not a replacement for OPC Data Access

www. ptc.com

23

https://www.ptc.com/~/media/kepware-store/en/manuals/opc-ua-configuration-manager-manual

ThingWorx Kepware Server

(DA Data Access) technologies: for most industrial applications, UA complements or enhances an existing DA
architecture. The OPC UA OPC Unified Architecture will replace, modernize, and enhance the functionality of the
existing OPC defined interfaces. OPC UA is described in a layered set of specifications broken into parts. It is pur-
posely described in abstract terms and in later parts married to existing technology on which software can be built.
This layering helps isolate changes in OPC UA from changes in the technology used to implement it.
See Also: Project Properties — OPC UA
See Also: For endpoint creation and certificate management for UA drivers and/or the ThingWorx Native Inter-

face, see OPC UA Configuration Manager
See Also: Default UA Gateway Connection for information on the default connection between the OPC UA

server interface and the OPC UA Gateway client interface.

OPC UA Profiles
OPC UA is a multi-part specification that defines a number of services and information models referred to as fea-
tures. Features are grouped into profiles, which are then used to describe the functionality supported by a UA
server or client.
For additional information about profiles, refer to the OPC Foundation website.

Fully Supported OPC UA Profiles

l Standard UA Server Profile
l Core Server Facet
l Data Access Server Facet
l SecurityPolicy - Basic128Rsa15 (Deprecated)
l SecurityPolicy - Basic256 (Deprecated)
l SecurityPolicy - Basic256Sha256
l SecurityPolicy - None (Insecure)
l UA-TCP UA-SC UA Binary

CAUTION: Security policies Basic128Rsa15 and Basic256 have been deprecated by the OPC Foundation as of
OPC UA specification version 1.04. The encryption provided by these policies is considered less secure and usage
should be limited to providing backward compatibility.

Partially Supported OPC UA Profiles

l Base Server Behavior Facet

Note: This profile does not support the Security Administrator – XML Schema.
See Also: Project Properties — OPC UA

OPC UA Certificate Management
UA servers require a certificate to establish a trusted connection with each UA client. For the server to accept
secure connections from a client, the client's certificate must be imported into the trusted certificate store used by
the OPC UA server interface. Management of the UA certificates can be done either using the edge_admin CLI
application or by saving the certificates to the configuration data folder.

Using the edge_admin CLI

To import an OPC UA certificate into the trust store:
./edge_admin manage-truststore -i MyCertificateName.der uaserver

To view the UA server trust store and the thumbprints of the certificates:
./edge_admin manage-truststore --list uaserver

Using the .config Data Folder

UA certificates can also be managed directly through .config data folder. Certificates for the UA server to use are
maintained in the following directory: <installation_directory>/.config/UA/Server

Trusted certificates are located in the following directory:
<installation_directory>/.config/UA/Server/cert

www. ptc.com

24

https://www.ptc.com/~/media/kepware-store/en/manuals/opc-ua-configuration-manager-manual
https://profiles.opcfoundation.org/category/57

ThingWorx Kepware Server

Rejected certificates are located in the following directory:
<installation_directory>/.config/UA/Server/RejectedCertificates

To trust a certificate, copy the client instance certificate file into the trusted certificates directory. If a rejected cer-
tificate needs to be trusted, move the client instance certificate in the rejected certificate directory to the trusted cer-
tificates directory.

Note: The certificate files need to have read access by the installed user account, tkedge by default, for the
server application to access the certificate for validation.

OPC .NET
Supported Version
1.20.2

Overview
OPC .NET is a family of APIs provided by the OPC Foundation that leverage Microsoft's .NET technology and
allow .NET clients to connect to the server. This server supports OPC .NET 3.0 WCF, formally known as OPC Xi.
Unlike other OPC .NET APIs, OPC .NET 3.0 uses Windows Communication Foundation (WCF) for connectivity,
avoiding DCOM issues and providing the following benefits:

l Secure communication via multiple communications bindings (such as Named Pipe, TCP, Basic HTTP,
HTTPS, and Ws HTTP).

l Consolidation of OPC Classic Interfaces.
l Simple development, configuration, and deployment of Windows environment.

The server adds OPC .NET 3.0 support using a customized version of the OPC .NET 3.0 WCFWrapper supplied
by the OPC Foundation. The wrapper runs as a system service called "xi_server_runtime.exe". It wraps the exist-
ing server's OPC AE and DA interfaces, providing WCF clients access to the server's tag and alarm data. It does
not support Historical Data Access (HDA).
Note: The OPC .NET service is only started when the server starts and the interface is enabled. Unlike OPC DA,

clients cannot launch the server. For more information on configuration, refer to Project Properties – OPC .NET.

Requirements
To install and use OPC .NET 3.0, Microsoft .NET 3.5 must be present on the machine before server installation.

DDE
Supported Formats
CF_Text
XL_Table
Advanced DDE

Overview
Although this server is first and foremost an OPC server, there are still a number of applications that require
Dynamic Data Exchange (DDE) to share data. As such, the server provides access to DDE applications that sup-
port one of the following DDE formats: CF_Text, XL_Table, and Advanced DDE. CF_Text and XL_Table are stand-
ard DDE formats developed by Microsoft for use with all DDE aware applications. Advanced DDE is a high-
performance format supported by a number of client applications specific to the industrial market.

CF_Text and XL_Table
The DDE format CF_Text is the standard DDE format as defined by Microsoft. All DDE aware applications support
the CF_Text format. XL_Table is the standard DDE format as defined by Microsoft that is used by Excel. For more
information on DDE, refer to How To... Use DDE with the Server.

Advanced DDE
Advanced DDE is the DDE format defined by Rockwell Automation. Today, all Rockwell client applications are
Advanced DDE aware. Advanced DDE is a variation on the normal CF_Text format, which allows larger amounts of
data to transfer between applications at higher rates of speed (and with better error handling).

www. ptc.com

25

ThingWorx Kepware Server

Requirements
For the DDE interface to connect with the server, the Runtime must be allowed to interact with the desktop. For
more information, refer to How To... Allow Desktop Interactions.

See Also: Project Properties — DDE

FastDDE / SuiteLink
Overview
FastDDE is a DDE format defined by Wonderware Corporation. It allows larger amounts of data to transfer
between applications at higher speed (and with better error handling) than generic DDE. SuiteLink is a client-server
communication method that has succeeded FastDDE. It is TCP/IP based and has improved bandwidth and speed.
Both FastDDE and SuiteLink are supported by all Wonderware client applications.

Note: The Wonderware connectivity toolkit is used to simultaneously provide OPC and FastDDE / SuiteLink con-
nectivity, allowing quick access to device data without the use of intermediary bridging software.

 For security reasons, it is recommended that users utilize the most recent Wonderware DAServer Runtime Com-
ponents. For more information and available downloads, refer to the Invensys Global Technical Support WDN web-
site.

Requirements
For the FastDDE interface to connect with the server, the Runtime must be allowed to interact with the desktop.

For more information, refer to How To... Allow Desktop Interactions.
See Also: Project Properties — FastDDE / SuiteLink

 FastDDE, SuiteLink, FactorySuite, InTouch, and Wonderware are all trademarks of Wonderware Corporation.

iFIX Native Interfaces
Overview
The iFIX native interface simplifies the connection task by allowing a direct connection to the local iFIX application
without the use of the iFIX OPC Power Tool. When supported, this interface also has the ability to refine the con-
nection between the server and the iFIX Process Database (PDB).

See Also: Project Properties — iFIX PDB Settings

ThingWorx Native Interface
Overview
ThingWorx is a connectivity platform that allows users to create actionable intelligence based on their device data.
The ThingWorx Native Interface allows a user to provide data to the ThingWorx Platform with little additional con-
figuration using the ThingWorx Always On technology. With the introduction of the ThingWorx Next Gen Com-
poser, the ThingWorx Native interface has been updated to allow a better user interface integration with the
Composer.

 As noted in the ThingWorx documentation, configuration of a ThingWorx Application Key is crucial to providing a
secured environment. The Application Key that is used should provide the appropriate privileges to allow the
proper exchange of data between the server instance and the ThingWorx Platform.

The ThingWorx Native Interface supports Store and Forward to cache property updates when the industrial server
becomes disconnected from the ThingWorx Platform.

See Also:
Project Properties – ThingWorx Native Interface
Fill Rate Example
Store and Forward System Tags
Visit the PTC website for information on "Industrial Internet of Things (IIoT)" and "Accelerate Success with
ThingWorx IIoT Solutions Platform"

www. ptc.com

26

https://www.ptc.com/

ThingWorx Kepware Server

ThingWorx Native Interface Certificate Management
ThingWorx Native Interface requires a certificate to establish a trusted connection between ThingWorx Kepware
Server and ThingWorx Platform. To create a secure connection, the ThingWorx Platform server certificate or the
CA root certificate must be imported into the trusted certificate store. Management of these certificates can be
accomplished using the edge_admin CLI application.

To import a the ThingWorx Platform server certificate or the CA root certificate into the trust store:

./edge_admin manage-truststore -i MyCertificateName.der thingworx

To view the ThingWorx Native Interface trust store and the thumbprints of the certificates:

./edge_admin manage-truststore –list thingworx

Navigating the User Interface
The Configuration provides the general means of interacting with the server Runtime. While various plug-ins and
drivers add buttons, menus, and icons; the standard interface elements are described below.

Title Bar
Displays the application name, when Configuration is connected to the Runtime, and the current Runtime project
when applicable.

Menu Bar
File Includes the project-level commands; such as Save, Open, Import, and Export.

Edit Includes action commands; such as Copy, Paste, and New Channel.

View Includes the display commands; such as which elements of the user interface are visible or hid-
den and the type of tree organization to display.

Tools Includes the configuration commands; such as general options, connection settings, event log
filters; and access to the License Utility, Application Report Utility, and Quick Client.

Runtime Includes server connectivity commands; such as Connect..., Disconnect, and Reinitialize.

Help Includes commands to access the product documentation, by server, driver, or plug-in.

Button Bar
The standard buttons are described below. Plug-ins and drivers add, remove, enable, and disable buttons based
on available functionality for the active items and view.

New Project: Initiates creation of a new project file to replace the active project. The project file defines the
devices connected, their settings, and how they are grouped.

Open Project: Allows the user to browse for an existing project file to load, replacing the active project.

Save Project: Implements any recent changes and writes the active project file to disk.

Save As: Writes the active project with changes, such as to a new location or file name.

New Channel: Creates a new group or medium for data collection.

New Device: Defines a new hardware component or PLC for data collection.

New Tag Group: Defines a new collection of data points, or tags, that can be organized as a single unit.

New Tag: Defines a new data points for collection.

Bulk Tag Creation: Defines tags discovered in the target device or environment.

Duplicate Tag: Creates a copy of the selected tag.

Properties: Allows viewing and editing of parameters for the selected item.

www. ptc.com

27

ThingWorx Kepware Server

Undo: Resets the value or item to its configuration prior to the most recent change.

Cut: Removes the selected item and stores it on the clipboard.

Copy: Creates a duplicate of the selected item and stores it on the clipboard.

Paste: Inserts an item currently in the clipboard into the selected area.

Delete: Removes the selected item and / or its definition.

Quick Client: Runs the integrated client interface.

Project Tree View
This view displays the current project contents, organization, and settings in a hierarchy view. The Project Tree
View is designed as unified location for all aspect of the project. Nodes expand to allow detailed drill-down to the
device, tag group, or tag level. Features and Plug-ins appear as nodes in the tree view to facilitate configuration
work in one location. The major nodes of the tree are:

Project - where global settings for the active project are stored or updated.
Connectivity - where channels and devices are organized, right-click actions are available, and properties can be
accessed for display in the Detail pane.
Aliases - where mappings to system resources, legacy paths, and complex routings can be given shorter, more
user-friendly, or SCADA compatible names and shortcuts.

Tip: In very large projects or if some features are used more than others, the tree can be customized through fil-
tering. Hide or show tree nodes under the View menu.

The Project Tree provides a variety of appropriate options through a right-click menu. For example, devices and
channels can be copied and pasted to start a new configuration based on existing choices and settings. The name
is duplicated and a numbered added (that increments if many are pasted) to keep names unique. For drivers that
support additional features, those are available on the right-click menu as well.

Tip: The Project Tree View supports a right-click menu option to launch the QuickClient. This allows you to
troubleshoot connections, device communication, and / or tag group settings and addresses without loading the
entire project. Launch from the channel, device, or tag group level to load ONLY items below that point in the tree.

www. ptc.com

28

ThingWorx Kepware Server

Detail View
This view displays one of several configuration selection options for the active project. The information displayed is
related to the current selection in the Project Tree View.

Note: When selecting a Project Tree View, the Detail View columns persist until a channel or device is chosen.
At that time, the columns revert to displaying the device or tag information.

Tip: Start typing an item name to search for that item within the detail view. The first occurrence of the typed char-
acter(s) is selected and displayed within the visible pane. Typing the character(s) again highlights the next occur-
rence and so on with each repeated entry.

Property Editor
Some properties can be edited in the property editor. The standard buttons in the property editor operate as
follows:

Defaults restores settings for the selected property group to their default values (both applied and pending
changes).

Ok exits the property editor and implements all changes.

Cancel exits the property editor without implementing pending changes. Closing the property editor has the same
effect.

www. ptc.com

29

ThingWorx Kepware Server

Apply implements pending changes in all property groups.

Help opens Help for the selected property.

 Pending changes appear in bold until they are applied.

Event Log
This view, in the bottom pane, displays four types of recorded messages: General Information, Security Alerts,
Warnings, and Errors from the server, drivers, or plug-ins. By default, log entries include the date, time, source, and
event description. For more information, see Event Log Options.

Status Bar
Displays the current status of the Configuration (Connecting, Ready, etc.) as well as mouse-over hints for the Menu
Bar and Button Bar items.

Note: A lock icon in the status bar indicates read-only mode, where the configuration and runtime are not com-
municating.

Icons

The desktop icon allows you to launch the product and can be pinned to the taskbar if desired.

The administration icon launches the Administration interface for global settings, such as language and vari-
ous security options.

Options — General
This dialog is used to specify general server options (such as when to establish a connection with the Runtime,
when to back up saved Configuration project files, and what conditions invoke warning pop-ups).

www. ptc.com

30

ThingWorx Kepware Server

Startup

Immediately attempt to establish a Runtime connection on start: Determines whether or not the configuration
tool connects to the Runtime when started. When disabled, users must connect manually. The default is enabled.

Project File Settings

Number of recently used project files to track: Set the number of project files presented in the MRU (Most
Recently Used) list of projects. The valid range is 1 to 16. The default setting is 8.

Backup saved Configuration project files prior to overwriting: When enabled, the system automatically makes a
backup copy of the last saved Configuration project before it is overwritten with a new project file. The backup file
name and location are displayed in the Event Log.

CSV Import

The Delimiter setting specifies the Comma Separated Variable (CSV) that the server uses to import and export tag
data in a CSV file. Options include comma and semicolon. The default setting is comma. For more information,
refer to Tag Management.

Confirmations

Enable the conditions that force the Configuration to present warnings to an operator.

Ask for confirmation when deleting an object: When enabled, all Configuration delete operations invoke a warn-
ing popup that requires confirmation before the delete operation can be completed.

www. ptc.com

31

ThingWorx Kepware Server

Confirm when operation will cause clients to disconnect: When enabled, all Configuration operations that would
cause client applications to be disconnected from the server invoke a warning popup. This popup requires con-
firmation before the disconnect sequence can be initiated.

Prompt to save project changes: When enabled, the Configuration invokes a popup if the server is being shut
down while the project has outstanding changes.

Confirm Runtime project replacement: When enabled, this option warns that the project can be opened and
edited offline while the Configuration is connected to the Runtime.

Do not show the read-only message: When enabled, this suppresses the warning to users that changes are not
allowed in the configuration because it is in read-only mode.

Options — Runtime Connection
This dialog is used to specify how connections to the Runtime are managed.

Show user login dialog: When enabled, a valid user name and password are required before the Configuration
can be connected to the Runtime for project editing. The default is disabled. When enabled, Active Directory users
are ignored; the login dialog can only be used to log in as a ThingWorx Kepware Server user.
 If not using Active Directory users, it is more secure to enable this option and have each user log in to the server

with unique credentials.
Note: User names and permissions are assigned by the Administrator account. For more information, refer to

Settings - User Manager.

Project Properties
To access the Project Properties groups from the configuration, click Edit | Project Properties. For more inform-
ation, select a link from the list below.

Project Properties — General
Project Properties — OPC DA
Project Properties — DDE
Project Properties — FastDDE/SuiteLink
Project Properties — iFIX PDB Settings
Project Properties — OPC UA
Project Properties — OPC AE
Project Properties — OPC HDA
Project Properties — OPC .NET
Project Properties — ThingWorx

www. ptc.com

32

ThingWorx Kepware Server

Project Properties — General
The general properties are used to attach a title and comment to a project for reference as well as manage security
settings for the project. Although the Title field supports a string of up 64 characters, the Description field has no
practical limit. Limiting the Description to the area available within the field, however, improves project load time.

Identification

Description: Enter an optional phrase to help identify this project in reports and monitoring systems.

Title: Enter an optional word or phrase to identify this project in file names and reports.

Tags Defined: Verify that the tag count matches expectations of data collection for this project (and licensing, if
applicable).

The Defaults button restores the settings to the default / pre-set values.

Project Properties — OPC DA
This server has been designed to provide the highest level of compatibility with the OPC Foundation's spe-
cifications. In testing, however, it has been found that being fully-compatible with the specification and working with
all OPC client applications is a different matter. The OPC DA Compliance dialog allows users to customize oper-
ation of the server to better meet the needs of rare OPC clients. These options seldom need to be adjusted for the
majority of OPC client applications.

Data Access

www. ptc.com

33

ThingWorx Kepware Server

Enable OPC 1.0 Data Access Interfaces: Select Yes to allow the server to accept OPC client connections from
OPC clients that support the 1.0 specification. The default setting is enabled.

Enable OPC 2.0 Data Access Interfaces: Select Yes to allow the server to accept OPC client connections from
OPC clients that support the 2.0 specification. The default setting is enabled.

Enable OPC 3.0 Data Access Interfaces: Select Yes to allow the server to accept OPC client connections from
OPC clients that support the 3.0 specification. The default setting is enabled.

Include Hints When Browsing: Select Yes to allow OPC client applications to browse the address formatting Hints
available for each communications driver. The Hints provide a quick reference on how a particular device's data
can be addressed. This can be useful when entering dynamic tags from the OPC client. The hint items are not valid
OPC tags. Some OPC client applications may try to add the Hint tags to their tag database. When this occurs, the
client receives an error from the server. This is not a problem for most clients, although it can cause others to stop
adding tags automatically or report errors. Prevent this by disabling Hints. The default setting is disabled (No).

Include Tag Properties When Browsing: Select Yes to allow OPC client applications to browse the tag properties
available for each tag in the address space. The default setting is disabled.

Shutdown Wait Period: Specify how long the server waits for an OPC client to return from the server shutdown
event. If the client application does not return within the timeout period, the server completes shutdown and exit.
The valid range is 10 to 60 seconds. The default setting is 15 seconds.

Synchronous Request Timeout: Specify how long the server waits for a synchronous read operation to complete.
If a synchronous operation is in progress and the timeout is exceeded, the server forces the operation to complete
with a failure to the client. This prevents clients from locking up when using synchronous operations. The valid
range is 5 to 60 seconds. The default setting is 15 seconds.
Note: Synchronous writes do not use this property setting; only reads / requests utilize this property.

Enable Diagnostics Capture: Select Yes to allow OPC diagnostics data to be logged to the Event Log service for
storage (typically used for troubleshooting). The default setting is disabled (No).

Maximum Connections: Set the maximum number of simultaneous connections allowed through the interface(s)
at a time. Any connection past the limit is refused and a diagnostic message is posted. The valid range is 1 to 4000
connections. The default setting is 512 connections.

Maximum OPC Groups: Set the maximum number of simultaneous OPC groups supported through the interface
(s) at a time. Any client that requests a group past this limit receives an error value and both a diagnostic message
and event log message are posted. The valid range is 10 to 4000 groups. The default setting is 2000 groups.

Note: This limit protects resource utilization for best performance. If you encounter this limit, consider optimizing
the client configuration to reduce the number of connections and tag groups.

For more information on the OPC Data Access 1.0, 2.0, and 3.0 Custom Specifications, refer to the OPC Found-
ation website www.opcfoundation.org.

Compliance

Reject Unsupported Language IDs: Select Yes to only allow Language IDs that are natively supported by the
server. If the OPC client application attempts to add an OPC group to the server and receives a general failure, it is
possible the client has given the server a Language ID that is not natively supported. If this occurs, the server
rejects the group addition. To resolve this particular issue, disable the compliant feature to force the server to
accept any Language ID.

Ignore Deadband for Cache Reads: Select Yes for the server to ignore the deadband setting on OPC groups
added to the server. For some OPC clients, passing the correct value for deadband causes problems that may res-
ult in the OPC client (such as, having good data even though it does not appear to be updating frequently or at all).
This condition is rare. As such, the selection should normally be left in its default disabled state.

Ignore Browse Filter: Select Yes for the server to return all tags to an OPC client application when a browse
request is made, regardless of the access filter applied to the OPC clients tag browser.

www. ptc.com

34

http://www.opcfoundation.org/

ThingWorx Kepware Server

Data Type Support for 2.05a: Select Yes for the server to adhere to the data type requirements and expected
behaviors for data type coercion that were added to the 2.05a specification.

Fail on Bad Quality: Select Yes for the server to return a failure if one or more items for a synchronous device read
results in a bad quality read. Compliance requires the server to return success, indicating that the server could com-
plete the request even though the data for one or more items may include a bad and/or uncertain quality.

Group Initial Updates: Select Yes for the server to return all outstanding initial item updates in a single callback.
When disabled, the server returns initial updates as they are available (which can result in multiple callbacks).
 Enabling this may result in loss of buffered data when using drivers that support data buffering (Event Playback)

for unsolicited device protocols. The compliance setting should be disabled if loss of buffered data is a concern.

Respect Client Locale: Select Yes for the server to use the Locale ID of the running Windows Operating System or
the Locale ID set by the OPC client when performing data type conversions. For example, a string representing a
floating-point number such as 1,200 would be converted to One Thousand - Two Hundred if converted using Eng-
lish metrics, but would be One and Two-Tenths if converted using German metrics. If German software is running
on an English OS, users need to determine how the comma is handled. This setting allows for such flexibility. By
default, and due to historical implementation, the server respects the Locale ID of the operating system.

Bad Quality Item as S_FALSE: Select Yes for the server to return S_FALSE in the item error array for items
without good quality. This setting defaults to Yes for existing projects that are set to full compliance and No for
those that are not. When set to No, the legacy behavior of returning E_FAIL (0x80004005) occurs.

Return Data ASAP: Select Yes to enable all groups to update the client. When enabled, an active item that exper-
iences a change in value or quality triggers a client update. The group update rate specified by the client is used to
set the client requested scan rate for the items added to that group. The default setting is disabled.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — OPC UA
OPC Unified Architecture (UA) provides a platform independent interoperability standard. It is not a replacement for
OPC Data Access (DA) technologies: for most industrial applications, UA complements or enhances an existing
DA architecture. The OPC UA Project Properties group displays the current OPC UA settings in the server.

Note: To change a setting, click in the specific property's second column. This invokes a drop-down menu that
displays the options available.

Server Interface

www. ptc.com

35

ThingWorx Kepware Server

Enable: When enabled, the UA server interface is initialized and accepts client connections. When disabled, the
remaining properties on this page are disabled.

Log diagnostics: When enabled, OPC UA stack diagnostics are logged to the OPC Diagnostics Viewer. This
should only be enabled for troubleshooting purposes.

Client Sessions

Allow anonymous login: This property specifies whether or not a user name and password are required to estab-
lish a connection. For security, the default setting is No to disallow anonymous access and require credentials to
log in.
Note: If this setting is disabled, users cannot login as the default user in the User Manager. Users can login as

the Administrator provided that a password is set in the User Manager and is used to login.
Tip: Additional users may be configured to access data without all the permissions associated with the admin-

istrator account. When the client supplies a password on connect, the server decrypts the password using the
encryption algorithm defined by the security policy of the endpoint, then uses it to login.
Note: Users can login as the Administrator using the password set during the installation of ThingWorx Kepware

Server to login. Additional users may be configured to access data without all the permissions associated with the
administrator account. When the client supplies a password on connect, the server decrypts the password using
the encryption algorithm defined by the security policy of the endpoint, then uses it to login.
When the client supplies a password on connect, the server decrypts the password using the encryption

algorithm defined by the security policy of the endpoint.

Max. connections: specify the maximum number of supported connections. The valid range is 1 to 256. The
default setting is 128.
Tip: The maximum connections to UA servers is 256. The maximum number of UA Gateway instances is 128.

Minimum session timeout: specify the UA client's minimum timeout limit for establishing a session. Values may be
changed depending on the needs of the application. The default value is 15 seconds.

Maximum session timeout: specify the UA client's maximum timeout limit for establishing a session. Values may
be changed depending on the needs of the application. The default value is 60 seconds.

Tag cache timeout: specify the tag cache timeout. The valid range is 0 to 60 seconds. The default setting is 5
seconds.

Note: This timeout controls how long a tag is cached after a UA client is done using it. In cases where UA cli-
ents read / write to unregistered tags at a set interval, users can improve performance by increasing the timeout.
For example, if a client is reading an unregistered tag every 5 seconds, the tag cache timeout should be set to 6
seconds. Since the tag does not have to be recreated during each client request, performance improves.

Browsing

Return tag properties: Enable to allow UA client applications to browse the tag properties available for each tag in
the address space. This setting is disabled by default.

Return address hints: Enable to allows UA client applications to browse the address formatting hints available for
each item. Although the hints are not valid UA tags, certain UA client applications may try to add them to the tag
database. When this occurs, the client receives an error from the server. This may cause the client to report errors
or stop adding the tags automatically. To prevent this from occurring, make sure that this property is disabled. This
setting is disabled by default.

Monitored Items

Max. Data Queue Size: specify the maximum number of data notifications to be queued for an item. The valid
range is 1 to 100. The default setting is 2.
Note: The data queue is used when the monitored item's update rate is faster than the subscription's publish

rate. For example, if the monitored item update rate is 1 second, and a subscription publishes every 10 seconds,
then 10 data notifications are published for the item every 10 seconds. Because queuing data consumes memory,
this value should be limited when memory is a concern.

Subscriptions

www. ptc.com

36

ThingWorx Kepware Server

Max. retransmit queue size: specify the maximum number of publishes to be queued per subscription. The valid
range is 1 to 100. A value of zero disables retransmits. The default setting is 10.
Note: Subscription publish events are queued and retransmitted at the client's request. Because queuing con-

sumes memory, this value should be limited when memory is a concern.

Max. notifications per publish: specify the maximum number of notifications per publish. The valid range is 1 to
65536. The default setting is 65536.
Note: This value may affect the connection's performance by limiting the size of the packets sent from the server

to the client. In general, large values should be used for high-bandwidth connections and small values should be
used for low-bandwidth connections.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — DDE
While the server is first and foremost an OPC server, some applications require Dynamic Data Exchange (DDE)
to share data. The server provides access to DDE applications that support one of the following DDE formats: CF_
Text, XL_Table, and Advanced DDE. CF_Text and XL_Table are standard DDE formats developed by Microsoft
for use with all DDE aware applications. Advanced DDE is a high-performance format supported by a number of cli-
ent applications specific to the industrial market.

For the DDE interface to connect with the server, the Runtime must be allowed to interact with the desktop. For
more information, refer to How To... Allow Desktop Interactions.

To access the DDE server settings through the Configuration, click Edit | Project Properties and locate the DDE
properties. Its properties can be used to tailor the DDE operation to fit the application's needs.

General

Enable DDE connections to the server: This property determines whether the DDE server portion of the server is
enabled or disabled. If DDE operation is disabled, the server does not respond to any request for DDE data. If
intending to use the server only as an OPC server, users may want to disable DDE operation. Doing so can
increase the data security and improve overall server performance. DDE is disabled by default.
See Also: How To... Use DDE with the Server

Service name: This property allows users to change how the server appears as an application name to DDE cli-
ents. This name is initially set to allow compatibility with the previous versions of the server. If users need to replace
an existing DDE server however, the server's service name can be changed to match the DDE server being
replaced. The service name allows a string of 1 to 32 characters to be entered.

Formats
This property allows users to configure the DDE format to provide to client applications. Choose to enable or dis-
able Advanced DDE, XL Table, and CF_Text. All three formats are enabled by default. This is particularly useful
when users experience problems connecting a DDE client application to the server: each of the DDE formats can
be disabled to isolate a specific format for testing purposes.
Note: Every DDE-aware application must support CF_Text at a minimum.

www. ptc.com

37

ThingWorx Kepware Server

Timing

Client update interval: This interval setting is used to batch up DDE data so that it can be transferred to client
applications. When using a DDE format, performance gains only come when large blocks of server data can be
sent in a single DDE response. To improve the ability of the server to gather a large block of data, the update timer
can be set to allow a pool of new data to accumulate before a being sent to a client application. The valid range of
the update timer is 20 to 60000 milliseconds. The default setting is 100 milliseconds.

DDE request timeout: This property is used to configure a timeout for the completion of DDE request. If a DDE cli-
ent request (either a read or write operation) on the server cannot be completed within the specified timeout, an
error is returned to the DDE client. The valid range is 1 to 30 seconds. The default setting is 15 seconds.
Note: The server Runtime may need to be reinitialized for changes to take effect.

Project Properties — OPC .NET
To access the OPC .NET server settings through the Configuration, click Edit | Project Properties and select the
OPC .NET tab.

Enabled: When enabled, the OPC .NETWrapper is initialized and accept client connections.

Tips:

1. The OPC .NETWrapper runs as a System Service called "xi_server_runtime.exe". It is only started when
the server starts and the option described above is enabled. Unlike OPC DA, clients cannot launch the
server.

2. To use and install OPC .NET, Microsoft .NET 3.5 must be present on the machine prior to server install-
ation.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — OPC AE
Events are used to signal an occurrence in the server and are similar to data updates in OPC Data Access. The
OPC AE functionality allows users to receive Simple Events from the server, including system startup and shut-
down messages, warnings, errors, and so forth. These events are displayed in the Event Log.

The OPC AE group is used to specify a number of project-level AE settings. Changes made to these settings take
effect after all A&E clients disconnect from the server.

The Alarms & Events plug-in allows Alarms & Events (A&E) clients to receive A&E data from the OPC server. It is
used to convert OPC server events into A&E format and to create custom alarms using OPC server tags.

For more information, contact the OPC vendor.

General

www. ptc.com

38

ThingWorx Kepware Server

Enable AE Connections to the Server: This property turns the OPC AE server on and off.

Enable Simple Events: When enabled, simple events are made available to clients. When disabled, the events are
sent. The default setting is enabled.

Subscriptions

Max. Subscription Buffer Size: Specify the maximum number of events sent to a client in one send call. The range
is 0 to 1000. The default setting is 100. 0 means there is no limit.

Min. Subscription Buffer Time: Specify the minimum time between send calls to a client. The supported range is
100 to 60000 milliseconds. The default setting is 1000 milliseconds.

Min. Keep-Alive Time: Specify the minimum amount of time between keep-alive messages sent from the server to
the client. The supported range is 100 to 60000 milliseconds. The default setting is 1000 milliseconds.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — FastDDE / SuiteLink
The server's support of Wonderware Corporation's FastDDE and SuiteLink simplifies the task of connecting the
server with FactorySuite applications. The Wonderware connectivity toolkit is used to simultaneously provide OPC
and FastDDE / SuiteLink connectivity, while allowing quick access to device data without the use of intermediary
bridging software.

For the FastDDE interface to connect with the server, the Runtime must be allowed to interact with the desktop.
For more information, refer to How To... Allow Desktop Interactions.

Note: For proper FastDDE / SuiteLink operation (and for this tab to be available in Project Properties), the Won-
derware FS2000 Common Components or the InTouch Runtime Component version 8.0 or higher must be
installed on the PC.

Enable FastDDE / SuiteLink connections to the server: This property enables or disables support of the client /
server protocols. When a Wonderware product is installed on the PC, this setting is available to enable. If the
FastDDE / SuiteLink operation is disabled, the server does not respond to any request for FastDDE or SuiteLink
data.
Tip: For better performance and security, it is recommended that this setting be disabled if the server is only used

for OPC connectivity.

Application Name: icon to open the application's name. The default setting is server_runtime.
Note: This name may be customized to suit specific end-user needs. For example, users that select "Remove

and Redirect" during the installation must change this setting to "servermain" for certain FactorySuite applications
to work without modification.

Client Update Interval (ms): icon to open how often new data is sent to FastDDE / SuiteLink client applications.
The range is 20 to 32000 milliseconds. The default setting is 100 milliseconds. The timer allows FastDDE /
SuiteLink data to be batched up for transfer to client applications. When using a client-server protocol like FastDDE
or SuiteLink, performance gains only come when large blocks of server data can be sent in a single response. To
improve the ability of the server to gather a large block of data, the update timer can be set to allow a pool of new

www. ptc.com

39

ThingWorx Kepware Server

data to accumulate before being sent to a client application.
Notes:

1. The update rate applies to how often data is sent to the client application, not how often data is read from
the device. The scan rate can be used to adjust how fast or slow the server acquires data from an attached
device. For more information, refer to Tag Properties — General.

2. The server Runtime may have to be reinitialized for changes to take effect.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — iFIX PDB Settings
The iFIX PDB Settings dialog contains properties that allow users to adjust the behavior between the processing of
the iFIX process database (PDB) tags and the server tags. To access, click Edit | Project Properties.

Note: The iFIX PDB Settings are only displayed in Project Properties if iFIX is installed on the computer.

 In some cases, the Process Mode must be set to System Service for the iFIX PDB interface to work with the
Runtime. For more information, refer to Process Modes.

Note: It is recommended that users keep the default values for each field. Users should also ensure that the set-
tings meet the application's requirements.

General

Enable connectivity to iFIX PDB: Enable or disable support of the client/server protocols. If the iFIX PDB oper-
ation is disabled, the server does not respond to any request for iFIX PDB data. For better performance and secur-
ity when the server is only being used for OPC connectivity, disable this property.

Enable latched data: Normally, the iFIX application's data links display a series of question marks (such as "????")
if a communication failure has occurred. Users may want to have a value displayed at all times, however. By
enabling latched data, the last value successfully read is preserved on the screen. The default setting is enabled.
Note: Data latching is not supported for AR and DR blocks.

Enable update per poll: When enabled, the server delivers the current value, quality, and timestamp to iFIX every
time that the driver polls the device. When disabled, the server only delivers an update to iFIX when it determines
the value or the quality has changed. The default setting is disabled.
Note: This setting is dynamic, meaning that the server immediately begins to deliver updates to the iFIX client at

the device scan rate after the option is applied.

Use iFIX startup configuration file: Enable to create this file through iFIX to contains all items accessed by the iFIX
client. It automatically starts scanning items before iFIX requests item data. The default setting is enabled.
See Also: Project Startup for iFIX Applications

Use unconfirmed updates Controls how the server updates local cache for iFIX following writes via the NIO inter-
face. With the default setting (disabled), the server does not update local cache until the value has been confirmed
via a read. For the majority of applications, the default setting provides the best user experience from the stand-
point of data integrity. For applications leveraging iFIX Easy Database Access (EDA), users may wish to enable
unconfirmed updates to update the local cache for iFIX immediately with the attempted write value.

www. ptc.com

40

ThingWorx Kepware Server

Note: From a data integrity perspective, use of unconfirmed updates can result in a false indication of write suc-
cess and inaccurate data displayed in iFIX. Another consequence of using unconfirmed updates is that the data dis-
played in iFIX can “flicker” due to the temporary unconfirmed update (write value attempted) followed by a
confirmed update (actual value read for the item).

Timing

PDB-to server request timeout(s): Specify the amount of time that the iFIX PDB waits for a response from an add,
remove, read, or write request before timing out. Once timed out, the request is discarded on behalf of the server. A
timeout can occur if the server is busy processing other requests or if the server has lost communications with iFIX
PDB. In the case of lost communications, the iFIX PDB automatically re-establishes communications with the
server so that successive timeouts do not occur. The valid range is 5 to 60 seconds. The default setting is 5
seconds.

Deactivate tags on PDB read inactivity: Direct the server to automatically deactivate tags that have not been read
by iFIX for the time period specified. This reduces unnecessary polling of the process hardware. When enabled,
the server reads its list of tags every 15 seconds and deactivates any that are idle. If iFIX has not performed a read
request of a tag for the time period specified, the tag is considered idle. Since the server checks for idle tags on a
15 second cycle, a tag may not get set inactive at precisely this time from its last read; it could be up to 15 seconds
longer depending on when the last read occurred in the check cycle. If iFIX requests data from a tag that has been
previously deactivated, the server reactivates the tag and resumes polling the hardware. The default setting is dis-
abled. Once this feature is enabled, however, it becomes applied to all projects. Users may specify an idle time in a
range from 15 to 607999 (15 seconds to 1 week).

 This feature is meant to be used with Register tags only and can cause non-register tags to go off scan. To avoid
this situation when using this feature, set the inactivity timer greater than the longest scan time configured in the
iFIX database.

Inactivity timeout(s): Specify the amount of time that the iFIX PDB waits for activity before timing out. In the case of
lost communications, the iFIX PDB automatically re-establishes communications with the server so that successive
timeouts do not occur. The valid range is 5 to 60 seconds. The default setting is 5 seconds.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — OPC HDA
To access the OPC HDA server settings through the Configuration, click Edit | Project Properties and expand the
OPC HDA group.

Enable HDA connections to the server: When enabled, HDA clients can connect to the HDA server that is
exposed by this server. When disabled, client HDA connections are disabled. These settings may be applied
without restarting the Runtime; however, although the server does not drop connected clients, it does not accept
new client connections either. The default setting is enabled.

Enable Diagnostics: When enabled, this option allows OPC HDA data to be captured and logged to the Event Log
service for storage. The default setting is disabled.

Note: Enabling diagnostics has negative effect on the server runtime performance. For more information on
event logging, refer to OPC Diagnostics Viewer.

www. ptc.com

41

ThingWorx Kepware Server

The Defaults button restores the settings to the default / pre-set values.

Project Properties — ThingWorx
Support for the ThingWorx Native Interface simplifies the task of connecting with a ThingWorx Platform, while sim-
ultaneously allowing OPC and other connectivity as needed.

Once the connection to the ThingWorx Platform is made, a new Industrial Gateway Thing with the Thing Name con-
figured in Kepware is presented in the list of Industrial Connections in the ThingWorx Composer environment. Save
this Industrial Gateway Thing to begin working with the connected server instance.

Tip: If desired, create the Industrial Gateway Thing within the Composer environment before connecting the
server.

Refer to the Industrial Connections area of the ThingWorx Composer Help documentation for more information.

Cautions:

l Any tags with an array data type must be configured with the Always push type in the ThingWorx Platform.
A push threshold set to value change will fail to publish updates to the platform.

l While most of the native interfaces function in a client server configuration, the ThingWorx Native Interface
acts more like a client, as it creates an outbound connection to the ThingWorx Platform. This allows the
ThingWorx Native Interface to connect to a remote ThingWorx Platform using standard ports and protocols
without the need to create unusual firewall or routing rules. As long as the ThingWorx Composer is reach-
able in a browser from the machine hosting the OPC server, then the server should be able to pass data to
that platform through the Native interface.

l As noted in ThingWorx documentation, configuration of a ThingWorx Application Key is crucial to providing
a secured environment. The Application Key should provide the appropriate privileges to allow the proper
exchange of data between the server instance and the ThingWorx Platform.

www. ptc.com

42

ThingWorx Kepware Server

Server Interface

Enable: Set to Yes for the ThingWorx Native interface to attempt connection with the information provided.

Connection Settings

Host: Specify the IP address or DNS name of the ThingWorx server.

Port: Specify the number of the TCP port used by the ThingWorx server.

Resource: Specify the URL endpoint on the ThingWorx server.

Application key: Enter or paste in the authentication string for connecting to the ThingWorx server.
Caution: Do NOT set this property using the Configuration API Service over HTTP in production mode; use

HTTPS for best security.

Trust self-signed certificates: Set to No for maximum security. Set to Yes to accept self-signed certificates during
development.
Caution: Do NOT set this to Yes in a production environment as it would compromise security.

Trust all certificates: Set to No for maximum security. Set to Yes and the TLS library does not validate the server
certificate.
Caution: Do NOT set this to Yes in a production environment as it would compromise security.

Disable encryption: Indicate if connections to a non-SSL-secured ThingWorx Platform are allowed.
Caution: Do NOT set this to Yes in a production environment as it would compromise security.

www. ptc.com

43

ThingWorx Kepware Server

Max Thing Count: Configure the maximum number of things that can be connected to this industrial gateway.
Caution: Increasing this value without scale testing may lead to decreased performance.

Platform

Thing name: Enter the name of the entity (remote thing) on the ThingWorx server that represents this data source.
Use the OPC server template to create the remote thing.
Note: The Thing Name must match the name of the Industrial Gateway thing exactly (case sensitive).

Data Rates

Publish floor: Specify the minimum rate at which updates are sent to the platform. Zero sends updates as often as
possible.

Logging

Enable: Set to Yes to activate advanced logging of the ThingWorx native interface. The locations of the logs
(named twxdiags.log by default) is specified in the Event Log properties in the server administration settings. The
logs can either be saved to a single text file (Single File) or a series of text files (Extended Data Store). These logs
are written in plain text.
Note: This logging may cause the file or directory to fill up quickly; it is recommended that logging only be

enabled when troubleshooting and a large file size be specified.

Level: Set the severity of logging to be sent to the event log. Trace includes all messages from the native
ThingWorx interface.

Verbose: Set to Yes to make the error messages as detailed as possible.

See Also: Event Log, Event Log Options

Store and Forward
The ThingWorx Native Interface supports a Store and Forward datastore to persist property updates when the
industrial server loses connectivity to the ThingWorx Platform. When enabled, Store and Forward persists all
incoming property updates to disk until the ThingWorx Native Interface receives confirmation from the platform that
the update has been received. If connection to the platform is lost, all updates are stored and maintained on disk
until either the disk where updates are being stored comes within 500 MB of being full or the size of stored updates
exceeds the maximum size specified - whichever comes first. Once the datastore or disk is full, incoming updates
are dropped until enough space is available to store the incoming data.

See Also: Fill Rate Example

Store and Forward Properties

www. ptc.com

44

ThingWorx Kepware Server

Enable: Select Yes to save data to a local disk directory to avoid data loss during connection interruption or heavy
data transfers. Enabling this setting allows data to be queued, then pushed forward once a connection is estab-
lished and data receipt has been confirmed.

Storage Location: Enter or browse to the fully qualified path to the directory where data should be cached.
Note: The ThingWorx Native Interface queues updates in memory when the Store and Forward datastore cannot

be initialized. The server automatically retries until a datastore can be initialized. Refer to the event log for specific
failure information.

Max. Datastore Size: Select the maximum number of megabytes or gigabytes the data is allowed to reach before
purging. The available datastore sizes range from 128 MB to 16 GB.

Forward Mode: Select a method to determine which updates are sent to ThingWorx when the connection is
restored. In situations that require active monitoring of production data without any data loss when disconnected
from the platform, it is possible to store and forward upon reconnect or to schedule forwarding the stored updates
for a time when production is not being actively monitored (for example, during production downtime). Options
include Active and On Hold:

l Active Mode - When the Forward Mode is set to Active, stored property updates are sent in the order they
were received until the ThingWorx Platform has received all updates. Updates are then sent to the platform
in real time. Property updates can be delayed due to the first In, first out nature of property update for-
warding when many updates are collected during a ThingWorx Platform disconnect.

l On Hold Mode - When the Forward Mode is set to On Hold, only the latest updates are sent to the platform
after recovering from a disconnect. This ensures that ThingWorx applications that are actively monitoring
production and get the freshest data available. When production is not being actively monitored, the mode
can be set to Active to start forwarding the older updates that were stored while the server was dis-
connected from the platform. The industrial server buffers up to 25,000 property updates in memory before
storing them to disk. Once the 25,000 update limit is reached, the property updates are pushed to disk and
held until the Forward Mode is set to Active. This allows the industrial server to prioritize the most recent
25,000 updates when the connection to the ThingWorx Platform is restored, hold on to updates so they
they’re not lost, and forward them later. New updates are dropped when the datastore size limit is reached,
or the disk is filled past the 500 MB limit, whichever occurs first. The in-memory buffer is only typically filled
when the connection to the ThingWorx Platform is lost; however, this can also occur when property updates
are collected at a rate faster than can be forwarded to the platform.

Delay between publishes (ms): Specify the minimum amount of time between publishes being sent to ThingWorx.
Specifying a zero value can keep ThingWorx from being overwhelmed with tag updates.

Max. Updates Per Publish: Specify the number of tag updates to be sent in a single publish. Specifying a smaller
value can keep ThingWorx from being overwhelmed with tag updates.

Store and Forward Considerations

l The Delay Between Publishes and Max Update Per Publish properties are used anytime Store and Forward
is enabled; not just when a connection is reestablished. Careful consideration should be used when making
changes to these values.

l Store and Forward is disabled by default and must be enabled in industrial server’s Project Properties or
through the Configuration API.

l It is not necessary to configure Store and Forward from the ThingWorx Platform. However, to store the for-
warded updates to the ThingWorx Platform, it is necessary to configure a Value Stream and enable logging
for any properties for which a history is desired.

l When the datastore path configuration (defined in Storage Location setting) is modified, the existing data-
store remains on disk. If the datastore path configuration is restored, updates associated with the current
project are forwarded to the platform.

l Changes to Store and Forward properties do not require the platform connection to be reinitialized. The
ThingWorx Native Interface continues collecting updates while applying the changes.

The Store and Forward path is validated both at configuration and runtime, and must comply with the following:

www. ptc.com

45

ThingWorx Kepware Server

l Must be between 3 and 256 characters
l Must not contain any characters or symbols forbidden by the system
l Must be an absolute path (beginning with a drive letter)
l Must not refer to a network resource (mapped drive* or UNC share)
l Must not refer to removable media such as a USB drive*

* refers to items which are only validated at runtime

Store and Forward Status and Monitoring can be accessed in the following ways:

l The industrial server’s Store and Forward Tags
l The industrial server’s Event Log

Store and Forward Operational Considerations

l The reliability requirements of Store and Forward introduce a small decrease in performance when enabled
as all updates are routed through a disk buffer before being sent to the ThingWorx Platform and the
ThingWorx Native Interface waits to receive confirmation that the platform has received the most recent set
of updates before sending the next set.

l Stored updates persist across server restarts.
l Make sure all stored updates are forwarded before a software upgrade because updates cannot be pre-

served across major / minor server upgrades.

Proxy Properties
The server leverages the ThingWorx CSDK to allow communicating with the ThingWorx Platform through a proxy
server. The following authentication options are supported:

l No authentication
l Basic authentication
l Digest authentication
l NTLM

Host: The IP address or DNS name of the proxy server to connect.

Port: The number of the TCP port used to connect to the proxy server.

Username: The user account name to connect to the proxy server and authenticate.

Password: The password authentication string for connecting to the ThingWorx server as the user specified.
Caution: Do NOT set this property using the Configuration API Service over HTTP in production mode; use only

HTTPS for best security.

The Defaults button restores the settings to the default / pre-set values.

Store and Forward — Fill Rate Example
The Max Datastore Size and data type of the updates being stored need to be considered to determine maximum
update count and fill rate. The table below describes update count limits and fill rates for several data types scen-
arios assuming a maximum datastore size of 128 MB and 1 update / second.

www. ptc.com

46

ThingWorx Kepware Server

Data Type Maximum Update Count Fill Rate (bytes / second)
Word / Short 5817792 22

DWord / Long / Float 5333076 24

Double 4571321 28

String (length = 10) 3764743 34

Using the following equation and information from the table above the fill rate for a given project can be determined
by summing the fill rates that correspond to the tag data types of the project:

Overall Fill Rate =
ScanRate(seconds) *
PropertyCount(Bool) * FillRate (Bool)+
PropertyCount(Word) * FillRate (Word) +
PropertyCount(Word) * FillRate (Short) +
PropertyCount(DWord) * FillRate (DWord) +
PropertyCount(Word) * FillRate (Long) +
PropertyCount(Word) * FillRate (Float) +
PropertyCount(Double)* FillRate (Double)+
PropertyCount(String) * FillRate (String)

The table below describes the fill rate and offline time before data loss for a sample project consisting of 500 Word
properties, 500 DWord properties, 10 String properties, and 100 Double properties for several scan rates assuming
a maximum datastore size of 128 MB.

Per-Property Scan Rate (milliseconds) Fill Rate (bytes / second) Offline Time (minutes)
10000 2614 816

1000 26140 81

250 104560 20

Store and Forward — System Tags
System tags provide datastore status information and allow server clients to manage the updates. These system
tags are only available to server clients when Store and Forward is enabled. The tags are located under the _
ThingWorx group folder at the same level as the _System folder in the client browsing tree.

Tag Class Datatype Description
_StoreAndForwardEnabled

Read / Write Boolean

This tag allows Store and Forward to be turned
On or Off. When this tag is set False, Store and
Forward is disabled. When Store and Forward
is disabled all Datastore related system tags
report a default value equivalent to 0.

Note:

l The configuration is not always indic-
ative of the enable / disable state of
Store and Forward. Use the _
StoreAndForwardEnabledStatus sys-
tem tag to get the configuration in use.
For example, when an error occurs that
prevents Store and Forward, the _
StoreAndForwardEnabledStatus
returns 0.

_StoreAndFor-
wardEnabledStatus Read / Write Boolean This tag indicates whether or not the interface

is using Store and Forward.

_DatastoreDiskFull
Read Only Boolean

This tag indicates whether the disk in use by
the datastore has been filled past the 500 MB
threshold required for updates to be stored.

www. ptc.com

47

ThingWorx Kepware Server

Tag Class Datatype Description
_DatastoreFull

Read Only Boolean
This tag indicates whether the datastore has
reached the configured Max Datastore Size
that can be used to store updates.

_StoredUpdateCount

Read Only DWord

This tag indicates the number of updates in the
datastore.

Notes:

l A non-zero value does not indicate that
the ThingWorx connection has been
lost because updates are always
routed through the datastore when
Store and Forward is enabled.

l During steady-state operation this num-
ber is expected to fluctuate; however,
the stored update count should not
increase over time. This behavior indic-
ates that more data is being collected
than can be delivered to the ThingWorx
Platform.

_DeleteStoredData

Read / Write Boolean

This tag can be used to delete the contents of a
datastore. Writing any value to this tag deletes
all stored updates in the Store and Forward
datastore.

_DatastoreCurrentSizeMB Read Only Double This tag reports the amount of space (in MiB)
used by all updates currently on disk

_DatastoreRemainingSpaceMB

Read Only Double

This tag reports the amount of space (in MiB)
remaining in the datastore available to store
updates. This is based on the Max Datastore
Size property, and not available disk space.
For disk space remaining, see the _Data-
storeUsableDiskSpace tag.

_DatastoreUseableDiskSpaceMB

Read Only Double

This tag reports the amount of space (in MiB)
available to store updates on the disk where
the datastore is located. Store and Forward
uses a safety buffer of 500MiB so as to not fill
the entire disk. This system tag takes this
safety buffer into account for its calculation.
This tag does not reflect the amount of space
remaining in the datastore as specified by the
user. See _DatastoreSizeRemaining for that
information.

_DatastoreAttachError

Read Only Boolean

This tag indicates an error has occurred that
prevents use of Store and Forward. When the
tag value is True an error has occurred. Refer
to the server event log for information regard-
ing this error. See Possible Cause/Solutions to
resolve the error that prevents the Store and
Forward datastore from being used.

_DroppedUpdates

Read Only Long

This tag reports the total number of dropped
updates since the ThingWorx interface started.
When the value reaches 2,147,483,647 that
value will rollover to 0. The value resets to 0
when the ThingWorx connection is reinitialized.

_ForwardMode

Read/Write DWord

This tag reports the current Forward Mode con-
figuration of the ThingWorx Native Interface.
The tag supports writes to change the con-
figured mode. Valid values include 0 for Active

www. ptc.com

48

ThingWorx Kepware Server

Tag Class Datatype Description
and 1 for On Hold. All other write values are
ignored.

Note:

l The configuration is not always indic-
ative of the Forward Mode in use. Use
the __ForwardModeStatus system tag
to get the mode in use. For example,
when an error occurs that prevents
Store and Forward, the __For-
wardModeStutus returns a blank.

_ForwardModeStatus

Read Only String

This tag reports the current Forward Mode in
use by the native interface. Possible values
include Active and On Hold. The system tag
returns a blank string when Store and Forward
is not in use.

See Also: ThingWorx Interface Users for controlling access to the ThingWorx Platform and related data
transfer.

Accessing the Administration Menu
The Administration Menu is used to view and/or modify user management settings and launch server applications.
To access the Administration Menu, right-click on the Administration icon located in the System Tray.

Configuration: launches the OPC server's configuration.

Start Runtime Service: starts the server runtime service and loads the default runtime project.

Stop Runtime Service: disconnects all clients and saves the default Runtime project before stopping the server
Runtime service.

www. ptc.com

49

ThingWorx Kepware Server

Reinitialize: disconnects all clients and resets the runtime server. It automatically saves and reloads the default
project without stopping the server runtime service.

Reset Event Log: resets the Event Log. The date, time, and source of the reset are added to the Event Log in the
configuration window.

Settings...: launches the Settings group.
For more information, refer to Settings.

OPC UA Configuration: launches the OPC UA Configuration Manager, if available.

OPC .NET Configuration: launches the OPC .NET Configuration Manager.

Quick Client: launches the OPC Quick Client.
For more information, refer to the user help for the OPC Quick Client Utility.

Application Report Utility: launches the server's troubleshooting utility.
For more information, refer to the user help for the Application Report Utility.

Support Information: launches a dialog that contains basic summary information on both the server and the drivers
currently installed for its use.

For more information, refer to Server Summary Information.

Exit: closes the Administration and removes it from the System Tray. To view it again, select it from the Windows
Start menu.

Settings
To access the Settings groups, right-click on the Administration icon located in the System Tray. Select Settings.
For more information, select a link from the list below.

Settings — Administration
Settings — Configuration
Settings — Runtime Process
Settings — Runtime Options
Settings — Event Log
Settings — ProgID Redirect
Settings — User Manager
Settings — Service Ports

Settings — Administration
The Administration group is used to configure the Runtime Administration's actions.

Automatically start Administration: When enabled, this property enables the Administration to start automatically.
The Administration is a System Tray application that allows quick links to various server tools including the Settings
Console, Configuration, User Manager Console, and controls for stopping and starting the Runtime service.

www. ptc.com

50

ThingWorx Kepware Server

Product Language Selection: Select the preferred user interface language from the drop-down menu.

Tip: The language settings defaults to the language of the install, which defaults to the language setting in the
operating system, if possible.

Settings — Configuration
The Configuration group is used to configure how the Configuration both connects to and interacts with the
Runtime.

Connection

Communicate using port: This property is the TCP/IP port to be used to communicate between the Configuration
and the Runtime. To obtain the default setting, click Default.

Session Management

Max Concurrent Configuration Connections: Specify the number of Configuration connections that can be made
to the Runtime at one time. The range is 1 to 64. The default is 10.

Idle Session Timeout: Set the length of time the console connection can be inactive before it is shut down. The
range is 10 to 3600 seconds. The default is 60 seconds.

Settings — Runtime Process
The Process Mode group is used to specify the server process mode, as well as how it utilizes the PC's resources.

www. ptc.com

51

ThingWorx Kepware Server

Selected Mode: Specify whether the server is running as System Service or Interactive. By default, the server
installs and runs as System Service. Changing this setting causes all clients, both Configuration and process, to be
disconnected and the server to be stopped and restarted. It also restores user-configured DCOM settings to
default.

High Priority: Set the server process priority. The default setting is normal. When enabled, this setting allows the
server to have priority access to resources.

Note: Microsoft recommends against setting applications to a high priority as it can adversely affect other applic-
ations running on the same system.

Processor Affinity: Specify on which CPUs the server can be executed when it is run on PCs containing more than
one.

Settings — Runtime Options
The Runtime Options group is used to change settings in the project being executed in the Runtime.

Project Backups

www. ptc.com

52

ThingWorx Kepware Server

Backup the Runtime project prior to replacement: This property enables the Runtime project to be backed up
before it is overwritten. The backup location is displayed in the Event Log. This option is enabled by default.

Note: The Runtime project is overwritten if either New or Open is selected while connected to the Runtime. In
addition, connecting to the Runtime while working offline with a project may result in Runtime project replacement.

Keep the most recent: This property limits the number of backup files to be saved to disk. The range is 1 to 1000.
The default is 10.

Clean up now...: This property invokes a confirmation dialog that allows users to delete all the Runtime project
backups. Doing so does not affect the current running project.

Tip: It is a best practice to save a copy of the project file on a regular basis for disaster recovery purposes. The
default directories for these backups are:

C:\ProgramData\PTC\ThingWorx Kepware Server\V6

Tip: If the file has been saved to an alternate location, search for *.opf, *.sopf, or *.json to locate available project
files.

OPC Connection Security

Use DCOM configuration settings: Enable to use authentication and security from the DCOM Configuration.

Configure... Click to launch the DCOM Configuration Utility to specify the level of security and restrict access for
certain users and/or applications.

 When this setting is disabled, the server overrides the DCOM settings set for the application and does not per-
form any authentication on the calls received from client applications. It impersonates the security of the client
when performing any actions on behalf of the client application. Disabling this setting provides the lowest level of
security and is not recommended. If this setting is chosen, ensure that the client and server applications are run-
ning in a secure environment so that the application is not compromised.

Settings — Logs
The log properties are used to define the communication and persistence settings for:

l Event Log Settings
l OPC Diagnostics Log Settings
l Communications Diagnostics Log Settings
l ThingWorx Diagnostics Log Settings
l Audit Log Settings

Connection

Port: Specify the TCP/IP port to be used to communicate between the logs and the application. The valid range is
49152 to 65535. To restore the default port setting, enter a blank value.

Log Settings

The properties for each log type are the same, but the values you set are independent for each log type.

www. ptc.com

53

ThingWorx Kepware Server

Persistence Mode: icon to open the log's persistence mode. Options include Memory, Single File, and Extended
Datastore. The default setting for the Event Log Setting and Audit Log Setting is Single File. The default setting for
Communications Diagnostics Log Settings is Memory (no persistence). The default setting for OPC Diagnostics
Log Settings is Single File. The default setting for ThingWorx Diagnostics Log settings is Single File. Descriptions
of the options are as follows:

l Memory (no persistence): When selected, this mode records all events in memory and does not gen-
erate a disk log. A specified number of records are retained before the oldest records start being deleted.
The contents are removed each time the server is started.

l Single File: When selected, this mode generates a single disk-based log file. A specified number of
records are retained before the oldest records start being deleted. The contents are restored from this file
on disk when the server is started.

l Extended Data Store: When selected, this mode persists a potentially large number of records to disk in
a data store distributed across many files. The records are retained for a specified number of days before
being removed from the disk. The contents are restored from the distributed file store on disk when the
server is started.

Max. records: Specify the number of records that the log system retains before the oldest records start being
deleted. It is only available when the Persistence Mode is set to Memory or Single File. The valid range is 100 to
100,000 records. The default setting is 25,000 records.
Note: The log is truncated if this property is set to a value less than the current size of the log.

Log file path: Specify where the disk log is stored. It is only available when the Persistence Mode is set to Single
File or Extended Datastore.
Note: Attempts to persist diagnostics data using a mapped path may fail because the Event Log service is run-

ning in the context of the SYSTEM account and does not have access to a mapped drive on the local host. Users
that utilize a mapped path do so at their own discretion. It is recommended that the Uniform Naming Convention
(UNC) path be used instead.

Max. single file size: Specify the size that a single datastore file must attain before a new datastore file can be star-
ted. It is only available when the Persistence Mode is set to Extended Datastore. The valid range is 100 to 10000
KB. The default setting is 1000 KB.

Min. days to preserve: Specify that individual datastore files are deleted from disk when the most recent record
stored in the file is at least this number of days old. It is only available when the Persistence Mode is set to Exten-
ded Datastore. The valid range is 1 to 90 days. The default setting is 30 days.
See Also: Built-In Diagnostics
When saving to file, monitor the Windows Event Viewer for errors relating to the persistence of data to disk.

Restoring Persisted Datastores from Disk

The Event Log restores records from disk either at start up or when the following occurs:

1. The Persistence Mode is set to Single File or Extended Datastore.
Note: When Single File persistence is selected, the server loads all persisted records from disk before

making any records available to clients.

2. The log file path is set to a directory that contains valid persisted log data.

Extended Datastore Persistence

The Extended Datastore Persistence Mode has the potential to load a very large number of records from disk. To
remain responsive, the log services client requests for records while records are loaded from disk. As the record
store is loaded, clients are provided with all records in the log regardless of filtering. Once all the records have been
loaded, the server applies filters and sorts the records chronologically. The client views are updated automatically.
Note: Loading large record stores may cause the log server to be less responsive than usual. It regains full

responsiveness once the loading and processing completes. Resource usage is higher than usual during loading
and settles on completion.

www. ptc.com

54

ThingWorx Kepware Server

Disk Full Behavior

The Extended Datastore Persistence Mode has the potential to fill a storage medium quickly, especially when per-
sisting OPC Diagnostics. If a disk error is encountered while persisting records, an error posts to the Windows
Event Viewer.
See Also: PC Diagnostics Viewer
 The Event Log system would be useless if there was no mechanism to protect its contents. If operators could

change these properties or reset the log, the purpose would be lost. Utilize the User Manager to limit what functions
an operator can access.

Settings — ProgID Redirect
Many OPC client applications connect to an OPC server through the OPC server's ProgID. Users who need to
migrate or upgrade to a new OPC server often prefer to do so without changing their tag database (which can con-
tain thousands of tags that link to the OPC server ProgID). This server offers ProgID redirection to assist users in
these transitions.

The ProgID Redirect feature allows users to enter the legacy server's ProgID. The server creates the necessary
Windows Registry entries to allow a client application to connect to the server using the legacy server's ProgID.

Add: This button is used to add a ProgID to the redirection list. When clicked, it invokes the "Add New ProgID" dia-
log. For more information, refer to "Adding a New ProgID" below.

Remove: This button is used to remove a selected ProgID from the redirection list.
Note: A redirected ProgID cannot be browsed by OPC client applications that use the OpcEnum service to loc-

ate OPC servers. In most cases, users can enter the redirected ProgID into the client application manually.

Adding a New ProgID
For more information, refer to the instructions below.

1. In the ProgID Redirect group, click Add.

www. ptc.com

55

ThingWorx Kepware Server

2. In ProgID, enter the ProgID of the legacy server.

3. Once complete, click OK.

The client application should not be running while the legacy server's ProgID is being added to the redirection
list. Failure to observe this warning may result in the client application not respecting the newly redirected ProgID.

Settings — User Manager
The User Manager controls client access to the project's objects (which are the channels, devices, tags. etc.) and
their corresponding functions. The User Manager allows permissions to be specified by user groups. For example,
the User Manager can restrict the Data Client user access to project tag data based on its permissions from the
Anonymous Clients user group. The User Manager can also transfer user information between server installations
through its import / export function.
The User Manager has built-in groups that each contain a built-in user. The default groups are Administrators,
Anonymous Clients, Server Users, and ThingWorx Interface Users. The default users are Administrator, Data Cli-
ent, Default User, and ThingWorx Interface. Users cannot rename or change the description fields. Neither the
default groups nor the default users can be disabled.

Note: Although the Administrator's settings cannot be changed, additional administrative users can be added.

New Group: When clicked, this button adds a new ThingWorx Kepware Server user group. Groups cannot contain
illegal characters.
For more information, refer to User Group Properties.

New User: When clicked, this button adds a new user to the selected user group. This function is disabled for
anonymous clients. Users cannot contain illegal characters.
Note: User names cannot be changed. If a user name must change, create a new user with the correct or altered

name and delete the existing user. User passwords can be changed at any time.

www. ptc.com

56

ThingWorx Kepware Server

For more information, refer to User Properties.

Add AD User: When clicked, this button initiates browsing and selecting Active Directory users and groups. These
users and groups are added to ThingWorx Kepware Server groups. Active Directory groups are configured as chil-
dren to ThingWorx Kepware Server groups and inherit their permissions.

Edit Properties: When clicked, this button allows users to edit the properties of the selected user or user group.
Tip: To update multiple permissions at the same time, right-click on the property group and select the desired per-

missions.

Disable Selected User / Group: When clicked, this button disables the selected user or user group. This function
is only available to custom users and user groups. Disabling a user group disables all users within it.

Restore Selected User / Group: When clicked, this button restores the selected user or user group. Restoring a
user group returns the users within it to the state they were in prior to disabling. This icon is only available once a
user or user group has been disabled.

Delete Selected User / Group: When clicked, this button deletes the selected user or user group. This function is
only available to custom users and user groups (not users pre-configured by installation). Deleting a user group
removes all users within it.

Import User Information: When clicked, this button imports user information from an XML file. For the import to suc-
ceed, the file that is selected must have been exported from the server's Administration utility. This function is only
enabled when a member of the built-in Administrators group is logged in.

Export User Information: When clicked, this button exports user information to an XML file. This is useful for users
that need to move the project from one machine to another. Administrators also have the option to password pro-
tect the XML file: if utilized, the correct password must be entered for the import to succeed on the new machine.
The XML file cannot be edited and re-imported. This function is enabled at all times.

 The Import / Export User Information features were released in server version 5.12. Any user passwords that
were set while using previous server versions must be changed in 5.12 before an export is attempted; otherwise,
the export fails.

 After upgrading the server or importing User Information, it is recommended to review the User Manager per-
missions for accuracy.

 Imports and upgrades from older versions may fail due to users or groups containing illegal characters. In this
case, fix the names before exporting from older versions.

Note: Import User Information replaces existing users and user groups with those being imported (except for the
Administrator built-in user).

See Also: ThingWorx Interface Users if connecting to the ThingWorx Platform.

Illegal Characters
For local server users and groups, some characters are not permitted in local server user names and local group
names (Version 6.9 and higher). In particular, forward (/) and backward (\) slashes are NOT allowed. Trying to cre-
ate users or groups with these characters causes a failure message that describes illegal characters.

Accessing Additional Settings
Shortcuts and additional settings may be accessed through the context menus for user groups and users.

www. ptc.com

57

ThingWorx Kepware Server

Move User To This option moves the user to a different user group. The status of the group does not matter: both
disabled and enabled groups appear in the list. An active user moved to a disabled group becomes disabled as
well. A disabled user moved to an enabled group persists in status until changed.

Active Directory Users and Groups
Active Directory users and groups allow the application to utilize Windows users and groups to sign into and con-
figure ThingWorx Kepware Server. Human-readable user names are displayed for users and groups whenever pos-
sible; however, SIDs are Window’s unique identifier for users and groups. If a user or group is deleted from the
domain, or a domain controller cannot be found, the SID is displayed instead. This may indicate a user has been
removed from the domain. Users disabled on the domain are displayed as human-readable names, but authen-
tication with them is not possible. Authentication when reaching out to a domain controller may be slow.

Active Directory Groups: Active Directory groups can be added as children to ThingWorx Kepware Server groups.
When attempting to sign in as a Windows user, the software determines if the user is a part of a configured Active
Directory group. If so, that user signs in with the permissions of the ThingWorx Kepware Server group that is a par-
ent of the configured Active Directory group. Local Windows users may be matched with local Windows groups.
Distribution groups and computers cannot be configured. Service accounts are supported. Groups are not sup-
ported for real-time data interfaces.

Note: Active Directory (AD) users granted access to the server via Active Directory Groups must be direct mem-
bers of AD Groups added to the User Manager to have access to the server. Members of AD groups that are nes-
ted within AD groups added to User Manager are not supported.

Caution: Having Active Directory (AD) users in multiple configured AD groups is not recommended because the
resulting permissions may be challenging to manage. If an AD user is part of multiple AD groups, only one AD
group is used to determine the ThingWorx Kepware Server group permissions used. If an AD user is configured as
part of a ThingWorx Kepware Server group, and the AD user is also a member of a configured AD group, the indi-
vidual AD user permissions take precedence.

Tip: To configure ThingWorx Kepware Server as a standard user (non-Administrator Windows user), grant the
standard user read and write privileges to the Application Data directory. Only an administrator can set these per-
missions.

www. ptc.com

58

ThingWorx Kepware Server

Warning: Ensure that any domain accounts to be used are configured with domain Active Directory groups and
that any local (Windows) accounts to be used are configured with local AD groups. ThingWorx Kepware Server
does not allow the mixing of local and domain users and groups

Warning: Windows 8 and 8.1 Professional editions do not support local groups built into the operating system
(such as the Everyone group), but do support domain groups and local users.

For more information, refer to the Post-Installation section of the Secure Deployment Guide.

Supported Interfaces
Active Directory user and group access is permitted in the following interfaces:

l Server Configuration GUI
l Server Administration
l Configuration API
l OPC .Net

Partially Supported Interfaces
The following interfaces support Active Directory authentication with configured users, but not configured groups:

l IoT Gateway
l OPC UA

For additional information on how to properly supply credentials in places where Active Directory is unavailable,
refer to the section below regarding the Configuration API.

Server Configuration and Administration: When launching the Server Configuration application and the Server
Administration application, ThingWorx Kepware Server attempts to seamlessly log in as the current user on the
machine prior to attempting any default users. When logging into the Server Configuration application, if a con-
figured matching Active Directory user cannot be found (most likely because one has not been configured), an
informational message is posted, and the Default User is attempted. When logging into the Server Administration
application, if a matching Active Directory user cannot be found, the Administrator user is attempted. In both cases,
if the server cannot successfully log in, a login prompt is displayed. If the server is configured to use Active Dir-
ectory and there is a desire for a different user to log in, the recommended way to do so is to log into the windows
machine as that different user.

Configuration API: When using authentication with the Configuration API service, an Active Directory user can be
specified by supplying the username of [Domainname|Computername]\[Username] and the password associated
with that user. The ‘\’ is used to determine if an attempted login should be treated as an Active Directory user that
needs to be authenticated. The configuration API service will validate that username and password, and grant per-
missions based on the User Manager’s configuration. If no ‘\’ is supplied, the Configuration API will treat the user-
name as a ThingWorx Kepware Server user and validate the supplied password internally.
Note: Active Directory user passwords and names cannot be managed over the configuration API and must be

changed via the operating system or domain controller on which they reside.

IoT Gateway and OPC UA: Active Directory users can be specified by supplying the username of [Domain-
name|Computername]\[Username] and the password associated with that user. The backslash (\) is used to
determine if an attempted login should be treated as an Active Directory user who needs to be authenticated.
ThingWorx Kepware Server validates that user name and password, then grants permissions based on the User
Manager’s configuration. If no backslash (\) is supplied, it treats the user name as a ThingWorx Kepware Server
user and validates the supplied password internally.
Note: IoT Gateway and OPC UA are only compatible with configured Active Directory users, not groups.

User Group Properties
The user group properties may also be accessed by right-clicking on a user group and selecting Properties.

Tip: To quickly allow or deny all options in a category, right-click on the category and select Allow All or Deny
All. A setting that displays bold text indicates that its value has been changed. Once the change is saved, the text
displays as normal.

www. ptc.com

59

https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Server/6.16/thingworx-kepware-server-secure-deployment-guide

ThingWorx Kepware Server

Name: Click the icon to open the name of the new user group. The maximum number of characters allowed is 31.
Duplicate names are not allowed.

Description: This optional property provides a brief description of the user group. This can be particularly helpful
for operators creating new user accounts. The maximum number of characters allowed is 128.

Permissions assigned to this user group: This field assigns permissions for the selected user group. Permissions
are organized into the following categories: Project Modification, Server Permissions, I/O Tag Access, System Tag
Access, Internal Tag Access, and Browse Project Namespace. More information on the categories is as follows:

l Project Modification: This category specifies permissions that control default project modifications.
l Server Permissions: This category specifies permissions that control access to server functionality. These

permissions are not supported by the anonymous client.
l I/O Tag Access: This category specifies permissions that control access to device-level I/O tag data.

These tags require device communications and are described as Static tags in the server.
l System Tag Access: This category specifies permissions that control access to System tags. These tags

begin with an underscore and exist in a server-defined location. For more information, refer to System
Tags.

l Internal Tag Access: This category specifies permissions that control access to internal tags. These tags
are either driver-managed (controlling some aspect of the driver's operation) or user-specified (at a plug-in
level).

l Browse Project Namespace: This category specifies permissions that control browse access to the project
namespace in clients that support browsing. This is not supported by all client types.

l Event Log: This category specifies permissions that control access to the informational, warning, error, and
security messages posted to the event log. The defaults are Allow. Some clients require a runtime rein-
itialization for these settings to take effect.
Note: When the server_config is in offline mode, the event log view uses event filtering set for the

anonymous client.

www. ptc.com

60

ThingWorx Kepware Server

Tip: To view more information on a specific object in a category, select it.

User Properties
The user properties may be accessed by double-clicking on the user or right-clicking on the user and selecting
Properties....
Note: Active Directory user passwords and names cannot be managed here and must be changed via the oper-

ating system or domain controller on which they reside.

Old Password: This field holds the password that has been active for this user.

Password: Enter a new or updated password this user must enter to log into the system. It is case-sensitive with a
minimum of 14 and a maximum of 512 characters. The password must include a mix of uppercase and lowercase
letters, numbers, and special characters. Avoid well-known, easily guessed, or common passwords.

Confirm Password: Re-enter the same password. It must be entered exactly the same in both the New Password
and Confirm Password fields.

Settings — User Manager — ThingWorx Interface Users
The User Manager controls client access to project objects and their corresponding functions. All of the buttons and
controls function as described in the general User Manager section. The ThingWorx Interface Users group controls
access to, data exchange with, and analysis in a connected ThingWorx Platform instance.

See Also: User Manager

www. ptc.com

61

ThingWorx Kepware Server

To allow adequate access for data transfer between the server and the ThingWorx Platform, project modification
and store and forward must be enabled. To grant the correct access for this functionality:

1. Select the ThingWorx Interface Users group.

2. Right-click and select Properties....

3. Expand the Project Modification group.

4. Locate and expand the Servermain.Project rights.

5. Using the drop-down menu, select Allow to grant permission to change the project file.

6. Click OK to close.

www. ptc.com

62

ThingWorx Kepware Server

Settings — User Manager — UA Gateway User
The User Manager controls client access to project objects and their corresponding functions. All of the buttons and
controls function as described in the general User Manager section. The UA Gateway Users group controls access
to, data exchange with, and analysis in a connected OPC UA Gateway instance.

The default UA Gateway User is used to establish the default connection on the UA Gateway Client Interface to the
legacy OPC UA server. The permissions of this user can be modified, but the name and password cannot. The
user cannot be deleted.

See Also: User Manager, Configuration API Service — UA Gateway, Default Connection to the Legacy OPC
UA Server

UA Gateway User Management
The server interface allows for three different user identity options:

l Anonymous
l Username / Password
l X.509 Certificates

The user identity policy configured on the UA gateway server interface must be used by a client when connecting to
the UA Gateway.

Anonymous User Authentication
When anonymous type is enabled, a client can connect anonymously (without a verified identity) to the UA Gate-
way. The Anonymous user is tied to the permissions of the data client user in the anonymous clients group in the
User Manager.

Username / Password User Authentication
When enabled, a valid user name and password pair must be registered in the User Manager so the associated per-
missions can be applied.
See Also: User Browse / Read / Write Permissions

X.509 User Authentication
The X.509 user certificate is what clients can use to identify themselves to the UA Gateway Service in the place of
a password. It is provided by users to the UA Gateway Service as an authentication method when connecting to the
UA Gateway’s Server Interface for use in connecting to a client.

www. ptc.com

63

ThingWorx Kepware Server

Once the user certificate is trusted, if the certificate common name is configured for a particular user in the User
Manager with appropriate privileges, a successful connection can be established between the external UA client
and the UA Gateway server interface.

Refer to the UA Gateway Certificate Management X.509 Authenticated User Permissions section for inform-
ation on how to trust the X.509 user identity certificate.

The X.509 user token policy is enabled by default. To disable the X.509 User token policy through the API, set
the ua_gateway.UA_SERVER_INTERFACE_USER_IDENTITY_POLICY_X509 property on the Server Interface
to false.

Note: X.509 support is in conformance with the 1.02 version of the specification from the OPC Foundation.

Refer to the Configuration API Service — UA Gateway: Server Interface Settings section for how to update the
UA Gateway Server Interface properties.

User Browse / Read / Write Permissions
The following permissions are validated for users against the User Manager:

l Users with “Browse Project Namespace” permission can browse the UA Gateway available namespace.
l Users with “I/O Tag Access” permission for read can perform read / subscribe operations over the UA

Gateway to any node available using the configured client interface credentials.
l Users with “I/O Tag Access” permission for write can perform write operations over the UA Gateway to

any node available using the configured client interface credentials.

User permission changes do not apply immediately during an active session. Therefore, if a user’s browse / read
/ write permissions are changed in the User Manager while the user is connected, they must disconnect and recon-
nect for the new permissions changes to take effect.

The Anonymous user token is tied to the permissions of the Data Client user in the Anonymous Clients group in
the User Manager.

The common name from an X.509 certificate is used as the user name when validating X.509 user permissions.

Settings — Configuration API Service Transaction Log
The transaction log contains records of all requests received by the Configuration API. The following configuration
options are available through the Server Permissions in the User Manager.

Logging

www. ptc.com

64

ThingWorx Kepware Server

Verbose Logging: records the request and response JSON bodies, which can be useful for troubleshooting. Turn-
ing on verbose logging can add two properties (requestbody and responsebody) to each log entry, depending on
the request type. To turn on verbose logging, open Settings | Configuration API Service | Transaction Logging
and change Verbose to Yes.

Warning: Verbose logging causes the transaction log to grow rapidly. Do not activate for normal use.
Note: Log queries are not logged in a verbose manner; the entries display the shorter format.

Logging Permissions: allows additional permission settings to prevent unauthorized users from accessing the log.
The default is Deny for all non-administrator users.

See Also: Refer to server help for more information on changing permissions in User Manager.

Settings — Configuration API Service Configuration
The Configuration API Service is configured on installation. If the settings need to be adjusted, access the Con-
figuration API Service settings by right-clicking on the Administration icon in the system tray and selecting Settings
| Configuration API Service.

 If the Administrative icon is not in the system tray, re-launch it by selecting Start | All Programs | PTC |
ThingWorx Kepware Server | Administration | SettingsStart | All Programs | <Vendor> | <Product> | Admin-
istration | Settings .

www. ptc.com

65

ThingWorx Kepware Server

Enable: Set Yes to enable the Configuration API server. If disabled (No); the service runs, but does not bind to the
HTTP and HTTPS ports and clients cannot access the server.

Enable HTTP: Set No to limit data transfer to only secure / encrypted protocols and endpoints. Select Yes to allow
unencrypted data transfer.
CAUTION:

l HTTP should only be used for internal networks secured through other methods because content is trans-
mitted as plain text. Data such as user authentication, application keys, and other sensitive information
should not be exposed through HTTP. Use with caution.

l To prevent external access over insecure HTTP, this port should be blocked by the firewall.
l The Configuration API server specifies HTTP strict transport security in all responses. This may cause a

browser to reject all HTTP access to any web servers (other web servers on the same system is not recom-
mended) on the same machine if HTTPS requests are made to the Configuration API.

l For HTTPS requests, a REST client that supports TLS 1.2 or higher is required.

HTTP Port: Specify the TCP/IP port for the REST client to communicate over unencrypted HTTP. The valid range
is 1 to 65535. HTTP and HTTPS ports must not match. The default port number of 5741257413.

HTTPS Port: Specify the TCP/IP port for the REST client to communicate over secure HTTP. The valid range is 1
to 65535. HTTP and HTTPS ports must not match. The default port number of 5751257413.

Enable Token-Based Authentication: Specify Yes/No to allow use of tokens for authentication. This supports
Single Sign-On (SSO) and other more complex security methods.

CORS Allowed Origins: Specify a comma-separated list of allowed domain specifications that may access the
Configuration API server for Cross Origin Resource Sharing (CORS) requests.

Restore Defaults: Click the blue link to the right to restore the default HTTP and HTTPS port values.

Enable Documentation: Set to Yes to enable access to the Configuration API documentation (via the endpoint).

View in Browser: click the blue address link to the right to open the Configuration API documentation landing page
in a browser.

View in Browser (SSL): click the blue address link to the right to open the Configuration API documentation land-
ing page in a browser via the secure URL.

www. ptc.com

66

ThingWorx Kepware Server

Transaction Logging

Persistence Mode: Select the record retention method for the system log. The default setting is Memory (no per-
sistence). The options are:

l Memory (no persistence): records all events in memory and does not generate a log that is saved to disk.
A specified number of records are retained before the oldest records start being deleted. The contents are
available only while the server is running.

l Single File: generates a recorded log file saved to disk. A specified number of records are retained before
the oldest records start being deleted. The contents are restored from this file when the server is started.

l Extended Datastore: saves a potentially large number of records to disk distributed across multiple files.
The records are retained for a specified number of days before being removed from the disk. The contents
are restored from the distributed files on the disk when the server is started.

Max. Records: Specify the number of transactions the log retains before the oldest record is deleted. Available
when the Persistence Mode is set to Memory or Single File. The valid range is 100 to 30000 records. The default
setting is 1000 records.
Note: The log is truncated if this parameter is set to a value less than the current size of the log.

Log File Path: Indicate where the log is stored on disk. Available when the Persistence Mode is set to Single File or
Extended Datastore.
 Attempts to persist diagnostics data using a mapped path may fail because the Transaction Log service is run-

ning in the context of the SYSTEM account and does not have access to a mapped drive on the local host. Use a
mapped drive path with caution. A Uniform Naming Convention (UNC) path is recommended.

Max. Single File Size: Indicate the size limit, in KB, of a single datastore file at which a new datastore file is started.
Available when the Persistence Mode is set to Extended Datastore. The valid range is 100 to 10000 KB. The
default setting is 1000 KB.

Min. Days to Preserve: Specify the number of days individual datastore files kept before being deleted from disk.
Available when the Persistence Mode is set to Extended Datastore. The valid range is 1 to 90 days. The default set-
ting is 30 days.

Verbose: Select Yes to record a detailed level of data is recorded in the log. Verbose logging includes request and
response bodies in addition to the parameters included with non-verbose logging. See Verbose Logging for more
information. Select No to record much less data and keep log files smaller.

Certificate Management

www. ptc.com

67

ThingWorx Kepware Server

Note: An X.509 certificate is used to establish SSL communication between the client and the REST server. A
default self-signed certificate is generated when the REST server is installed, but accessing the server from outside
a secure network requires a trusted certificate.

View Certificate: Click the blue link to the right to open the current certificate to review.

Export Certificate: Click the blue link to the right to save the current certificate in .PEM format (such as for import-
ing into third-party REST clients).

Reissue Certificate: Click the blue link to the right to create a new certificate, replacing the current certificate.

Import Certificate: Click the blue link to the right to import a certificate in .PEM format.

Note: A certificate is created on installation without additional configuration. When reissuing or importing a cer-
tificate, the new certificate in not applied until the Configuration API is stopped and restarted via the Windows Ser-
vice Control Manager or the system restarts.

Settings — Certificate Store
The Certificate Store may be used to configure certificates for features that communicate securely using Transport
Layer Security (TLS) or its older variant, Secure Socket Layer (SSL). This tab only appears if a feature is installed
that is able to leverage it (such as the ThingWorx Native Interface, License Server) where the feature appears at
the top of the properties.
Note: All certificates must be ASCII encoded.

Instance Certificate

Certificate: Name that identifies the instance certificate.
Note: This property is only visible for features that support multiple instance certificates. For example, some

Plug-Ins and drivers support separate instance certificates. The following actions only apply to the selected
instance certificate.

View: Click the View link to view the currently selected feature’s instance certificate.

Export: Save the currently selected feature’s instance certificate to a directory chosen by the user. The suggested
file name is the thumbprint of the certificate – though the user is free to change this. The output is PEM encoded and
includes a single certificate.

Reissue: Reissue the currently selected feature’s instance certificate. Certificates generated by the certificate store
are self-signed and expire in 10 years.

www. ptc.com

68

ThingWorx Kepware Server

Import: Import the currently selected feature’s instance certificate. Use this option to import a certificate that has
been signed by a certificate authority that is trusted by the TLS / SSL peer.

Manage Trust Store

Certificate: The trust store may contain zero to many certificates. The user must select a certificate to view, export,
or delete.

View: View the currently selected trust certificate for the currently selected feature.

Export: Export the currently selected trust certificate for the currently selected feature. As with the instance cer-
tificate, the output file is PEM encoded and contains a single certificate.

Delete: Delete the currently selected trust certificate for the currently selected feature. The feature no longer trusts
peers that present certificates that include this certificate in their chain of trust.

Extend Trust Store

Import: Import one or more certificate authority or self-signed certificate(s) into the trust store. The feature trusts a
TLS / SSL peer that presents this certificate or a certificate that is signed by the imported certificate.

Instance Certificate Import Behavior

l The import file must contain a certificate and an unencrypted private key.
l The certificate cannot be imported if it contains an invalid signature.
l The user is prompted if the certificate is expired. The TLS / SSL peer may reject certificates that are

expired.

Trust Certificate Import Behavior

l The import file should contain one or more certificate(s).
l No private key is necessary but can be present in the file.
l The import is not allowed to succeed if one or more certificates have an invalid signature.
l The import is not allowed to succeed if one or more certificates duplicate a certificate that is already present

in the trust store.
l The user is prompted if any of the certificates in the import file are expired. The feature may reject cer-

tificates that rely on an expired certificate in the chain of trust.

UA Gateway Certificate Management
To establish a secure channel, OPC UA specifications require that certificates are shared between the client and
server and that they are accepted by each party.

Refer to Configuration API Service - UA Gateway Certificate Management for server and client certificate man-
agement through the API.

X.509 Authenticated User Permissions

The X.509 user certificate is a user identity option to allow UA clients to identify themselves to the UA Gateway
server in the place of a username / password user identity authentication method.

Note: X.509 support is in conformance with the 1.02 version of the specification from the OPC Foundation.
Refer to the UA Gateway User Management: X.509 User Authentication section for more information.

If the certificate’s common name (name defined in the Subject /”CN= “ field) is configured in the User Manager,
that user’s permissions are applied to the session created from the connection. Otherwise, the permissions of the
Anonymous Clients user group in the User Manager are applied instead.

The X.509 user certificate must contain a Key Usage attribute with the Data Encipherment value for it to be con-
sidered valid.
The X.509 user certificate dates and digital signature must be valid.

www. ptc.com

69

ThingWorx Kepware Server

Upon attempting a connection from a client to the UA Gateway using X.509 user certificates for authorization, the
user certificate is populated into the UA Gateway certificate store under:

<ProgramData>\PTC\ThingWorx Kepware Server\V6\UA Gateway\Server Inter-
face\pki\rejectedUser\certs

Trusting of X.509 user certificate requires manually placing the certificates from rejectedUser\certs into the fol-
lowing location:

<ProgramData>\PTC\ThingWorx Kepware Server\V6\UA Gateway\Server Inter-
face\pki\trustedUser\certs

Tips:

l You may need to create the trusted user\certs folder structure if it has never been created.
l Once the user certificate is trusted, if the certificate common name is configured for a particular user in the

User Manager with appropriate privileges, a successful connection can then be made by a UA Client
using an X.509 user certificate / private key to connect to the UA Gateway server interface.

See Also: For information about the <ProgramData> file path, see Application Data.

See Also: Default Connection to the OPC UA Server

Settings — Service Ports
The Administration group is used to configure the Runtime Administration's actions. The Service Ports admin-
istrative settings are automatically configured on installation. If the settings must be updated, access the Service
Ports system settings by right-clicking on the Administration icon located in the system tray and selecting Settings |
Service Ports.

www. ptc.com

70

ThingWorx Kepware Server

Tip: Restart the runtime to apply changes to service ports.

See Also: Service Port Assignments

Store and Forward

Port: Specify the TCP/IP port that the Store and Forward clients use to communicate with the Store and Forward
service. The valid range is 1024 to 65535. The default is configured by the server.

Default: Click to populate this field with the default port number.

Tips:

l The default port is recommended unless there is a conflict with another server application using that port.
l The Store and Forward Service does not accept remote connections, so there should be no firewall implic-

ations associated with this port assignment.
l The permissions required to allow a user to enable Store and Forward include project modification. Grant

the user or group (possibly Anonymous Clients) the ability to modify the server project through the User
Manager. ThingWorx users need the same access through the ThingWorx Interface Users group according
to the procedure in User Manager ThingWorx Interface Users.

See Also: Project Properties ThingWorx

Security

Preferred Port: Specify a TCP/IP port that the Key Service can use to communicate within the server. The valid
range is 1024 to 65535. The default is configured by the server. If the Preferred Port is unavailable or inappropriate
for any reason, the service will attempt to secure an alternate port.

Default: Click to populate this field with the default port number.

Service Port Assignments
The Administration is where hardware interfaces are assigned to communicate with ThingWorx Kepware Server.
Below are the specific port assignments used.

Configuration Port: 32402
Default UA Server Port: 49320
Event Port: 56233
Configuration API HTTP: 57412
Configuration API HTTPS Port: 57512
Store and Forward: 57612
Local Historian: 57012
IoT Gateway: 57212

www. ptc.com

71

ThingWorx Kepware Server

IoT Gateway REST Server Agent Port: 39308
OPC UA Server Port: 49311
SE IPC Port: 57712
Key Service Port: 57812
UA Gateway Plug-in IPC Port: 57912
UA Gateway Service IPC Port: 58012
UA Gateway Server Endpoint Port: 58112

See Also: Settings - Service Ports

Components and Concepts
For more information on a specific server component, select a link from the list below.

What is a Channel?
What is a Device?
What is a Tag?
What is a Tag Group?
What is the Alias Map?
What is the Event Log?

What is a Channel?
A channel represents a communication medium from the PC to one or more external devices. A channel can be
used to represent a serial port, a card installed in the PC, or an Ethernet socket.

Before adding devices to a project, users must define the channel to be used when communicating with devices. A
channel and a device driver are closely tied. After creating a channel, only devices that the selected driver supports
can be added to this channel.

Creating a Channel
Channels are defined by a set of properties based on the communication methods. Channels are created through
the channel wizard, which guide users through the channel definition process; the configuration GUI, orthe Con-
figuration API service.

Channel names must be unique among all channels and devices defined in the project. For information on
reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.
Note: For hardware card drivers, refer to the driver's help documentation to determine the ability to use with mul-

tiple channels in a single project. For information on how to determine the number of supported channels, refer to
Server Summary Information.

Users must define the specific communication parameters to be used. Multiple channels cannot share identical
communication parameters; for example, two serial drivers cannot use COM1.
For the correct communication parameters of a particular device, refer to both the manufacturer's and the driver's

help documentation.
Note: Flow Control settings for serial drivers are primarily used when connecting RS422/485 network devices to

the RS232 serial port via a converter. Most RS232 to RS422/485 converters require either no flow control (None) or
that the RTS line be on when the PC is transmitting and off when listening (RTS).

The channel wizard finishes with a summary of the new channel.

Removing a Channel
To remove a channel from the project, ; select the desired channel and press the Delete key; select Edit | Delete
from the Edit menu or toolbar; or use the Configuration API Service.

Displaying Channel Properties
To display the channel properties of a specific channel, select the channel and click Edit | Properties from the Edit
menu or toolbar. To review the channel properties of a specific channel via the Configuration API, access the doc-
umentation channel endpoint.
See Also: Channel Properties — General

www. ptc.com

72

ThingWorx Kepware Server

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used in a
server project is called a channel. A server project may consist of many channels with the same communications
driver or with unique communications drivers. A channel acts as the basic building block of an OPC link. This group
is used to specify general channel properties, such as the identification attributes and operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information. The property is
required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during channel cre-
ation. It is a disabled setting in the channel properties. The property is required for creating a channel.

Note: With the server's online full-time operation, these properties can be changed at any time. This includes
changing the channel name to prevent clients from registering data with the server. If a client has already acquired
an item from the server before the channel name is changed, the items are unaffected. If, after the channel name
has been changed, the client application releases the item and attempts to re-acquire using the old channel name,
the item is not accepted. Changes to the properties should not be made once a large client application has been
developed. Utilize proper user role and privilege management to prevent operators from changing properties or
accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to OPC
applications. Because the server's diagnostic features require a minimal amount of overhead processing, it is
recommended that they be utilized when needed and disabled when not. The default is disabled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the Advanced
group does not appear for those devices.

www. ptc.com

73

ThingWorx Kepware Server

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as a
Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may default to
Unmodified. Non-normalized float handling allows users to specify how a driver handles non-normalized IEEE-754
floating point data. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point values
with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-number, and
infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the option
that is displayed. According to the channel's float normalization setting, only real-time driver tags (such as values
and arrays) are subject to float normalization. For example, EFM data is not affected by this setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-Point
Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to the
next device after data is received from the current device on the same channel. Zero (0) disables the delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Ethernet Communications
Ethernet Communication can be used to communicate with devices.

Ethernet Settings

Network Adapter: Specify the network adapter to bind. When left blank or Default is selected, the operating sys-
tem selects the default adapter.

Channel Properties — Serial Communications
Serial communication properties are available to serial drivers and vary depending on the driver, connection type,
and options selected. Below is a superset of the possible properties.
Click to jump to one of the sections: Connection Type, Serial Port Settings or Ethernet Settings, and Operational
Behavior.

Notes:

l With the server's online full-time operation, these properties can be changed at any time. Utilize proper user
role and privilege management to prevent operators from changing properties or accessing server features.

l Users must define the specific communication parameters to be used. Depending on the driver, channels
may or may not be able to share identical communication parameters. Only one shared serial connection
can be configured for a Virtual Network (see Channel Properties — Serial Communications).

www. ptc.com

74

ThingWorx Kepware Server

Connection Type

Physical Medium: Choose the type of hardware device for data communications. Options include Modem, Eth-
ernet Encapsulation, COM Port, and None. The default is COM Port.

1. None: Select None to indicate there is no physical connection, which displays the Operation with no Com-
munications section.

2. COM Port: Select Com Port to display and configure the Serial Port Settings section.

3. Modem: Select Modem if phone lines are used for communications, which are configured in the Modem
Settings section.

4. Ethernet Encap.: Select if Ethernet Encapsulation is used for communications, which displays the Eth-
ernet Settings section.

5. Shared: Verify the connection is correctly identified as sharing the current configuration with another chan-
nel. This is a read-only property.

Serial Port Settings

COM ID: Specify the Communications ID to be used when communicating with devices assigned to the channel.
The valid range is 1 to 999. The default is 1.

Baud Rate: Specify the baud rate to be used to configure the selected communications port.

Data Bits: Specify the number of data bits per data word. Options include 5, 6, 7, or 8.

Parity: Specify the type of parity for the data. Options include Odd, Even, or None.

Stop Bits: Specify the number of stop bits per data word. Options include 1 or 2.

Flow Control: Select how the RTS and DTR control lines are utilized. Flow control is required to communicate with
some serial devices. Options are:

l None: This option does not toggle or assert control lines.
l DTR: This option asserts the DTR line when the communications port is opened and remains on.
l RTS: This option specifies that the RTS line is high if bytes are available for transmission. After all buffered

bytes have been sent, the RTS line is low. This is normally used with RS232/RS485 converter hardware.
l RTS, DTR: This option is a combination of DTR and RTS.
l RTS Always: This option asserts the RTS line when the communication port is opened and remains on.
l RTS Manual: This option asserts the RTS line based on the timing properties entered for RTS Line Con-

trol. It is only available when the driver supports manual RTS line control (or when the properties are shared
and at least one of the channels belongs to a driver that provides this support). RTS Manual adds an
RTS Line Control property with options as follows:

www. ptc.com

75

ThingWorx Kepware Server

l Raise: Specify the amount of time that the RTS line is raised prior to data transmission. The valid
range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Drop: Specify the amount of time that the RTS line remains high after data transmission. The valid
range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Poll Delay: Specify the amount of time that polling for communications is delayed. The valid range
is 0 to 9999. The default is 10 milliseconds.

Tip: When using two-wire RS-485, "echoes" may occur on the communication lines. Since this communication
does not support echo suppression, it is recommended that echoes be disabled or a RS-485 converter be used.

Operational Behavior

l Report Communication Errors: Enable or disable reporting of low-level communications errors. When
enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same errors are
not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the connection when there are no longer any tags being ref-
erenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been removed
before closing the COM port. The default is 15 seconds.

Ethernet Settings
Note: Not all serial drivers support Ethernet Encapsulation. If this group does not appear, the functionality is not

supported.

Ethernet Encapsulation provides communication with serial devices connected to terminal servers on the Ethernet
network. A terminal server is essentially a virtual serial port that converts TCP/IP messages on the Ethernet net-
work to serial data. Once the message has been converted, users can connect standard devices that support serial
communications to the terminal server. The terminal server's serial port must be properly configured to match the
requirements of the serial device to which it is attached. For more information, refer to "Using Ethernet Encap-
sulation" in the server help.

l Network Adapter: Indicate a network adapter to bind for Ethernet devices in this channel. Choose a net-
work adapter to bind to or allow the OS to select the default.
Specific drivers may display additional Ethernet Encapsulation properties. For more information, refer to

Channel Properties — Ethernet Encapsulation.

Modem Settings

l Modem: Specify the installed modem to be used for communications.
l Connect Timeout: Specify the amount of time to wait for connections to be established before failing a read

or write. The default is 60 seconds.
l Modem Properties: Configure the modem hardware. When clicked, it opens vendor-specific modem prop-

erties.
l Auto-Dial: Enables the automatic dialing of entries in the Phonebook. The default is Disable. For more

information, refer to "Modem Auto-Dial" in the server help.
l Report Communication Errors: Enable or disable reporting of low-level communications errors. When

enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same errors are
not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the modem connection when there are no longer any tags being
referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been removed
before closing the modem connection. The default is 15 seconds.

Operation with no Communications

l Read Processing: Select the action to be taken when an explicit device read is requested. Options include
Ignore and Fail. Ignore does nothing; Fail provides the client with an update that indicates failure. The
default setting is Ignore.

www. ptc.com

76

ThingWorx Kepware Server

Channel Properties — Ethernet Encapsulation
Ethernet Encapsulation can be used over wireless network connections (such as 802.11b and CDPD packet net-
works) and has also been developed to support a wide range of serial devices. With a terminal server device, users
can place RS-232 and RS-485 devices throughout the plant while still allowing a single localized PC to access the
remotely mounted devices. Ethernet Encapsulation also allows an individual network IP address to be assigned to
devices as needed. Multiple terminal servers provide users access to hundreds of serial devices from a single PC.
One channel can be defined to use the local PC serial port while another channel can be defined to use Ethernet
Encapsulation.

Note: These properties are only available to serial drivers. The properties displayed depend on the selected
communications driver and supported functionality.

Network Adapter: Specify the network adapter.

Device Address: Specify the four-field IP address of the terminal server to which this device is attached. IPs are
specified as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0
to 255. Each channel has its own IP address.

Port: Configure the Ethernet port that used when connecting to a remote terminal server. The valid range is 1 to
65535, with some numbers reserved. The default is 2101.

Protocol: Specify TCP/IP or UDP communication, which depends on the nature of the terminal server being used.
The default is TCP/IP. For more information on the protocol available, refer to the terminal server's help doc-
umentation.
Important: The Ethernet Encapsulation mode is completely transparent to the actual serial communications

driver. Users must configure the remaining device properties as if they were connecting to the device directly on the
local PC serial port.

Connect Timeout: Specify the amount of time that is required to establish a socket connection for a remote device
to be adjusted. In many cases, the connection time to a device can take longer than a normal communications
request to that same device. The valid range is 1 to 999 seconds. The default is 3 seconds.
Note: With the server's online full-time operation, these properties can be changed at any time. Utilize proper

user role and privilege management to prevent operators from changing properties or accessing server features.

Channel Properties — Communication Serialization
The server's multi-threading architecture allows channels to communicate with devices in parallel. Although this is
efficient, communication can be serialized in cases with physical network restrictions (such as Ethernet radios).
Communication serialization limits communication to one channel at a time within a virtual network.

The term "virtual network" describes a collection of channels and associated devices that use the same pipeline for
communications. For example, the pipeline of an Ethernet radio is the client radio. All channels using the same cli-
ent radio associate with the same virtual network. Channels are allowed to communicate each in turn, in a "round-
robin" manner. By default, a channel can process one transaction before handing communications off to another
channel. A transaction can include one or more tags. If the controlling channel contains a device that is not respond-
ing to a request, the channel cannot release control until the transaction times out. This results in data update
delays for the other channels in the virtual network.

Channel-Level Settings

Virtual Network: Specify the channel's mode of communication serialization. Options include None and Network 1
- Network 500. The default is None. Descriptions of the options are as follows:

l None: This option disables communication serialization for the channel.
l Network 1 - Network 500: This option specifies the virtual network to which the channel is assigned.

www. ptc.com

77

ThingWorx Kepware Server

Transactions per Cycle: Specify the number of single blocked/non-blocked read/write transactions that can occur
on the channel. When a channel is given the opportunity to communicate, this is the number of transactions attemp-
ted. The valid range is 1 to 99. The default is 1.

Global Settings

Network Mode: This property is used to control how channel communication is delegated. In Load Balanced
mode, each channel is given the opportunity to communicate in turn, one at a time. In Priority mode, channels are
given the opportunity to communicate according to the following rules (highest to lowest priority):

1. Channels with pending writes have the highest priority.

2. Channels with pending explicit reads (through internal plug-ins or external client interfaces) are prioritized
based on the read's priority.

3. Scanned reads and other periodic events (driver specific).

The default is Load Balanced and affects all virtual networks and channels.
 Devices that rely on unsolicited responses should not be placed in a virtual network. In situations where com-

munications must be serialized, it is recommended that Auto-Demotion be enabled.

Due to differences in the way that drivers read and write data (such as in single, blocked, or non-blocked trans-
actions); the application's Transactions per cycle property may need to be adjusted. When doing so, consider the
following factors:

l How many tags must be read from each channel?
l How often is data written to each channel?
l Is the channel using a serial or Ethernet driver?
l Does the driver read tags in separate requests, or are multiple tags read in a block?
l Have the device's Timing properties (such as Request timeout and Fail after x successive timeouts) been

optimized for the virtual network's communication medium?

Channel Properties — Network Interface
With Ethernet Encapsulation, virtually all drivers currently available support some form of Ethernet com-
munications. Some form of a network interface is used, whether for a natively Ethernet-based driver or a serial
driver configured for Ethernet Encapsulation. In most cases, that interface takes the form of a Network Interface
Card (NIC). For a PC that has networking installed, this usually means that a single NIC is installed that provides a
connection to either the IT or plant floor network (or both).

This configuration works well for typical network configurations and loading. Problems may arise if data needs to be
received from an Ethernet device at a regular interval, however. If the plant floor network is mixed with the IT net-
work, a large batch file transfer could completely disrupt the interval of the plant floor data. The most common way
to deal with this issue is to install a second NIC in the PC. One NIC can be used for accessing the IT network while
the other NIC accesses the plant floor data. Although this may sound reasonable, problems may occur when trying
to separate the networks. When using multiple NICs, users must determine the bind order. The bind order determ-
ines what NIC is used to access different portions of the Ethernet network. In many cases, bind settings can be
managed using the operating system's tools.

When there is a clear separation between the types of protocols and services that are used on each NIC card, the
bind order can be created by the operating system. If there isn't a clear way to select a specific bind order, users
may find that the Ethernet device connection is being routed to the wrong network. In this case, the network inter-
face shown below can be used to select a specific NIC card to use with the Ethernet driver. The network interface
selection can be used to select a specific NIC card based on either the NIC name or its currently assigned IP
address. This list of available NICs includes either unique NIC cards or NICs that have multiple IP assigned to
them. The selection displays any WAN connections are active (such as a dial up connection).
Note: This property is only available to Ethernet drivers.

By selecting a specific NIC interface, users can force the driver to send all Ethernet communication through the spe-
cified NIC. When a NIC is selected, the normal operating system bind order is bypassed completely. This ensures
that users have control over how the network operates and eliminates any guesswork.

www. ptc.com

78

ThingWorx Kepware Server

The selections displayed in the Network Adapter drop-down menu depend on the network configuration settings,
the number of unique NICs installed in the PC, and the number of unique IPs assigned to the NICs. To force the
operating system to create the bind order selection, select Default as the network adapter. This allows the driver to
use the operating system's normal bind order to set the NIC.
Important: When unsure of which NIC to use, select the default condition. Furthermore, when an Ethernet-based

device is being used and this feature is exposed through a product upgrade, select the default condition.
Note: With the server's online full-time operation, these properties can be changed at any time. Utilize proper

user role and privilege management to prevent operators from changing properties or accessing server features.
Keep in mind that changes made to this property can temporarily disrupt communications.

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given this goal,
the server provides optimization properties to meet specific needs or improve application responsiveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the controller.
In this mode, the server continues to gather write requests and add them to the server's internal write
queue. The server processes the write queue and attempts to empty it by writing data to the device as
quickly as possible. This mode ensures that everything written from the client applications is sent to the tar-
get device. This mode should be selected if the write operation order or the write item's content must
uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can accu-
mulate in the write queue due to the time required to actually send the data to the device. If the server
updates a write value that has already been placed in the write queue, far fewer writes are needed to reach
the same final output value. In this way, no extra writes accumulate in the server's queue. When the user
stops moving the slide switch, the value in the device is at the correct value at virtually the same time. As
the mode states, any value that is not a Boolean value is updated in the server's internal write queue and
sent to the device at the next possible opportunity. This can greatly improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize the

operation of HMI data without causing problems with Boolean operations, such as a momentary push but-
ton.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization mode
and applies it to all tags. It is especially useful if the application only needs to send the latest value to the
device. This mode optimizes all writes by updating the tags currently in the write queue before they are
sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for every
one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read operation.
Although the application is performing a large number of continuous writes, it must be ensured that read data is still
given time to process. A setting of one results in one read operation for every write operation. If there are no write
operations to perform, reads are processed continuously. This allows optimization for applications with continuous
writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

Device Discovery Procedure
Device Discovery is available for drivers that support locating devices on the network. Once devices are found,
they may be added to a channel. The maximum number of devices that can be discovered at once is 65535.

www. ptc.com

79

ThingWorx Kepware Server

1. Select the channel in which devices should be discovered and added.

2. Right click on the channel node and select Device Discovery...

3. Specify the discovery properties, which are driver-specific, such as address range, timeout, discovery
scope.

4. Click OK.

5. Devices discovered populate the dialog with the following information / headings Device Name, ID,
Description.

6. If any discovered device is of interest, select the desired device(s) and click Add selected device(s)....

7. Click Close.

What is a Device?
Devices represent the PLCs, controllers, or other hardware with which the server communicates. The device driver
that the channel is using restricts device selection.

Adding a Device
Devices are defined by a set of properties based on the protocol, make, and model. Devices are created through
the New Device Wizard (at the initial setup and afterward), Edit | New Device, or the Configuration API Service.

Device names are user-defined and should be logical for the device. This is the browser branch name used in links
to access the device's assigned tags.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

The Network ID is a number or string that uniquely identifies the device on the device's network. Networked, multi-
dropped devices must have a unique identifier so that the server's data requests are routed correctly. If devices that
are not multi-dropped, they do not need an ID, so this setting is not available.

Removing a Device
To remove a device from the project, select the device and press Delete, click Edit | Delete, or use the Con-
figuration API Service.

Displaying Device Properties
To display a device's properties, first select the device and click Edit | Properties. To review the channel properties
of a specific channel via the Configuration API, access the documentation channel endpoint.
 For more information, refer to Device Properties.

www. ptc.com

80

ThingWorx Kepware Server

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers, users
must enter a device ID for each controller.

Identification

Name: Specify the name of the device. It is a logical user-defined name that can be up to 256 characters long and
may be used on multiple channels.

Note: Although descriptive names are generally a good idea, some OPC client applications may have a limited
display window when browsing the OPC server's tag space. The device name and channel name become part of
the browse tree information as well. Within an OPC client, the combination of channel name and device name
would appear as "ChannelName.DeviceName".
For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server help.

Description: Specify the user-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: Specify the user-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: Specify the type of device that is associated with this ID. The contents of the drop-down menu depend on
the type of communications driver being used. Models that are not supported by a driver are disabled. If the com-
munications driver supports multiple device models, the model selection can only be changed when there are no cli-
ent applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model selection to the
physical device. If the device is not represented in the drop-down menu, select a model that conforms closest to the
target device. Some drivers support a model selection called "Open," which allows users to communicate without
knowing the specific details of the target device. For more information, refer to the driver documentation.

ID: Specify the device's driver-specific station or node. The type of ID entered depends on the communications
driver being used. For many communication drivers, the ID is a numeric value. Drivers that support a Numeric ID
provide users with the option to enter a numeric value whose format can be changed to suit the needs of the applic-
ation or the characteristics of the selected communications driver. The format is set by the driver by default.
Options include Decimal, Octal, and Hexadecimal.

Note: If the driver is Ethernet-based or supports an unconventional station or node name, the device's TCP/IP
address may be used as the device ID. TCP/IP addresses consist of four values that are separated by periods, with
each value in the range of 0 to 255. Some device IDs are string based. There may be additional properties to con-
figure within the ID field, depending on the driver.

Operating Mode

www. ptc.com

81

ThingWorx Kepware Server

Data Collection: This property controls the device's active state. Although device communications are enabled by
default, this property can be used to disable a physical device. Communications are not attempted when a device is
disabled. From a client standpoint, the data is marked as invalid and write operations are not accepted. This prop-
erty can be changed at any time through this property or the device system tags.

Simulated: Place the device into or out of Simulation Mode. In this mode, the driver does not attempt to com-
municate with the physical device, but the server continues to return valid OPC data. Simulated stops physical com-
munications with the device, but allows OPC data to be returned to the OPC client as valid data. While in
Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated device is read
back and each OPC item is treated individually. The data is not saved if the server removes the item (such as when
the server is reinitialized). The default is No.

Notes:
1. Updates are not applied until clients disconnect and reconnect.

2. The System tag (_Simulated) is read only and cannot be written to for runtime protection. The System tag allows
this property to be monitored from the client.

3. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for OPC clients
or Scan Rate for native and DDE interfaces). This means that two clients that reference the same item with dif-
ferent update rates return different data.

4. When a device is simulated, updates may not appear faster than one (1) second in the client.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production environment.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

Device Properties — Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device communications.
Synchronous and asynchronous device reads and writes are processed as soon as possible; unaffected by the
Scan Mode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions of the
options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan rate.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is increased,

the changes take effect immediately. When the scan rate value is decreased, the changes do not take
effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for subscribed
clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

www. ptc.com

82

ThingWorx Kepware Server

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the device nor
perform a read to get an item's initial value once it becomes active. It is the OPC client's responsibility to
poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device reads for individual
items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified in
their static configuration tag properties. Dynamic tags are scanned at the client-specified scan rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for newly activ-
ated tag references from stored (cached) data. Cache updates can only be provided when the new item reference
shares the same address, scan rate, data type, client access, and scaling properties. A device read is used for the
initial update for the first client reference only. The default is disabled; any time a client activates a tag reference the
server attempts to read the initial value from the device.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not responding.
By placing a non-responsive device offline for a specific time period, the driver can continue to optimize its com-
munications with other devices on the same channel. After the time period has been reached, the driver re-
attempts to communicate with the non-responsive device. If the device is responsive, the device is placed on-scan;
otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted system tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the device
is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is reached. Dur-
ing this period, no read requests are sent to the device and all data associated with the read requests are set to bad
quality. When this period expires, the driver places the device on-scan and allows for another attempt at com-
munications. The valid range is 100 to 3600000 milliseconds. The default is 10000 milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the off-scan
period. Disable to always send write requests regardless of the demotion period. Enable to discard writes; the
server automatically fails any write request received from a client and does not post a message to the Event Log.

Device Properties — Communication Parameters
Ethernet Encapsulation mode has been designed to provide communication with serial devices connected to ter-
minal servers on the Ethernet network. A terminal server is essentially a virtual serial port. The terminal server con-
verts TCP/IP messages on the Ethernet network to serial data. Once the message has been converted to a serial
form, users can connect standard devices that support serial communications to the terminal server.

For more information, refer to "How to... Use Ethernet Encapsulation" in the server help.
Note: Because Ethernet Encapsulation mode is completely transparent to the actual serial communications

driver, users should configure the remaining device properties as if they were connecting to the device directly on
the local PC serial port.

IP Address: Enter the four-field IP address of the terminal server to which the device is attached. IPs are specified
as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0 to 255.
Each serial device may have its own IP address; however, devices may have the same IP address if there are mul-
tiple devices multi-dropped from a single terminal server.

Port: Configure the Ethernet port to be used when connecting to a remote terminal server.

www. ptc.com

83

ThingWorx Kepware Server

Protocol: Set TCP/IP or UDP communications. The selection depends on the nature of the terminal server being
used. The default protocol selection is TCP/IP. For more information on available protocols, refer to the terminal
server's help documentation.

Notes:

1. With the server's online full-time operation, these properties can be changed at any time. Utilize proper user
role and privilege management to prevent operators from changing properties or accessing server features.

2. The valid IP Address range is greater than (>) 0.0.0.0 to less than (<) 255.255.255.255.

Device Properties — Ethernet Encapsulation
Ethernet Encapsulation is designed to provide communication with serial devices connected to terminal servers on
the Ethernet network. A terminal server is essentially a virtual serial port. The terminal server converts TCP/IP mes-
sages on the Ethernet network to serial data. Once the message has been converted to a serial form, users can
connect standard devices that support serial communications to the terminal server.

For more information, refer to "How to... Use Ethernet Encapsulation" in server help.
Ethernet Encapsulation is transparent to the driver; configure the remaining properties as if connecting to the

device directly on a local serial port.

IP Address: Enter the four-field IP address of the terminal server to which the device is attached. IPs are specified
as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0 to 255.
Each serial device may have its own IP address; however, devices may have the same IP address if there are mul-
tiple devices multi-dropped from a single terminal server.

Port: Configure the Ethernet port to be used when connecting to a remote terminal server.

Protocol: Set TCP/IP or UDP communications. The selection depends on the nature of the terminal server being
used. The default protocol selection is TCP/IP. For more information on available protocols, refer to the terminal
server's help documentation.

Notes

1. With the server's online full-time operation, these properties can be changed at any time. Utilize proper user
role and privilege management to prevent operators from changing properties or accessing server features.

2. The valid IP Address range is greater than (>) 0.0.0.0 to less than (<) 255.255.255.255.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation. Select
communications drivers can be configured to automatically build a list of tags that correspond to device-specific
data. These automatically generated tags (which depend on the nature of the supporting driver) can be browsed
from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and uses the
data to generate tags within the server. If the device does not natively support named tags, the driver creates a list
of tags based on driver-specific information. An example of these two conditions is as follows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the tag
names found in the device to build the server's tags.

www. ptc.com

84

ThingWorx Kepware Server

2. If an Ethernet I/O system supports detection of its own available I/O module types, the communications
driver automatically generates tags in the server that are based on the types of I/O modules plugged into
the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more information,
refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the On
Property Change option is shown. It is set to Yes by default, but it can be set to No to control over when tag gen-
eration is performed. In this case, the Create tags action must be manually invoked to perform tag generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as fol-
lows:

l Do Not Generate on Startup: This option prevents the driver from adding any OPC tags to the tag space of
the server. This is the default setting.

l Always Generate on Startup: This option causes the driver to evaluate the device for tag information. It
also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup: This option causes the driver to evaluate the target device for tag information
the first time the project is run. It also adds any OPC tags to the server tag space as needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save from
the Tools | Options menu.

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to do with
the tags that it may have previously added or with tags that have been added or modified after the communications
driver since their original creation. This setting controls how the server handles OPC tags that were automatically
generated and currently exist in the project. It also prevents automatically generated tags from accumulating in the
server.

For example, if a user changes the I/O modules in the rack with the server configured to Always Generate on Star-
tup, new tags would be added to the server every time the communications driver detected a new I/O module. If the
old tags were not removed, many unused tags could accumulate in the server's tag space. The options are:

l Delete on Create: This option deletes any tags that were previously added to the tag space before any
new tags are added. This is the default setting.

l Overwrite as Necessary: This option instructs the server to only remove the tags that the communications
driver is replacing with new tags. Any tags that are not being overwritten remain in the server's tag space.

l Do not Overwrite: This option prevents the server from removing any tags that were previously generated
or already existed in the server. The communications driver can only add tags that are completely new.

l Do not Overwrite, Log Error: This option has the same effect as the prior option, and also posts an error
message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the communications
driver as well as any tags that have been added using names that match generated tags. Users should avoid
adding tags to the server using names that may match tags that are automatically generated by the driver.

Parent Group: This property keeps automatically generated tags from mixing with tags that have been entered
manually by specifying a group to be used for automatically generated tags. The name of the group can be up to
256 characters. This parent group provides a root branch to which all automatically generated tags are added.

www. ptc.com

85

ThingWorx Kepware Server

Allow Automatically Generated Subgroups: This property controls whether the server automatically creates sub-
groups for the automatically generated tags. This is the default setting. If disabled, the server generates the
device's tags in a flat list without any grouping. In the server project, the resulting tags are named with the address
value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system auto-

matically increments to the next highest number so that the tag name is not duplicated. For example, if the gen-
eration process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been modified,
Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be accessed from the
System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Device Properties — Time Synchronization
This group is used to specify the device's time zone and time synchronization properties. It primarily applies to time
stamped data or information from battery-powered devices at remote locations where the device time may deviate
(causing issues with the time-stamped data). To prevent this problem from occurring, users can specify that the
server synchronize the device time.

Note: Not all drivers and models support all options.

Time Zone: Specify the device's time zone. To ignore the time zone, select one of the first four options in the list
(which do not have an offset). The default is the time zone of the local system.

Note: The driver uses this property both when synching the device time and when converting EFM timestamps
from the device to UTC time.

Tip: Timestamps from various devices may be in UTC time or local time zone, so the client or HMI may need to
convert or normalize timestamps.

Respect Daylight Saving Time: Specify Yes to follow Daylight Saving Time offset when synching the device time.
Specify No to ignore Daylight Saving Time. Only time zones that observe Daylight Saving Time will be affected.
The default is No (disabled).

Note: When enabled, the time of the device is adjusted by +1 hour for Daylight Saving Time (in the spring), and
adjusted by -1 hour after Daylight Saving Time (in the fall).

Time Sync Method: Specify the method of synchronization. Options include Disabled, Absolute, and Interval. The
default is Disabled. Descriptions of the options are as follows:

l Disabled: No synchronization.
l Absolute: Synchronizes to an absolute time of day specified through the Time property (appears only when

Absolute is selected).
l Interval: Synchronizes on startup and every number of minutes specified through the Sync Interval property

(appears only when Interval is selected). The default is 60 minutes.
l OnPoll: Synchronizes when poll is completed (applicable only to EFM devices).

Time Sync Threshold: Specify the maximum allowable difference, in seconds, between the device time and the
system time before syncing the device time to the system time. If the threshold is set to 0, a time synchronization
occurs every time. The default is 0 seconds. The maximum allowable threshold is 600 seconds.

www. ptc.com

86

ThingWorx Kepware Server

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the application's
needs. In many cases, the environment requires changes to these properties for optimum performance. Factors
such as electrically generated noise, modem delays, and poor physical connections can influence how many errors
or timeouts a communications driver encounters. Timing properties are specific to each configured device.

Communications Timeouts

Connect Timeout: This property (which is used primarily by Ethernet based drivers) controls the amount of time
required to establish a socket connection to a remote device. The device's connection time often takes longer than
normal communications requests to that same device. The valid range is 1 to 30 seconds. The default is typically 3
seconds, but can vary depending on the driver's specific nature. If this setting is not supported by the driver, it is dis-
abled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout: Specify an interval used by all drivers to determine how long the driver waits for a response
from the target device to complete. The valid range is 50 to 9999999 milliseconds (167 minutes). The default is usu-
ally 1000 milliseconds, but can vary depending on the driver. The default timeout for most serial drivers is based on
a baud rate of 9600 baud or better. When using a driver at lower baud rates, increase the timeout to compensate
for the increased time required to acquire data.

Attempts Before Timeout: Specify how many times the driver issues a communications request before con-
sidering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is typically 3,
but can vary depending on the driver's specific nature. The number of attempts configured for an application
depends largely on the communications environment. This property applies to both connection attempts and
request attempts.

Timing

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target device. It over-
rides the normal polling frequency of tags associated with the device, as well as one-time reads and writes. This
delay can be useful when dealing with devices with slow turnaround times and in cases where network load is a
concern. Configuring a delay for a device affects communications with all other devices on the channel. It is recom-
mended that users separate any device that requires an inter-request delay to a separate channel if possible. Other
communications properties (such as communication serialization) can extend this delay. The valid range is 0 to
300,000 milliseconds; however, some drivers may limit the maximum value due to a function of their particular
design. The default is 0, which indicates no delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Redundancy

www. ptc.com

87

ThingWorx Kepware Server

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

What is a Tag?
A tag represents addresses within the device with which the server communicates. The server allows both
Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify device
data addresses. User-defined Static tags are created and stored in the server. Static tags function as pointers to
device data addresses and can be browsed from clients that support tag browsing.

For more information, refer to Dynamic Tags and Static User-Defined Tags.

Adding a Tag
Tags are defined by a set of properties based on the data. Tags are defined through the New Device Wizard (at the
initial setup and afterward); by clicking on a device, right-clicking and choosing Edit | New Tag, or the Con-
figuration API Service.

Tag names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag
To remove a tag from the project; select the tag and press Delete, click Edit | Delete, or use the Configuration API
Service.

Displaying Tag Properties
To invoke the tag properties for a specific tag, double-click on it in the Tag Selection pane of the server con-
figuration.

www. ptc.com

88

https://ptc-p-001.sitecorecontenthub.cloud/api/public/content/e96f85a9eef84807b06504cdd95b1084?v=3b0e1d04

ThingWorx Kepware Server

To review the tag properties of a specific channel via the Configuration API, access the documentation channel
endpoint.

Tag Properties — General
A tag represents addresses within the device with which the server communicates. The server allows both
Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify device
data addresses. User-defined Static tags are created and stored in the server. Static tags function as pointers to
device data addresses and can be browsed from clients that support tag browsing.

For more information, refer to Dynamic Tags and Static User-Defined Tags.

Name: Enter a string to represent this tag. The tag name can be up to 256 characters in length. The tag name is
part of the OPC browse data tag names must be unique within a given device branch or tag group branch. For
information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.
Tip: If the application is best suited for using blocks of tags with the same names, use tag groups to separate the

tags. For more information, refer to Tag Group Properties.

Description: Add context to the tag. A string of up to 255 characters can be entered for the description. When using
an OPC client that supports Data Access 2.0 tag properties, the description property is accessible from the tag's
item Description properties.

www. ptc.com

89

ThingWorx Kepware Server

Address: Enter the target tag's driver address. The address's format is based on the driver protocol.
Tip: For hints about how an address should be entered, click the browse (...) button. If the driver accepts the

address as entered, no messages are displayed. A popup informs of any errors. Some errors are related to the
data type selection and not the address string.

Data Type: Specify the format of this tag's data as it is found in the physical device. In most cases, this is also the
format of the data as it returned to the client. The data type setting is an important part of how a communication
driver reads and writes data to a device. For many drivers, the data type of a particular piece of data is rigidly fixed
and the driver knows what format needs to be used when reading the device's data. In some cases, however, the
interpretation of device data is largely in the user's hands. An example would be a device that uses 16-bit data
registers. Normally this would indicate that the data is either a Short or Word. Many register-based devices also
support values that span two registers. In these cases, the double register values could be a Long, DWord or 32-bit
Float. When the driver being used supports this level of flexibility, users must tell it how to read data for this tag. By
selecting the appropriate data type, the driver is being directed to request one or more registers.

l Default - Uses the driver default data type
l Boolean - Binary value of true or false
l Char - Signed 8-bit integer data
l Byte - Unsigned 8-bit integer data
l Short - Signed 16-bit integer data
l Word - Unsigned 16-bit integer data
l Long - Signed 32-bit integer data
l DWord - Unsigned 32-bit integer data
l LLong - Signed 64-bit integer data
l QWord - Unsigned 64-bit integer data
l Float - 32-bit real value IEEE-754 standard definition
l Double - 64-bit real value IEEE-754 standard definition
l String - Null-terminated Unicode string
l BCD - Two byte-packed BCD value range is 0-9999
l LBCD - Four byte-packed BCD value range is 0-99999999
l Date - 8-byte floating point number (see Microsoft® Knowledge Base)

Client Access: Specify whether the tag is Read Only or Read / Write. By selecting Read Only, users can prevent
client applications from changing the data contained in this tag. By selecting Read / Write, users allow client applic-
ations to change this tag's value as needed. The Client Access selection also affects how the tag appears in the
browse space of an OPC UA client. Many client applications allow filtering tags based on attributes. Changing the
access method of this tag may change how and when the tag appears in the browse space of the client.

Scan Rate: Specify the update interval for this tag when using the Scan Mode option of Respect Tag-Specified
Scan Rate within Device Properties. OPC clients can control the rate at which data is scanned by using the update
rate that is part of all OPC groups. Normally non-OPC clients don't have that option. The server specifies an update
rate on a tag per tag basis. Using the scan rate, users can tailor the bandwidth requirements of the server to suit the
needs of the application. If, for example, data that changes very slowly needs to be read, there is no reason to read
the value very often. Using the scan rate this tag can be forced to read at a slower rate reducing the demand on the
communications channel. The valid range is 10 to 99999990 milliseconds (ms), with a 10 ms increment. The
default is 100 milliseconds.

With the server's online full-time operation, these properties can be changed at any time. Changes made to tag
properties take effect immediately; however, client applications that have already connected to this tag are not
affected until they release and attempt to reacquire it. Utilize the User Manager to restrict access rights to server
features and prevent operators from changing the properties.

Multiple Tag Generation
The Multiple Tag Generation Tool dynamically creates multiple tags using user-defined driver nomenclature. It
allows a variety of address formats (such as ranges utilizing decimal, hexadecimal, and octal number systems). To
avoid overlapping data, the Tag Generator Tool also has the ability to increment by the user-defined data type.

For information on a specific dialog, select a link from the list below:

www. ptc.com

90

http://learn.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/date-data-type

ThingWorx Kepware Server

Add Numeric Range
Add Static Text
Add Text Sequence
Multiple Tag Generation Preview
Tag Name Properties

Multiple Tag Generation

Address Template

Name: Enter user-defined tag name.

Address: Verify the tag address, generated through options defined in the Address Builder section.

Data Properties

Data Type: Select data type to apply to all generated tags. Depending on the native interface supported by the
driver, the data type may override the default increment of the Add Numeric Range property for the last element.
The default setting is Default.

Client Access: Select the tag's permission settings from Read Only or Read / Write. The default setting is Read
Only.

Scan Rate: Specify the frequency at which tags are scanned. The valid range is 10 to 99999990 milliseconds. The
default setting is 100 milliseconds.

Address Builder

Add Static Text...: Click to launch the Add Static Text dialog where a single line of text can be entered.

www. ptc.com

91

ThingWorx Kepware Server

Add Numeric Range...: Click to launch the Add Numeric Range dialog.

l Base System Select the format of the base system: Decimal, Octal, or Hexadecimal. The default setting is
Decimal.

l Range Enter the starting and ending values for the numeric range in the From and To fields.
l Increment By When not using Default (which increments by one), users can specify a custom increment

value. The range increments according to the selected Base System.

Add Text Sequence...: Click to launch the Add Text Sequence dialog where multiple strings can be created. Each
string is inserted independently of the other strings specified in the list.

Tips

1. To enable the Edit icons to the right, highlight a section of the tag address syntax element.

2. The Hints icon opens the help file on Address Descriptions.

www. ptc.com

92

ThingWorx Kepware Server

Preview: Click to generate a test view of the generated tags.

Multiple Tag Generation Preview

Generate: Click to send all valid tags to the server for insertion.

Cancel: Click to reject any changes made to the tags and return to the prior dialog.

Tag Name...: Click to invoke the Tag Name Properties dialog.

Add as Group: Enable to add the tags into a single organizing group. The default setting is disabled.

Renumber valid tags consecutively before adding to project: Enable to renumber the tags consecutively before
adding to the project. The default setting is enabled.

Note: Tags shown with a green checkmark are valid. Tags shown with a red exclamation mark (!) are invalid.

Tag Name Properties
The Tag Generator Tool includes the option for a custom naming scheme, allowing users to specify both a name
prefix and a numeric suffix to all the tags. The numeric suffix is automatically incremented for each tag, allowing
users to create custom names for tags for better readability. Assigned tag names may be changed after generation.
A default naming scheme is implemented to each generated tag if the user does not define a custom name through
the Tag Name Properties dialog.

Note: Users who change the naming scheme in the Generation dialog before returning to the Tag Duplication
dialog to make changes to the addressing syntax can choose to save the naming scheme for the next time the tag
list is generated.

www. ptc.com

93

ThingWorx Kepware Server

Name Prefix: Enter a custom name prefix (letters to pre-pend to the tag name).

Start Value: Specify the numeric first value to increment for each tag.

Default naming scheme: When enabled, the default naming scheme is used. The default setting is disabled.

See Also: Generating Multiple Tags

Tag Properties — Scaling
This server supports tag Scaling, which allows raw data from the device to be scaled to an appropriate range for the
application.

Type: Specify the method of scaling raw values: Linear, Square Root, or None to disable. The formulas for scaling
types are shown below.

Type Formula for Scaled Value
Linear (((ScaledHigh - ScaledLow)/(RawHigh - RawLow))*(RawValue - RawLow)) + ScaledLow

Square
root

(Square root ((RawValue - RawLow)/(RawHigh - RawLow))*(ScaledHigh - ScaledLow)) +
ScaledLow

Raw Low: Specify the lower end of the range of data from the device. The valid range depends on the raw tag data
type. For example, if the raw value is Short, the valid range of the raw value would be from -32768 to 32767.

Raw High: Specify the upper end of the range of data from the device. The Raw High value must be greater than
the Raw Low value. The valid range depends on the raw tag data type.

Scaled Data Type: Specify the data type for the tag being scaled. The data type can be set to any valid OPC data
type, including a raw data type, such as Short, to an engineering value with a data type of Long. The default scaled
data type is Double.

Scaled Low: Specify the lower end of the range of valid resulting scaled data values. The valid range depends on
the tag data type.

Scaled High: Specify the upper end of the range of valid resulting scaled data values. The valid range depends on
the tag data type.

www. ptc.com

94

ThingWorx Kepware Server

Clamp Low: Specify Yes to prevent resulting data from exceeding the lower end of the range specified. Specify No
to allow data to fall outside of the established range.

Clamp High: Specify Yes to prevent resulting data from exceeding the upper end of the range specified. Specify
No to allow data to fall outside of the established range.

Negate Value: Specify Yes to force the resulting value to be negated before being passed to the client. Specify No
to pass the value to the client unmodified.

The server supports the OPC tag properties available in the 2.0 Data Access specifications. If the OPC client sup-
ports these properties, it can automatically configure the range of objects (such as user input objects or displays).
Utilize the User Manager to restrict access rights to server features to prevent any unauthorized operator from chan-
ging these properties.

Dynamic Tags
Dynamic tag addressing is a second method of defining tags that allows users to define tags only in the client
application. As such, instead of creating a tag item in the client that addresses another tag item created in the
server, users only need to create tag items in the client that directly accesses the device driver's addresses. On cli-
ent connect, the server creates a virtual tag for that location and starts scanning for data automatically.

To specify an optional data type, append one of the following strings after the '@' symbol:

l BCD
l Boolean
l Byte
l Char
l Double
l DWord
l Float
l LBCD
l LLong
l Long
l QWord
l Short
l String
l Word

If the data type is omitted, the driver chooses a default data type based on the device and address being ref-
erenced. The default data types for all locations are documented in each individual driver's help documentation. If
the data type specified is not valid for the device location, the server rejects the tag and an error posts in the Event
Log.

Client Using Dynamic Addressing Example
Scan the 16-bit location "R0001" on the Simulator device. The following Dynamic tag examples assume that the
project created is part of the example.

1. Start the client application and connect to the server.

2. Using the Simulator Driver, create a channel and name it Channel1. Then, make a device and name it
Device1.

3. In the client application, define an item name as "Channel1.Device1.R0001@Short."

4. The client project automatically starts receiving data. The default data type for address R0001 in the Sim-
ulator device is Word. To override this, the @Short has been appended to select a data type of Short.

Note: When utilizing Dynamic tags in a client application, the use of the @[Data Type] modifier is not normally
required. Clients can specify the desired data type as part of the request when registering a link for a specific data
item. The data type specified by the Client is used if it is supported by the communications driver. The@[Data
Type] modifier can be useful when ensuring that a communications driver interprets a piece of data exactly as
needed.

www. ptc.com

95

ThingWorx Kepware Server

Non-OPC Client Example
Clients can also override the update rate on a per-tag basis by appending@[Update Rate].

For example, appending:
<DDE service name>|_ddedata!Device1.R0001@500 overrides just the update rate.
<DDE service name>|_ddedata!Device1.R0001@500,Short overrides both update rate and data type.

Tips:

1. The server creates a special Boolean tag for every device in a project that can be used by a client to determ-
ine whether a device is functioning properly. To use this tag, specify the item in the link as "Error." If the
device is communicating properly, the tag's value is zero; otherwise, it is one.

2. If the device address is used as the item of a link such that the address matches the name of a user-defined
tag in the server, the link references the address pointed to by the user-defined tag.

3. Static tags must be used to scale data in the server.

See Also:
Static Tags (User-Defined)
Designing a Project: Adding User-Defined Tags

Static Tags (User-Defined)
The most common method that uses the server to get data from the device to the client application has two require-
ments. Users must first define a set of tags in the server using the assigned tag name as the item of each link
between the client and the server. The primary benefit to using this method is that all user-defined tags are avail-
able for browsing within most OPC clients. Before deciding whether or not to create Static tags, ensure that the cli-
ent can browse or import tags from the server.

Tip: User-defined tags support scaling.

What is a Tag Group?
This server allows tag groups to be added to the project. Tag groups are used to tailor the layout of OPC data into
logical groupings that fit the application's needs. Tag groups allow multiple sets of identical tags to be added under
the same device: this can be convenient when a single device handles a number of similar machine segments.

Adding a Tag Group
Tag groups are defined by the set of tags contained. Tag groups are defined by clicking on a device, right-clicking
and choosing Edit | New Tag Group or through the Configuration API Service.

Tag group names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag Group
To remove a tag from the project; select the tag and press Delete, click Edit | Delete, or use the Configuration API
Service.

Displaying Tag Group Properties
To review the tag group properties, right-click on the tag group and select Properties.
To review the tag group properties of a specific tag group via the Configuration API, access the documentation
channel endpoint.

Tag Group Properties
From a client standpoint, tag groups allow users to separate data into smaller tag lists, making finding specific tags
easier.

The following image used the supplied OPC Quick Client to create Cell1 and Cell2 tag groups and simplify the OPC
client browsing.

www. ptc.com

96

ThingWorx Kepware Server

To add a new tag group to the project, right-click on either an existing device or tag group branch and select New
Tag Group from the context menu. Alternatively, click on either an existing device or tag group branch and click the
New Tag Group icon on the toolbar.

Tag groups can be added at any level from the device-level down, and multiple tag groups can be nested together
to fit the application's needs. As seen in the OPC Quick Client dialog above, the fully qualified OPC item path is
"Channel1.Device1.Machine1.Cell1.Tag1". For this OPC item, "Machine1" and "Cell1" segments are nested tag
groups.

Note: With the server's online full-time operation, these properties can be changed at any time. Any changes
made to the tag groups take effect immediately. If the name is changed, Clients that have already used that tag
group as part of an item request are not affected until they release the item and attempt to reacquire it. New tag
groups added to the project immediately allows browsing from a client. Utilize the User Manager to restrict access
rights to server features to prevent operators from changing the properties.

What is the Alias Map?
The Alias Map provides both a mechanism for backwards compatibility with legacy server applications as well as a
way to assign simple alias names to complex tag references. This is especially useful in client applications that limit
the size of tag address paths. Although the latest version of the server automatically creates the alias map, users
can add their own alias map entries to compliment those created by the server. Users can also filter the server cre-
ated aliases so that the only ones visible are their own.

Alias map elements can be exported and imported by right-clicking on the target alias in the tree view pane.

Alias map elements can be added, edited, and deleted by right-clicking on the target alias in the detail pane.

www. ptc.com

97

ThingWorx Kepware Server

Note: When enabled, the Show auto-generated aliases displays those alias maps created by the server auto-
matically.

See Also: How to... Create and Use an Alias

Alias Properties
The Alias Map allows a way to assign alias names to complex tag references that can be used in client applic-
ations.

An alias is constructed by entering an alias name and clicking on the desired device name or group name.

Name: Specify the alias name, which can be up to 256 characters long. It must be unique in the alias map. For
information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.

Description: Enter a description of this alias to clarify data sources and reports (optional).

www. ptc.com

98

ThingWorx Kepware Server

Mapped to: Specify or browse to the location of the alias. Because the alias map does not allow tag items to be
browsed from the alias table, create a short nickname that replaces the address that leads up to the tag. This
makes it easier to address items in a client application that does not support tag browsing.

Scan Rate Override: Specify an update rate to be applied to all non-OPC tags accessed using this alias map entry.
The valid range is 0 to 99999990 milliseconds. The default is 0 milliseconds.
Tip: This setting is equivalent to the topic update rate found in many DDE-only servers.
Note: When set to 0 milliseconds, the server observes the scan rate set at the individual tag level.
See Also: Configuration API Service — Endpoints

What is the Event Log?
The Event Log provides the date, time, and source of an error, warning, information, or security event. For more
information, select a link from the list below.

Event Log Options
Event Log Settings

Event Log
Users can specify the type of events displayed in the Event Log. There are currently four types of events that can
be recorded: Error Events, Warning Events, Information Events, and Security Events. Descriptions of the events
are as follows:

Information: Messages that provide status and data requiring no interaction or correction, such as suc-
cessful connection or data collection.

Warning: Messages that indicate an issue that does not require interaction, but may result in unexpected
results, such as a device not responding.

Error: Messages that alert the user to failures or problems that, generally, should be researched and cor-
rected for best results.

Security: Messages that call attention to conditions that are not best practices from a security perspective,
such as running the software as the default user versus a logged-in user with valid credentials.

Note: To access the event types in the Configuration client, click Tools | Event Log. Alternatively, right-click any-
where in the Event Log display.

Tools menu

Right Click

www. ptc.com

99

ThingWorx Kepware Server

Note: The Event Log system needs a mechanism to protect its contents. If operators could change these prop-
erties or reset the log, the purpose would be lost. Utilize the User Manager to limit the functions an operator can
access and prevent these actions from occurring.

See Also: Settings - Event Log

Tag Management
The server's user-defined tag management features can create a tag database structure to fit each application's
specific nature. Users can define multiple tag groups to separate tag data on a device-by-device basis and can also
add large numbers of tags through drag and drop editing. CSV import and export also allow tag editing in any applic-
ation. Like all other server features, new tags can be added to the application at any time.

Automatic Tag Database Generation
The OPC server's ability to automatically generate tags for select communication drivers brings OPC technology
one step closer to Plug and Play operation. Tag information can be read directly from a device, and tags can also
be generated from stored tag data. In either case, users no longer need to manually enter OPC tags into the server.

System Tags
System tags provide general error feedback to client applications, allow the operation control over when a device is
actively collecting data, and permit a channel or device's standard properties to be changed from an OPC client
application. The number of System tags available at the channel or device level depends on the nature of the driver
being used.
Note: System tags can be grouped according to their purpose as both status and control or property manip-

ulation.
See Also: SAF System Tags

Property Tags
Property tags are additional tags that can be accessed by any Data Access client by appending the property name
to any fully qualified tag address. When using an OPC client that supports item browsing, users can browse tag
properties by turning on Include tag properties when a client browses the server under OPC DA settings. For
more information, refer to Project Properties — OPC DA.

Statistics Tags
Statistics tags provide feedback to client applications regarding the operation of the channel communications in the
server. When diagnostics are enabled, seven built-in Statistics tags are available. For more information, refer to
OPC Diagnostic Viewer.

Modem Tags
Modem tags configure modem properties and monitor modem status. They are only available when the Con-
nection Type in Channel Properties is set to Modem. For more information, refer to Channel Properties — Serial
Communications.

www. ptc.com

100

ThingWorx Kepware Server

Communication Serialization Tags
Driver communications normally occur simultaneously across multiple channels, yielding higher data throughput.
In some applications, however, it is required that only one channel be allowed to communicate at a time. Com-
munication Serialization provides this support. Communication Serialization tags are used to configure and monitor
a channel's serialization status. Both the feature and its tags are only available to specific drivers. For more inform-
ation, refer to the driver's help documentation.

CSV Import and Export
This server can import and export tag data in a Comma-Separated Variable (CSV) file to quickly create tags in an
application. The CSV functions are only available when a device or tag group is selected.

For information on which character to specify as the variable, refer to Options - General.

To jump to a specific section, select a link from the list below:
Exporting a Server Tag List
Importing a Server Tag List into the Server
Using Other Characters as the Delimiter

Creating a Template
The easiest way to create and import CSV file is to create a template. For more information, refer to the instructions
below.

1. To start, click File | Export CSV. Define the channels and devices for the project.

2. Define a tag for each device.

3. Export each device or tag group as a CSV file.

4. Use this template in a spreadsheet application that supports CSV files and modify the file as desired.

Note: The resulting CSV file can be saved to disk and re-imported into the server under the same (or
new) device or tag group.

Exporting a Server Tag List
Exporting a server tag list generates a .CSV text file that contains a heading record followed by a record for each
tag defined under the selected device or tag group. The heading record contains the following fields:

l Tag Name: The name of the tag as referenced in an OPC client.
The tag name may contain a group name prefix separated from the tag name with a period. For

example, a tag name of "Group1.Tag1" creates a group named "Group1" that contains "Tag1".
l Address: The device location referenced by the tag.
l Data Type: The data type used for the tag as shown in the server tag's data type drop-down list.
l Respect Data Type: This forces the tag to follow its defined data type, not the OPC client request (1, 0).
l Client Access: Read / write access (read only and read / write).
l Scan Rate: The rate in milliseconds at which the tag address is scanned when used with most non-OPC cli-

ents.
l Scaling: Scaling mode (None, Linear, and Square Root).
l Raw Low: Low raw value.
l Raw High: High raw value.
l Scaled Low: Scaled low value.
l Scaled High: Scaled high value.
l Scaled Data Type: The data type used for the tag after scaling is applied.
l Clamp Low: Forces the resulting scaled value to stay within the limit of Scaled Low (1, 0).
l Clamp High: Forces the resulting scaled value to stay within the limit of Scaled High (1, 0).
l Eng. Units: Units string.
l Description: The description of the tag.
l Negate Value: Negates the resulting value before being passed to the client when scaling is applied (1, 0).

www. ptc.com

101

#OtherDelimiter

ThingWorx Kepware Server

Note: Each tag record contains the data for each field.

Microsoft Excel is an excellent tool for editing large groups of tags outside the server. Once a template CSV file has
been exported, it can be loaded directly into Excel for editing. A CSV file load in Excel would appear as shown in
the image below.

Importing a CSV Tag List into the Server
Once the tag list has been edited, it can be re-imported into the server by clicking File | Import CSV. This option is
only available when a device or tag group is selected.

Using Other Characters as the Delimiter
When utilizing a CSV file that does not use a comma or semi-colon delimiter, users should do one of the following:

l Save the project in XML. Then, perform mass configuration on the XML file instead of using CSV.
l Perform a search-and-replace on the delimiter in the CSV file and replace the delimiter with a comma or

semicolon. The delimiter being used by the OPC server (either comma or semicolon) must be set to the
replacement character.

See Also: Options - General

System Tags
System tags provide general error feedback to client applications, allow operational control when a device is act-
ively collecting data, and allow a channel or device's standard properties to be changed by a client application
when needed.

The number of system tags available at both the channel level and device level depends on the nature of the driver
being used. In addition, application-level system tags allow client applications to monitor the server's status. Sys-
tem tags can also be grouped according to their purpose as both status and control or property manipulation.
Descriptions are as follows:

l Status Tags Status tags are read-only tags that provide data on server operation.
l Parameter Control Tags: Parameter control tags can be used to modify the server application's oper-

ational characteristics. This provides a great deal of flexibility in the client applications. By using the prop-
erty control tags, users can implement redundancy by switching communications links or changing the
device ID of a target device. Users can also provide access to the tags through special supervisory screens
that allow a plant engineer to make changes to the communication parameters of the server if needed.

www. ptc.com

102

ThingWorx Kepware Server

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has the appro-
priate permissions.

The tables below include descriptions of the following:

Application-Level System Tags
Interface-Level System Tags
Channel-Level System Tags for Serial Port Drivers
Channel-Level System Tags for Ethernet Drivers
Device-Level System Tags for both Serial and Ethernet Drivers

Application-Level System Tags
Syntax Example: _System._ActiveTagCount

Tag Class Description
_ActiveTagCount Status Tag The _ActiveTagCount tag indicates the number of tags that are

currently active in the server.
This is a read-only tag.

_ClientCount Status Tag The _ClientCount tag indicates the number of clients that are cur-
rently connected to the server.
This is a read-only tag.

_Date Status Tag The _Date tag indicates the current date of the system that the
server is running on. The format of this string is defined by the
operating system date / time settings.
This is a read-only tag.

_DateTime Status Tag The _DateTime tag indicates the GMT date and time of the sys-
tem that the server is running on. The format of the string is '2004-
05-21T20:39:07.000'.
This is a read-only tag.

_DateTimeLocal Status Tag The _DateTimeLocal tag indicates the localized date and time of
the system that the server is running on. The format of the string is
'2004-05-21T16:39:07.000'.
This is a read-only tag.

_Date_Day Status Tag The _Date_Day tag indicates the current day of the month of the
system on which the server is running.
This is a read-only tag.

_Date_DayOfWeek Status Tag The _Date_DayOfWeek tag indicates the current day of the week
of the system on which the server is running. The format of the
string is a number from 0 (Sunday) to 6 (Saturday).
This is a read-only tag.

_Date_Month Status Tag The _Date_Month tag indicates the current month of the system
on which the server is running. The format of the string is a num-
ber (such as "9" instead of "September").
This is a read-only tag.

_Date_Year2 Status Tag The _Date_Year2 tag indicates the last two digits of the current
year of the system on which the server is running.
This is a read-only tag.

_Date_Year4 Status Tag The _Date_Year4 tag indicates the current year of the system on
which the server is running.
This is a read-only tag.

_ExpiredFeatures Status Tag The _ExpiredFeatures tag provides a list of all server features
whose time-limited usage has expired. These features are no
longer operational.
This is a read-only tag.

_FullProjectName Status Tag The _FullProjectName tag indicates the fully qualified path and

www. ptc.com

103

ThingWorx Kepware Server

Tag Class Description
file name to the currently loaded project.
This is a read-only tag.

_IsDemo Status Tag The _IsDemo tag is no longer available as the runtime does not
enter Time Limited mode in version 6.0 or higher. See the _
TimeLimitedFeatures, _LicensedFeatures, and _ExpiredFeatures
tags to monitor the status of server features.

_LicensedFeatures Status Tag The _LicensedFeatures tag provides a list of all server features in
use that have a valid license. These features are not subject to a
time limit and will continue normal operation after any time-limited
features expire.
This is a read-only tag.

_OpcClientNames Status Tag The _OpcClientNames tag is a String Array that lists the names of
all OPC clients that connect to the server and register their name
through the IOPCCommon::SetClientName method.
This is a read-only tag.

_ProductName Status Tag The _ProductName tag indicates the name of the underlying com-
munication server.
This is a read-only tag.

_ProductVersion Status Tag The _ProductVersion tag indicates the version of the underlying
communication server.
This is a read-only tag.

_ProjectName Status Tag The _ProjectName tag indicates the currently loaded project file
name and does not include path information.
This is a read-only tag.

_ProjectTitle Status Tag The _ProjectTitle tag is a String tag that indicates the title of the
project that is currently loaded.
This is a read-only tag.

_Time Status Tag The _Time tag indicates the current time of the system that the
server is running on. The format of this string is defined by the
operating system date / time settings.
This is a read-only tag.

_Time_Hour Status Tag The _Time_Hour tag indicates the current hour of the system on
which the server is running.
This is a read-only tag.

_Time_Hour24 Status Tag The _Time_Hour24 tag indicates the current hour of the system
on which the server is running in a 24-hour format.
This is a read-only tag.

_Time_Minute Status Tag The _Time_Minute tag indicates the current minute of the system
on which the server is running.
This is a read-only tag.

_Time_PM Status Tag The _Time_PM tag indicates the current AM/PM status of the sys-
tem on which the server is running. This is a Boolean tag: 0
(False) indicates AM, and 1 (True) indicates PM.
This is a read-only tag.

_Time_Second Status Tag The _Time_Second tag indicates the current second of the sys-
tem on which the server is running.
This is a read-only tag.

_TimeLim-
itedFeatures

Status Tag The _TimeLimitedFeatures tag provides a list of all server fea-
tures that are time-limited and the time remaining (in seconds).
When the time remaining expires, the feature ceases operation.
This is a read-only tag.
This is a read-only tag.

www. ptc.com

104

ThingWorx Kepware Server

Tag Class Description
_TotalTagCount Status Tag The _TotalTagCount tag indicates the total number of tags that

are currently being accessed. These tags can be active or inact-
ive.
Note: This count does not represent the number of tags con-

figured in the project.
This is a read-only tag.

Interface-Level System Tags
Syntax Example: <Interface.Name>._System._OpcDAGroupCount

Tag Class Description
_OpcDAGroupCount Status Tag The _OpcDAGroupCount tag indicates the total count of OPC DA

groups currently created. These groups are created in response to
client requests.
This is a read-only tag.

Channel-Level System Tags for Serial Port Drivers
Syntax Example: <Channel name>._System._BaudRate

Tag Class Description
_AvailableNetworkAdapters Status Tag The _AvailableNetworkAdapters tag lists the avail-

able NICs and includes both unique NIC cards and
NICs that have multiple IPs assigned to them. Addi-
tionally, this tag also displays any WAN connections
that are active, such as a dial-up connection. This tag
is provided as a string tag and can be used to determ-
ine the network adapters available for use on this PC.
The string returned contains all of the NIC names and
their IP assignments. A semicolon separates each
unique NIC to allow the names to be parsed within an
OPC application. For a serial driver, this tag is only
used if Ethernet Encapsulation is selected.
This is a read-only tag.

_BaudRate Parameter Control
Tag

The _BaudRate tag allows the baud rate of the driver
to be changed at will. The _BaudRate tag is defined
as a long value and therefore new baud rates should
be written in this format. Valid baud rates are as fol-
lows: 300, 600, 1200, 2400, 4800, 9600, 19200,
38400, 56000, 56700, 115200, 128000 and 256000.
This is a read / write tag.

_ComId Parameter Control
Tag

The _ComId tag allows the comm port selection for
the driver to be changed at will. As a string tag, the
desired comm port must be written to the tag as a
string value using the following possible selections:
COM 1, COM 2 COM 3, COM 4, - - -, COM 16, and
Ethernet Encapsulation. When selecting Ethernet
Encapsulation Mode, users must set the IP number of
the remote terminal server. This is done at the device-
level and is shown below.
This is a read / write tag.

_DataBits Parameter Control
Tag

The _DataBits tag allows the data bits of the driver to
be changed at will. The _DataBits tag is defined as a
signed 8-bit value. Valid data bits selections are 5, 6,
7 and 8.
This is a read / write tag.

www. ptc.com

105

ThingWorx Kepware Server

Tag Class Description
_Description Status Tag The _Description tag indicates the current user-

defined text description for the channel it is ref-
erencing.
This is a read-only tag.

_EnableDiagnostics Parameter Control
Tag

The _EnableDiagnostics tag allows the diagnostic sys-
tem of the driver to be enabled and disabled. The dia-
gnostic system places a little additional burden on the
driver while enabled. As such the server allows dia-
gnostics to be enabled or disabled to improve the
driver's performance. When disabled, the Diagnostics
tags are not available. For more information, refer to
Statistics Tags.
This is a read / write tag.

_EncapsulationPort Parameter Control
Tag

The _EncapsulationPort tag controls the destination
port for Ethernet connections. The valid range is 0 to
65535.
This is a read / write tag.

_EncapsulationProtocol Parameter Control
Tag

The _EncapsulationProtocol tag controls the protocol
used for Ethernet connections. Options include
TCP/IP and UDP.
This is a read / write tag.

_FloatHandlingType Parameter Control
Tag

The _FloatHandlingType tag allows the current chan-
nel-level float handling to be changed. It exists in the
channel-level _System folder. For more information,
refer to Channel Properties — Advanced.
This is a read / write tag.

_FlowControl Parameter Control
Tag

The _FlowControl tag allows the flow control setting of
the driver to be changed at will. As a string tag, the
desired flow control setting must be written to the tag
in this format. Possible selections for flow control
include: None, DTR, RTS, "DTR, RTS,"RTS Always,
and RTS Manual. Not all drivers support the RTS
Manual mode of operation.
This is a read / write tag.

_InterDeviceDelayMS Parameter Control
Tag

The _InterDeviceDelayMS tag specifies the amount
of time that the channel delays sending a request to
the next device after the data has been received from
the current device on the same channel. The valid
range is 0 to 60000 milliseconds. The default setting
is 0.
Note: This tag is only available on channels that

use protocols that utilize the Inter-Device Delay.
This is a read / write tag.

_NetworkAdapter Parameter Control
Tag

The _NetworkAdapter tag allows the current NIC
adapter in use by the driver to be changed at will. As a
string tag, the name of the newly desired NIC adapter
must be written to this tag in string format. The string
written must match the exact description of the
desired NIC for the change to take effect. NIC names
can be obtained from the _AvailableNetworkAdapters
tag listed above. For a serial driver, this tag will only
be used if Ethernet Encapsulation is selected.
Note: When changing the NIC selection the driver

is forced to break all current device connections and
reconnect.

www. ptc.com

106

ThingWorx Kepware Server

Tag Class Description
This is a read / write tag.

_Parity Parameter Control
Tag

The _Parity tag allows the parity of the driver to be
changed at will. As a string tag, the desired parity set-
ting must be written to the tag as a string value using
the following possible selections: None, Odd and
Even.
This is a read / write tag.

_ReportComErrors Parameter Control
Tag

The _ReportComErrors tag allows the reporting of low
level communications errors such as parity and fram-
ing errors to be enabled or disabled. This tag is
defined as a Boolean tag and can be set either True
or False. When True, the driver will report any low-
level communications error to the server event sys-
tem. When set False the driver will ignore the low-
level communications errors and not report them. The
driver will still reject a communications transaction if it
contains errors. If the environment contains a lot of
electrical noise, this feature can be disabled to pre-
vent the Event Log from filling with error messages.
This is a read / write tag.

_RtsLineDrop Parameter Control
Tag

The _RtsLineDrop tag allows the RTS Line to be
lowered for a user-selected period of time after the
driver attempts to transmit a message. This tag is only
effective for drivers that support Manual RTS mode.
The _RtsLineDrop is defined as a long value. The
valid range is 0 to 9999 milliseconds. The Manual
RTS mode has been designed for use with radio
modems.
This is a read / write tag.

_RtsLinePollDelay Parameter Control
Tag

The _RtsLinePollDelay tag allows a user-configurable
pause to be placed after each message sent from the
driver. This tag is only effective for drivers that support
Manual RTS mode. The _RtsLinePollDelay is defined
as a long value. The valid range is 0 to 9999 mil-
liseconds. The Manual RTS mode has been
designed for use with radio modems.
This is a read / write tag.

_RtsLineRaise Parameter Control
Tag

The _RtsLineRaise tag allows the RTS Line to be
raised for a user-selected period of time before the
driver attempts to transmit a message. This tag is only
effective for drivers that support Manual RTS mode.
The _RtsLineRaise is defined as a long value. The
valid range is 0 to 9999 milliseconds. The Manual
RTS mode has been designed for use with radio
modems.
This is a read / write tag.

_SharedConnection Status Tag The _SharedConnection tag indicates that the port
settings are being shared with another channel.
This is a read-only tag.

_StopBits Parameter Control
Tag

The _StopBits tag allows the stop bits of the driver to
be changed at will. The _StopBits tag is defined as a
signed 8-bit value. Valid data bit selections are 1 and
2.
This is a read / write tag.

_UnsolicitedEncapsulationPort Parameter Control The _UnsolicitedEncapsulationPort tag controls the

www. ptc.com

107

ThingWorx Kepware Server

Tag Class Description
Tag Ethernet port that has been opened to allow con-

nections. The valid range is 0 to 65535.
This is a read / write tag.

_Unso-
licitedEncapsulationProtocol

Parameter Control
Tag

The _UnsolicitedEncapsulationProtocol tag controls
the Ethernet protocol used to connect to the Unso-
licited Encapsulation Port. Options include TCP/IP
and UDP.
This is a read / write tag.

_WriteOptimizationDutyCycle Parameter Control
Tag

The _WriteOptimizationDutyCycle tag allows the duty
cycle of the write to read ratio to be changed at will.
The duty cycle controls how many writes the driver
attempts for each read it performs. The _WriteOp-
timizationDutyCycle is defined as an unsigned long
value. The valid range is 1 to 10 write per read. For
more information, refer to Channel Properties —
Write Optimizations.
This is a read / write tag.

Channel-Level System Tags for Ethernet Drivers
Syntax Example: <Channel name>._System._NetworkAdapter

Tag Class Description
_AvailableNetworkAdapters Status Tag The _AvailableNetworkAdapters tag lists the avail-

able NICs and includes both unique NIC cards and
NICs that have multiple IPs assigned to them. This
tag also displays any WAN connections that are act-
ive, such as a dial-up connection. This tag is provided
as a string tag and can be used to determine the net-
work adapters available for use on this PC. The string
returned contains all of the NIC names and their IP
assignments. A semicolon separates each unique
NIC to allow the names to be parsed within an OPC
application. For a serial driver, this tag is only used if
Ethernet Encapsulation is selected.
This is a read-only tag.

_Description Status Tag The _Description tag indicates the current user-
defined text description for the channel it is ref-
erencing.
This is a read-only tag.

_EnableDiagnostics Parameter Control
Tag

The _EnableDiagnostics tag allows the diagnostic sys-
tem of the driver to be enabled and disabled. The dia-
gnostic system places a little additional burden on the
driver while enabled. As such the server allows dia-
gnostics to be enabled or disabled to improve the
driver's performance. When disabled, the Diagnostics
tags will not be available. For more information, refer
to Statistics Tags.
This is a read / write tag.

_EncapsulationPort Parameter Control
Tag

The _EncapsulationPort tag controls the port used for
Ethernet connections. The valid range is 0 to 65535.
This is a read / write tag.

_EncapsulationProtocol prop Parameter Control
Tag

The _EncapsulationProtocol tag controls the protocol
used for Ethernet connections. Options include
TCP/IP and UDP.

www. ptc.com

108

ThingWorx Kepware Server

Tag Class Description
This is a read / write tag.

_FloatHandlingType Parameter Control
Tag

The _FloatHandlingType tag allows the current chan-
nel-level float handling to be changed. It exists in the
channel-level _System folder. For more information,
refer to Channel Properties — Advanced.
This is a read / write tag.

_InterDeviceDelayMS Parameter Control
Tag

The _InterDeviceDelayMS tag specifies the amount
of time that the channel delays sending a request to
the next device after the data has been received from
the current device on the same channel. The valid
range is 0 to 60000 milliseconds. The default setting
is 0.
Note: This tag is only available on channels that

use protocols that utilize the Inter-Device Delay.
This tag is a read / write tag.

_NetworkAdapter Parameter Control
Tag

The _NetworkAdapter tag allows the current NIC
adapter in use by the driver to be changed at will. As a
string tag, the name of the newly desired NIC adapter
must be written to this tag in string format. The string
written must match the exact description to take
effect. NIC names can be obtained from the ableNet-
workAdapters tag listed above. For a serial driver, this
tag is only used if Ethernet Encapsulation is selected.
Note: When changing the NIC selection, the driver

is forced to break all current device connections and
reconnect.
This is a read / write tag.

_UnsolicitedEncapsulationPort Parameter Control
Tag

The _UnsolicitedEncapsulationPort tag controls the
Ethernet port that has been opened to allow con-
nections. The valid range is 0 to 65535.
This is a read / write tag.

_Unso-
licitedEncapsulationProtocol

Parameter Control
Tag

The _UnsolicitedEncapsulationProtocol tag controls
the Ethernet protocol used to connect to the Unso-
licited Encapsulation Port. Options include TCP/IP
and UDP.
This is a read / write tag.

_WriteOptimizationDutyCycle Parameter Control
Tag

The _WriteOptimizationDutyCycle tag allows the duty
cycle of the write to read ratio to be changed at will.
The duty cycle controls how many writes the driver
attempts for each read it performs. The _WriteOp-
timizationDutyCycle is defined as an unsigned long
value. The valid range is 1 to 10 write per read. For
more information, refer to Channel Properties —
Write Optimizations.
This is a read / write tag.

Device-Level System Tags for both Serial and Ethernet Drivers
Syntax Example: <Channel Name>.<Device Name>._System._Error

Tag Class Description
_AutoCreateTagDatabase Parameter Control

Tag
The _AutoCreateTagDatabase tag is a Boolean tag that is
used to initiate the automatic tag database functions of this
driver for the device to which this tag is attached. When
this tag is set True, the communications driver attempts to

www. ptc.com

109

ThingWorx Kepware Server

Tag Class Description
automatically generate a tag database for this device. This
tag does not appear for drivers that do not support Auto-
matic Tag Database Generation.
This is a read / write tag.

_AutoDemoted Status Tag The _AutoDemoted tag is a Boolean tag that returns the
current auto-demoted state of the device. When False, the
device is not demoted and is being scanned by the driver.
When set True, the device is in demoted and not being
scanned by the driver.
This is a read-only tag.

_AutoDe-
motionDiscardWrites

Parameter Control
Tag

The _AutoDemotionDiscardWrites tag is a Boolean tag
that specifies whether or not write requests should be dis-
carded during the demotion period. When this tag is set to
False, all writes requests are performed regardless of the _
AutoDemoted state. When this tag is set to True, all writes
are discarded during the demotion period.
This is a read / write tag.

_AutoDemotionEnabled Parameter Control
Tag

The _AutoDemotionEnabled tag is a Boolean tag that
allows the device to be automatically demoted for a spe-
cific time period when the device is unresponsive. When
this tag is set False, the device is never demoted. When
this tag is set True, the device is demoted when the _
AutoDemotedFailureCount has been reached.
This is a read / write tag.

_AutoDemotedFailureCount Parameter Control
Tag

The _AutoDemotedFailureCount tag specifies how many
successive failures it takes to demote a device. The _
AutoDemotedFailureCount is defined as a long data type.
The valid range is 1 to 30. This tag can only be written to if
_AutoDemotionEnabled is set to True.
This is a read / write tag.

_AutoDemotionIntervalMS Parameter Control
Tag

The _AutoDemotionIntervalMS tag specifics how long, in
milliseconds, a device is demoted before re-attempting to
communicate with the device. The _AutoDe-
motionIntervalMS is defined as a long data type. The valid
range is 100 to 3600000 milliseconds. This tag can only be
written to if _AutoDemotionEnabled is set to True.
This is a read / write tag.

_ConnectTimeout Parameter Control
Tag

The _ConnectTimeout tag allows the timeout associated
with making an IP connection to a device to be changed at
will. This tag is available when either a native Ethernet
driver is in use or a serial driver is in Ethernet Encap-
sulation mode. The _ConnectTimeout is defined as a Long
data type. The valid range is 1 to 30 seconds.
This is a read / write tag.

_DemandPoll Status / Control
Tag

The _DemandPoll tag issues a device read to all the active
client items associated with the device. This is the equi-
valent of a client performing an asynchronous device read
for those items. It takes priority over any scheduled reads
that are supposed to occur for items that are being actively
scanned.
The _DemandPoll tag becomes True (1) when written to. It
returns to False (0) when the final active tag signals that
the read requests have completed. Subsequent writes to
the _DemandPoll tag fails until the tag value returns to
False. The demand poll respects the read / write duty cycle
for the channel.

www. ptc.com

110

ThingWorx Kepware Server

Tag Class Description
This is a read / write tag.

_Description Status Tag The _Description tag indicates the current user-defined
text description for the device it is referencing.
This is a read-only tag.

_DeviceId Parameter Control
Tag

The _DeviceId tag allows the ID of the device to be
changed at will. The data format of the _DeviceId depends
on the type of device. For most serial devices this tag is a
Long data type. For Ethernet drivers the _DeviceId is
formatted as a string tag, allowing the entry of an IP
address. In either case, writing a new device ID to this tag
causes the driver to change the target field device. This
only occurs if the device ID written to this tag is correctly
formatted and within the valid range for the given driver.
This is a read / write tag.

_Enabled Parameter Control
Tag

The _Enabled tag provides a very flexible means of con-
trolling the server application. In some cases, specifically
in modem applications, it can be convenient to disable all
devices except the device currently connected to the
modem. Additionally, using the _Enabled tag to allow the
application to turn a particular device off while the physical
device is being serviced can eliminate harmless but
unwanted communications errors in the Event Log.
This is a read / write tag.
Note: Write requests to device configuration system tags

like _Enabled require editing the Project Modification per-
missions of the Kepware User Group associated with the
client’s incoming connection protocol and chosen authen-
tication method. For example, Quick Client and all other
OPC DA clients require permissions to be modified for the
Anonymous User Group: (Settings... under the User Man-
ager tab, select and expand the Anonymous Clients
group. Right-click and select Properties.... Expand Project
Modification, then Servermain.Device, and set Edit to
Allow). OPC UA clients and other interfaces may authen-
ticate with custom user groups and modifications should
be made to those user groups as required.

_EncapsulationIp Parameter Control
Tag

The _EncapsulationIp tag allows the IP of a remote ter-
minal server to be specified and changed at will. This tag is
only available on serial drivers that support Ethernet
Encapsulation mode. The _EncapsulationIp is defined as
a string data type, allowing the entry of an IP address num-
ber. The server will reject entry of invalid IP addresses.
This tag is only valid for a serial driver in Ethernet Encap-
sulation mode.
This is a read / write tag.

_EncapsulationPort Parameter Control
Tag

The _EncapsulationPort tag allows the port number of the
remote terminal server to be specified and changed. The _
EncapsulationPort is defined as a long data type. The valid
range is 0 to 65535. The port number entered in this tag
must match that of the desired remote terminal server for
proper Ethernet Encapsulation to occur. This tag is only
valid for a serial driver in Ethernet Encapsulation mode.
This is a read / write tag.

_EncapsulationProtocol Parameter Control
Tag

The _EncapsulationProtocol tag allows the IP protocol
used for Ethernet Encapsulation to be specified and
changed. The _EncapsulationProtocol is defined as a

www. ptc.com

111

ThingWorx Kepware Server

Tag Class Description
string data type. Writing either "TCP/IP" or "UDP" to the tag
specifies the IP protocol. The protocol used must match
that of the remote terminal server for proper Ethernet
Encapsulation to occur. This tag is only valid for a serial
driver in Ethernet Encapsulation mode.
This is a read / write tag.

_Error Status Tag The _Error tag is a Boolean tag that returns the current
error state of the device. When False, the device is oper-
ating properly and the timestamp is when the device last
entered this state. When True, the driver has detected an
error when communicating with this device, and the
timestamp is updated with the latest failed operation. A
device enters an error state if it has completed the cycle of
request timeouts and retries without a response. For
more information, refer to Device Properties — Timing.
When _Error is false, the timestamp of the tag can be used
to determine how long communications have been in a
good state. When _Error is true, the timestamp of the tag
can be used to determine when the last failed operation
was, and _SecondsInError can be used to determine the
overall length of the communications issues.
This is a read-only tag.

_FailedConnection Status Tag The _FailedConnection tag specifies that the connection
failed. It is only available to specific drivers.
This is a read-only tag.

Tip: The _FailedConnection system tag is supported by
the following drivers:

l Allen-Bradley ControlLogix Ethernet
l IEC 60870-5-101 Client
l IEC 60870-5-104 Client
l Lufkin Modbus
l Modbus RTU Server Serial
l Omron NJ Ethernet
l Weatherford 8500

_InterRequestDelay Parameter Control
Tag

The _InterRequestDelay tag allows the time interval
between device transactions to be changed at will. The _
InterRequestDelay is defined as a Long data type. The
valid range is 0 to 30000 milliseconds. This tag only
applies to drivers that support this feature.
This is a read / write tag.

_RequestAttempts Parameter Control
Tag

The _RequestAttempts tag allows the number of com-
munication attempts to be changed. The _RequestAt-
tempts is defined as a Long value. The valid range is 1 to
10 attempts. This tag applies to all drivers equally.
This is a read / write tag.

_RequestTimeout Parameter Control
Tag

The _RequestTimeout tag allows the timeout associated
with a data request to be changed at will. The _
RequestTimeout tag is defined as a Long value. The valid
range is 100 to 30000 milliseconds. This tag applies to all
drivers equally.
This is a read / write tag.

_NoError Status Tag The _NoError tag is a Boolean tag that returns the current

www. ptc.com

112

ThingWorx Kepware Server

Tag Class Description
error state of the device. When True, the device is oper-
ating properly and the timestamp is when the device last
entered this state. When False, the driver has detected an
error when communicating with this device, and the
timestamp is updated with the latest failed operation. A
device enters an error state if it has completed the cycle of
request timeouts and retries without a response. For
more information, refer to Device Properties — Timing.
When _NoError is true, the timestamp of the tag can be
used to determine how long communications have been in
a good state. When _NoError is false, the timestamp of
the tag can be used to determine when the last failed oper-
ation was, and _SecondsInError can be used to determine
the overall length of the communications issues.
This is a read-only tag.

_ScanMode Status Tag The _ScanMode tag allows clients to dictate the method
used for updates. It is defined as a String value, and cor-
responds to the user-specified Scan Mode setting (located
in device properties). "Respect client specified scan rate"
has a value of "UseClientRate," "Request data no faster
than x" has a value of "UseFloorRate," and "Request all
data at x" has a value of "ForceAllToFloorRate." The
default setting is "Respect client specified scan rate."
This is a read-only tag.

_ScanRateMs Status Tag The _ScanRateMs tag corresponds to the _ScanMode tag,
and is used when the Scan Mode is set to Request Data
No Faster than Scan Rate or Request All Data at Scan
Rate. This tag is defined as a DWord tag. The default set-
ting is 1000 milliseconds.
This is a read-only tag.

_SecondsInError Status Tag The _SecondsInError tag is a DWord tag that displays the
number of seconds since the device entered an error state.
This tag displays 0 when the device is not in an error state.
This is a read-only tag.

_Simulated Parameter Control
Tag

The _Simulated tag is a Boolean tag that provides feed-
back about the simulation state of the current device.
When read as True, this device is in a simulation mode.
While in simulation mode, the server returns good data for
this device, but does not attempt to communicate with the
actual physical device. When tag is read as False, com-
munication with the physical device is active. Changing the
tag value allows clients to enable / disable simulated
mode.

This is a read / write tag.

When using an OPC client, the System tags are found under the _System branch of the server browse space for a
given device. The following image taken from the supplied OPC Quick Client shows how the System tags appear to
an OPC client.

www. ptc.com

113

ThingWorx Kepware Server

The _System branch found under the DeviceName branch is always available. If referencing a system tag from a
DDE application given the above example and the DDE defaults, the link would appear as "<DDE service name>|_
ddedata!Channel1.Device1._System._Error".

See Also:
Property Tags
Modem Tags
Statistics Tags
Store and Forward Tags

Property Tags
Property tags are used to provide read-only access to tag properties for client applications. To access a tag prop-
erty, append the property name to the fully qualified tag address that has been defined in the server's tag database.
For more information, refer to Tag Properties — General.

If the fully qualified tag address is "Channel1.Device1.Tag1," its description can be accessed by appending the
description property as "Channel1.Device1.Tag1._Description".

Supported Property Tag Names
Tag Name Description
_Name The _Name property tag indicates the current name for the tag it is referencing.

_Address The _Address property tag indicates the current address for the tag it is referencing.

_Description The _Description property tag indicates the current description for the tag it is ref-
erencing.

_RawDataType The _RawDataType property tag indicates the raw data type for the tag it is ref-
erencing.

_ScalingType The _ScalingType property tag indicates the scaling type (None, Linear or Square
Root) for the tag it is referencing.

_ScalingRawLow The _ScalingRawLow property tag indicates the raw low range for the tag it is ref-

www. ptc.com

114

ThingWorx Kepware Server

Tag Name Description
erencing. If scaling is set to none this value contains the default value if scaling was
applied.

_ScalingRawHigh The _ScalingRawHigh property tag indicates the raw high range for the tag it is ref-
erencing. If scaling is set to none this value contains the default value if scaling was
applied.

_Scal-
ingScaledDataType

The _ScalingScaledDataType property tag indicates the scaled to data type for the
tag it is referencing. If scaling is set to none this value contains the default value if
scaling was applied.

_ScalingScaledLow The _ScalingScaledLow property tag indicates the scaled low range for the tag it is
referencing. If scaling is set to none this value contains the default value if scaling
was applied.

_ScalingScaledHigh The _ScalingScaledHigh property tag indicates the scaled high range for the tag it is
referencing. If scaling is set to none this value contains the default value if scaling
was applied.

_ScalingClampLow The _ScalingClampLow property tag indicates whether the scaled low value should
be clamped for the tag it is referencing. If scaling is set to none this value contains
the default value if scaling was applied.

_ScalingClampHigh The _ScalingClampHigh property tag indicates whether the scaled high value should
be clamped for the tag it is referencing. If scaling is set to none this value contains
the default value if scaling was applied.

_ScalingUnits The _ScalingUnits property tag indicates the scaling units for the tag it is referencing.
If scaling is set to none this value contains the default value if scaling was applied.

See Also:
Statistics Tags
Modem Tags
System Tags

Statistics Tags
Statistics tags are used to provide feedback to client applications regarding the operation of the channel com-
munications in the server. Statistics tags are only available when diagnostics are enabled. For more information,
refer to Channel Diagnostics and OPC Diagnostics Viewer.

Syntax Example: <Channel Name>._Statistics._FailedReads

Supported Statistics Tag Names
Tag Name Description
_SuccessfulReads The _SuccessfulReads tag contains a count of the number of reads this channel has com-

pleted successfully since the start of the application or since the last time the _Reset tag
was invoked. This tag is formatted as unsigned 32-bit integer and will eventually rollover.
This tag is read only.

_SuccessfulWrites The _SuccessfulWrites tag contains a count of the number of writes this channel has com-
pleted successfully since the start of the application or since the last time the _Reset tag
was invoked. This tag is formatted as an unsigned 32-bit integer and will eventually
rollover. This tag is read only.

_FailedReads The _FailedReads tag contains a count of the number of reads this channel has failed to
complete since the start of the application or since the last time the _Reset tag was
invoked. This count is only incremented after the channel has failed the request based on
the configured timeout and retry count for the device. This tag is formatted as an unsigned
32-bit integer and will eventually rollover. This tag is read only.

_FailedWrites The _FailedWrites tag contains a count of the number of writes this channel has failed to
complete since the start of the application or since the last time the _Reset tag was
invoked. This count is only incremented after the channel has failed the request based on
the configured timeout and retry count for the device. This tag is formatted as unsigned

www. ptc.com

115

ThingWorx Kepware Server

Tag Name Description
32-bit integer and will eventually rollover. This tag is read only.

_RxBytes* The _RxBytes tag contains a count of the number of bytes the channel has received from
connected devices since the start of the application or since the last time the _Reset tag
was invoked. This tag is formatted as unsigned 32-bit integer and will eventually rollover.
This tag is read only.

_TxBytes The _TxBytes tag contains a count of the number of bytes the channel has sent to con-
nected devices since the start of the application or since the last time the _Reset tag was
invoked. This tag is formatted as unsigned 32-bit integer and will eventually rollover. This
tag is read only.

_Reset The _Reset tag can be used to reset all diagnostic counters. The _Reset tag is formatted
as a Boolean tag. Writing a non-zero value to the _Reset tag will cause the diagnostic
counters to be reset. This tag is read / write.

_MaxPend-
ingReads

The _MaxPendingReads tag contains a count of the maximum number of pending read
requests for the channel since the start of the application (or the _Reset tag) was invoked.
This tag is formatted as an unsigned 32-bit integer. The tag is read only.

_MaxPend-
ingWrites

The _MaxPendingWrites tag contains a count of the maximum number of pending write
requests for the channel since the start of the application (or the _Reset tag) was invoked.
This tag is formatted as an unsigned 32-bit integer. The tag is read only.

_NextReadPriority

The _NextReadPriority is a channel-level system tag that reflects the priority level of the
next read in the channel's pending read queue. Possible values are -1: No pending reads.
0: The next read is a result of a schedule-level demand poll or explicit read from a client. 1
- n: The next read is a result of scheduled read. This tag is read only.

_PendingReads The _PendingReads tag contains a count of the current pending read requests for the
channel. This tag is formatted as an unsigned 32-bit integer. The tag is read only.

_PendingWrites The _PendingWrites tag contains a count of the current pending write requests for the
channel. This tag is formatted as an unsigned 32-bit integer. This tag is read only.

* This statistical item is not updated in simulation mode (See Device Properties).

Statistics tags are only available when diagnostics are enabled. To access from an OPC client, the diagnostic tags
can be browsed from the _Statistics branch of the server browse space for a given channel. The following image is
taken from the OPC Quick Client, and shows how a Diagnostics tag appears to an OPC client.

www. ptc.com

116

Device_Properties_Operating_Mode.htm

ThingWorx Kepware Server

The _Statistics branch (located beneath the channel branch) only appears when diagnostics are enabled for the
channel. To reference a Diagnostics tag from a DDE application, given the above example and the DDE defaults,
the link would appear as: "<DDE service name>|_ddedata!Channel1._Statistics._SuccessfulReads".

The Diagnostics tag's value can also be viewed in the server by using the Communication Diagnostics Viewer. If
Diagnostics Capture is enabled under Channel Properties, right-click on that channel and select Diagnostics.

See Also:
System Tags
Property Tags

Modem Tags
The following tags are created automatically for the channel when modem use is selected.

Syntax Example: <Channel Name>.<Device Name>._Modem._Dial

Supported Modem Tag Names
Tag Name Description Access

_Dial

Writing any value to this tag initiates dialing of the current
PhoneNumber. The write is ignored unless the current Status is 3
(Idle). An error is reported if the is current phone number has not
been initialized. Attempting to issue a dial command while the
Mode tag is set to 2 (incoming call only) generates an error.

Read /
Write

_DialNumber

The DialNumber tag shows the phone number that is actually
dialed, after any dialing preference translations have been applied
(such as the addition of an area code). This tag is intended for
debugging purposes. It can provide useful feedback to an operator
if phone numbers are entered manually.

Read
Only

_Hangup Writing any value to this tag hangs up the current connection. The Read /

www. ptc.com

117

ThingWorx Kepware Server

Tag Name Description Access
Hangup tag ends the current connection when an external device
has called the server. Writes to the Hangup tag are ignored if the
Status <= 3 (Idle), meaning that there is no currently open con-
nection.

Write

_LastEvent
Whenever the Status changes, the reason for the change is set in
this tag as a number. For a list of event numbers and meanings,
refer to Last Event Values.

Read
Only

_Mode

This allows for configuring the line for calling only, answering only
or both.

Writing a 1 to the Mode tag sets the line for outgoing calls only, no
incoming calls are answered when in this mode. Writing a 2 to the
Mode tag sets the line for incoming calls only, requests to dial out
(writes to the Dial tag) are ignored. The default setting is 0, which
allows for both outgoing and incoming calls.

This value can only be changed when the Status is <= 3 (Idle).

Read /
Write

_PhoneNumber

This is the current phone number to be dialed. Users can write to
this value at any time, but the change is only effective if Status is
<= 3 (Idle). If users write to the phone number while the status is
greater than 3, the number is queued. As soon as the status drops
to 3 or less, the new number is transferred to the tag. The queue is
of size 1, so only the last phone number written is retained.

The phone number must be in canonical format to apply the dial-
ing preferences. If the canonical format is used, the resulting num-
ber to be dialed (after dialing preferences have been applied) can
be displayed as the DialNumber.

Canonical format is the following:
+<country code>[space](<area code>)[space]<phone number>

example: +1 (207) 846-5881

Note: The country code for the U.S. is 1.

If the number is not in canonical form, dialing preferences are not
applied. The number is dialed exactly as it is entered. Users can
also enter a Phonebook tag name instead of a phone number. In
this case, the current value of the Phonebook tag is used.

Read /
Write

_Status This is the current status of the modem assigned to a channel. For
a list of status values and meanings, refer to Status Values.

Read
Only

_StringLastEvent
This contains a textual representation of the LastEvent tag value.
For a list of event numbers and meanings, refer to Last Event
String Values.

Read
Only

_StringStatus
This contains a textual representation of the Status tag value. For
a list of event numbers and meanings, refer to Status String Val-
ues.

Read
Only

Status Values
The five lowest bits of the 32-bit status variable are currently being used.

Bit Meaning
0 Initialized with TAPI

1 Line open

www. ptc.com

118

ThingWorx Kepware Server

Bit Meaning
2 Connected

3 Calling

4 Answering

When read as an integer, the value of the Status tag is always one of the following:

Value Meaning
0 Un-initialized, the channel is not usable

1 Initialized, no line open

3 Line open and the state is idle

7 Connected

11 Calling

19 Answering

Status String Values
Status Value StringStatus Text
0 Uninitialized, channel is unusable

1 Initialized, no line open

3 Idle

7 Connected

11 Calling

19 Answering

Last Event Values
LastEvent Reason for Change
-1 <blank> [no events have occurred yet]

0 Initialized with TAPI

1 Line closed

2 Line opened

3 Line connected

4 Line dropped by user

5 Line dropped at remote site

6 No answer

7 Line busy

8 No dial tone

9 Incoming call detected

10 User dialed

11 Invalid phone number

12 Hardware error on line caused line close

Last Event String Values
LastEvent StringLastEvent
-1 <blank> [no events have occurred yet]

0 Initialized with TAPI

1 Line closed

2 Line opened

www. ptc.com

119

ThingWorx Kepware Server

LastEvent StringLastEvent
3 Line connected

4 Line dropped by user

5 Line dropped at remote site

6 No answer

7 Line busy

8 No dial tone

9 Incoming call detected

10 User dialed

11 Invalid phone number

12 Hardware error on line caused line close

13 Unable to dial

Communication Serialization Tags
Syntax Example: <Channel Name>._CommunicationSerialization._VirtualNetwork

Tag Description

_NetworkOwner
Class: Status Tag

The _NetworkOwner tag indicates if the channel currently owns con-
trol of communications on the network. The frequency of change
reflects how often the channel is granted control.
This tag is read only.

_Registered
Class: Status Tag

The _Registered tag indicates whether the channel is currently
registered to a virtual network. After setting the _VirtualNetwork, the
channel unregisters from the network it is currently registered to
(indicated in _RegisteredTo) when it is capable of doing so. In other
words, if the channel owns control during the switch, it cannot unre-
gister until it has released control. Upon unregistering, the channel
registers with new virtual network. This tag is FALSE if _Vir-
tualNetwork is None.
This tag is read only.

_RegisteredTo
Class: Status Tag

The _RegisteredTo tag indicates the virtual network to which the
channel is currently registered. After setting the _VirtualNetwork, the
channel unregisters from the network it is currently registered to
when it is capable of doing so. In other words, if the channel owns
control during the switch, it cannot unregister until it has released
control. Upon unregistering, the channel registers with new virtual
network. This tag indicates if there are delays switching networks as
_VirtualNetwork and _RegisteredTo could differ for a period of time.
This tag is N/A if _VirtualNetwork is None.
This tag is read only.

_Stat-
isticAvgNetworkOwnershipTimeSec
Class: Status Tag

The _StatisticAvgNetworkOwnershipTimeSec tag indicates how
long on average the channel holds ownership of control since the
start of the application (or since the last time _StatisticsReset was
written to). This tag helps identify busy channels/bottlenecks. This
tag is formatted as a 32-bit floating point and may eventually rollover.
This tag is read only.

_StatisticNetworkOwnershipCount
Class: Status Tag

The _StatisticNetworkOwnershipCount tag indicates the number of
times the channel has been granted control of communications since
the start of the application (or since the last time _StatisticsReset
was written to). This tag is formatted as an unsigned 32-bit integer
and may eventually rollover.
This tag is read only.

_StatisticNetworkOwnershipTimeSec The _StatisticNetworkOwnershipTimeSec tag indicates how long in

www. ptc.com

120

ThingWorx Kepware Server

Tag Description

Class: Status Tag

seconds the channel has held ownership since the start of the applic-
ation (or since the last time _StatisticsReset was written to). This tag
is formatted as a 32-bit floating point and may eventually rollover.
This tag is read only.

_StatisticsReset

The _StatisticsReset tag can be used to reset all the statistic coun-
ters. The _StatisticsReset tag is formatted as a Boolean tag. Writing
a non-zero value to the _StatisticsReset tag causes the statistics
counters to be reset.
This tag is read / write.

_TransactionsPerCycle

The _TransactionsPerCycle tag indicates the number of read / write
transactions that occur on the channel when taking turns with other
channels in a virtual network. It allows the channel-level setting to be
changed from a client application. This tag is formatted as a signed
32-bit integer (Long). The valid range is 1 to 99. The default setting is
1.
This tag is read / write.

_VirtualNetwork
Class: Parameter Tag

The _VirtualNetwork tag allows the virtual network selection for the
channel to be changed on the fly. As a string tag, the desired virtual
network must be written to the tag as a string value using the fol-
lowing possible selections: None, Network 1, Network 2, ---, Network
500. To disable communication serialization, select None.
This tag is read / write.

Communications Management
Auto-Demotion
The Auto-Demotion properties allow a driver to temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline, the driver can continue to optimize its communications with
other devices on the same channel by stopping communications with the non-responsive device for a specific time
period. After the specific time period has been reached, the driver re-attempts to communicate with the non-
responsive device. If the device is responsive, the device is placed on-scan; otherwise, it restarts its off-scan time
period.
 For more information, refer to Device Properties — Auto-Demotion.

Network Interface Selection
An NIC card can be selected for use with any Ethernet driver or serial driver running in Ethernet Encapsulation
mode. The Network Interface feature is used to select a specific NIC card based on either the NIC name or its cur-
rently assigned IP address. The list of available NICs includes both unique NIC cards and NICs that have multiple
IPs assigned to them. The selection displays any WAN connections that may be active (such as a dial-up con-
nection).

Ethernet Encapsulation
The Ethernet Encapsulation mode has been designed to provide communications with serial devices connected to
terminal servers on the Ethernet network. A terminal server is essentially a virtual serial port: the terminal server
converts TCP/IP messages on the Ethernet network to serial data. Once the message has been converted to a
serial form, users can connect standard devices that support serial communications to the terminal server. Using a
terminal server device allows users to place RS-232 and RS-485 devices throughout the plant operations while still
allowing a single localized PC to access the remotely mounted devices. Furthermore, the Ethernet Encapsulation
mode allows an individual network IP address to be assigned to each device as needed. By using multiple terminal
servers, users can access hundreds of serial devices from a single PC via the Ethernet network.
For more information, refer to How Do I... and Device Properties — Ethernet Encapsulation.

Modem Support
This server supports the use of modems to connect to remote devices, which is established through the use of spe-
cial modem tags that become available at the channel-level when a dial-up network connection has been created.
These channel-level modem tags can be used to dial a remote device, monitor the modem status while connected
and terminate the call when completed.

www. ptc.com

121

ThingWorx Kepware Server

Note: Not all serial drivers support the use of modems. To determine modem support, refer to the specific driver's
help documentation.

When accessing the modem systems tags, the channel name can be used as either a base group or topic name.
To be available, modems must be configured with the operating system through the Control Panel settings.
Once the modem has been properly installed, it can be enabled by selecting Modem as the Physical Medium in the
channel properties.
 For specific setup information, refer to the Windows and modem documentation.

Important: Many new commercial modems are designed to dial-up network server connections and negotiate
the fastest and clearest signal. When communicating to a serial automation device, the modem needs to connect at
a specific Baud (Bits per Second) and Parity. For this reason, an external modem (which can be configured to dial
using specific Baud Rate and Parity settings) is strongly recommended. To determine the best modem for a spe-
cific application, refer to Technical Support. For examples on how to use a modem in a project, refer to Using a
Modem in the Server Project.

Using a Modem in the Server Project
Modems convert serial data from the RS-232 port into signal levels that can be transmitted over the phone line. To
do this, they break down each byte of the serial data into bits that are used to generate the signal transmitted. Most
modems can convert up to 10 bits of information for every byte of data that is sent. Devices must be able to use 10
bits or less to communicate through a modem. To determine the number of bits being used by a specific device,
refer to the formula below.

Start Bits + Data Bits + Parity + Stop Bits = Total Bit Count

For example, the Modbus RTU Driver is configured to use 8 Data Bits, Even Parity, 1 Stop Bit, and 1 Start Bit.
When plugged into the formula, it would be 1 + 8 + 1 + 1, which equals 11 bits. A normal modem could not transmit
data to this Modbus device. If Parity is changed to None, it would be 1 + 8 + 0 + 1, which equals 10 Bits. A normal
modem could transmit data to this Modbus device.

Some drivers cannot be configured to use a 10-bit or less data format, and so cannot use standard modems.
Instead, they require modems that can handle transmitting 11 data bits. For drivers that fall into this category, con-
sult the device's manufacturer for recommendations on an appropriate modem vendor. Modem operation is avail-
able for all serial drivers, regardless of driver support for modem operation.

Configuring the Initiating Modem
This server uses the Windows TAPI interface to access modems attached to the PC. The TAPI interface was
designed to provide Windows programs a common interface that could be accessed by a range of modems exist-
ing in a PC. A set of drivers provided by the modem's manufacturer for the Windows OS must be installed before
the server can use the modem in a project. The Windows Control Panel can be used to install new modems.

For information regarding modem installation and setup, refer to both the Windows and the modem's doc-
umentation.

Once the modem has been properly installed, users can begin using it in a server project. The receiving end, or the
device modem, must be properly configured before it can be used. Users must confirm that the receiving modem
matches the profile provided by the driver.

Cables
Before the project can be used, the cable connection must be configured between the receiving modem and the
device. Three cables are required: the existing device communication cable for direct connection, a NULL modem
adapter, and a NULL modem cable. A NULL modem cable is connected to the modem, and all pins are connected
to the same pins on both ends of the cable. The device communication cable is used to connect to the target
device, and usually has pins 2 and 3 reversed. Because the cable being used to talk to the device for the direct con-
nection is working by this point, it can be used on the receiving modem by attaching a NULL modem adapter. Sim-
ilarly, a PC modem cable runs from the PC to the initiating modem. With the cables in place, a modem can now be
used in the application.

Note: NULL modem adapters can be found at most computer stores.

Example: Server-side Modem Configuration
After the modems have been configured and installed, they can be used with the server.

www. ptc.com

122

ThingWorx Kepware Server

1. To start, load the direct connect project and double-click on the channel name. In Channel Properties,
open the Serial Communications group.

2. In the Physical Medium drop-down menu, select Modem.

3. In Modem Settings, select a modem that is available on the computer.

Note: Users are not able to select Modem from the Physical Medium drop-down menu if there are none
available on the computer. If this occurs, exit the server and attempt to reinstall the modem using the
Modem Configuration tools supplied by the operating system.

4. To configure the initiating modem's characteristics, use the properties in Modem Settings. For more inform-
ation, refer to Channel Properties — Serial Communications.

5. Once finished, click Apply. Then, click OK to save and exit the Channel Properties.

Using a Modem in an Application
Once modem operation has been enabled, a list of pre-defined tags are available to data clients. These Modem
tags control and monitor an attached modem, and are contained under the channel name (which has become an
active OPC access path through which the Modem tags are accessed). Because the server knows very little about
what the application needs for modem control, it does not imply any type of control. By using the predefined Modem
tags, users can apply the application's scripting capabilities to control how the server uses the selected modem.

Phonebook
A Phonebook is a collection of Phonebook tags (Phone Numbers) that can be used in place of specifying a tele-
phone number written to the “_PhoneNumber” tag in the Modem system tags. The Phonebook is automatically cre-
ated for any channel that has the Physical Medium set to Modem. The data associated with a Phonebook tag is a
phone number to be dialed by the server. The act of a client writing to a Phonebook tag causes the server to dial
the phone number associated with that tag.

Data Type Privilege
String Read / Write

Phonebook tags are created by creating new entries in the Phonebook. To add a new Phonebook entry click on the
Phonebook node in the project tree and then click New Phone Number icon.

This opens the Phone Number property editor.

Name: Specify the name of the phone number entry. It will be part of the OPC browse data in the “_Phonebook”
system tag group. It can be up to 256 characters in length. While using descriptive names is generally a good idea,
some OPC client applications may have a limited display window when browsing the tag space of an OPC server.
The Name of a phone number must be unique within a Phonebook.

Number: Specify the phone number to be dialed when the associated Phonebook tag is invoked from an OPC cli-
ent application. A string of up to 64 digits can be entered.

Description: Enter text to attach a comment to the phone number entry. It can be up to 255 characters in length.

Note: With the server’s online full-time operation, these parameters can be changed at any time. Changes
made to properties take effect immediately; however, OPC clients that have already connected to this tag are not
affected until they release and reacquire the tag.

Auto-Dial Priority

When Auto-Dial has been enabled for the channel, the initial connection request begins by attempting to dial the
first entry encountered in the Phonebook. If that attempt is unsuccessful, the next number in the phonebook is
attempted and so on. This sequence continues until a modem connection is established or the client releases all ref-
erences to data that can be supplied by the channel. The order priority that Auto-Dial uses to dial is user defined
and can be changed by selecting a Phonebook entry and clicking one of the Priority Change icons as shown below.
They can also be changed by opening the context menu for the selected entry.

www. ptc.com

123

ThingWorx Kepware Server

Example

For a Phonebook entry created and the name set to “Site1”:

Syntax Example: <Channel Name>._Phonebook.Site1

Auto-Dial
Auto-Dial automates the actions required of a client application when modem use is specified within the server pro-
ject. Without Auto-Dial , these actions (which include connecting, disconnecting, and assigning phone numbers)
would be performed by an external client application through the use of channel-level Modem tags. For example, to
begin the process of establishing a connection, the client would write a dial string to "<Channel Name>._Modem._
PhoneNumber" and write a value to "<Channel Name>._Modem._Dial". When data from the remote device is no
longer needed, the client would end the call by writing to "<Channel Name>._Modem._Hangup".

Auto-Dial relieves the client of these responsibilities by automatically dialing phone numbers defined in the Phone-
book when attempting to establish a connection. The connection is automatically dropped when there are no client
references to tags that rely on the modem connection. To access the Auto-Dial property, click Channel Properties
| Serial Communications.

For more information, refer to Channel Properties — Serial Communications.

Modem Connection and Disconnection
Establishing a modem connection begins when a client connects to the server Runtime and requests data from a
device connection to a channel on which Auto-Dial is enabled. The initial connection request begins by attempting
to dial the first phone number encountered in the phonebook. If that attempt is unsuccessful, the next number in the
phonebook is attempted and so on. This sequence continues until a modem connection is established or the client
releases all references to data that can be supplied by the channel.

Note: When re-establishing a connection, the phonebook entry that last produced a successful connection is
used. If no previous phonebook entry was successful (or if the entry has since been deleted), the user-defined
sequence of phone numbers is used. The number used for re-dialing is not preserved during server reinitialization
or restart.

See Also: Phonebook

Timing
Timing settings (such as how long to wait for a connection before proceeding to the next phone number) are
determined by the TAPI modem configuration and not by any specific Modem Auto-Dial setting.

Note: Some drivers do not allow the serial port to close once it has opened. Connections established using
these drivers do not experience disconnection until all client references have been released (unless the TAPI set-
tings are configured to disconnect after a period of idle time).

Client Access
Modem tags may be used to exert client-level control over the modem. If Modem Auto-Dialing is enabled, however,
write access to the Modem tags is restricted so that only one form of access is possible. The Modem tags' values
are updated just as they would if the client were in control of the modem.

Changing the Auto-Dial Settings from the Configuration
The runtime reacts to changes in settings according to the following rules:

l If Auto-Dial is enabled after the client has already dialed the modem and established a connection, the
change is ignored until the modem is disconnected. If the client is still requesting data from the channel at
the time of disconnection, the initial connection sequence begins.

l If Auto-Dial is enabled while no modem connection exists and data is being requested from the channel by
the client, the initial connection sequence begins.

l If Auto-Dial is disabled while an existing auto-dial connection exists, no action is taken and the connection
is dropped.

See Also: Channel Properties — Serial Communications

www. ptc.com

124

ThingWorx Kepware Server

Designing a Project
The following examples use the Simulator Driver supplied with the server to demonstrate the process of creating,
configuring, and running a project. The Simulator Driver is a memory-based driver that provides both static and
changing data for demonstration purposes. Because it does not support the range of configuration options found in
other communication drivers, some examples may use images from other drivers to demonstrate specific product
features. For more information on a specific topic, select a link from the list below.

Running the Server
Starting a New Project
Adding and Configuring a Channel
Adding and Configuring a Device
Adding User-Defined Tags
Generating Multiple Tags
Adding Tag Scaling
Saving a Project
Opening an Encrypted Project
Testing a Project

 For information on software and hardware requirements, refer to System Requirements.

Running the Server
This server can be run as both a service and as a desktop application. When running in the default setting as a ser-
vice, the server is online at all times. When running as a desktop application, the OPC client can automatically
invoke the server when it attempts to connect and collect data. For either process to work correctly, users must first
create and configure a project. On start, the server automatically loads the most recently used project.

Initially, users must manually invoke the server. To do so, either double-click the desktop icon or select Con-
figuration from the Administration menu located in the System Tray. The interface's appearance depends on the
changes made by the user.

Once the server is running, a project may be created.

For more information on the server elements, refer to Basic Server Components. For more information on the
user interface, refer to Navigating the Configuration.

Starting a New Project
Users must configure the server to determine what content is provided during operation. A server project includes
the definition of channels, devices, tag groups, and tags. These factors exist in the context of a project file. As with
many applications, a number of project files can be defined, saved, and loaded.

Some configuration options are global and applied to all projects. These global options are configured in the Tools |
Options dialog, which includes both General Options and Runtime Connection Options. These settings are stored
in an INI file called "settings.ini," which is stored in the Application Data directory selected during installation.
Although global options are usually stored in the registry, the INI file supports the copying of these global settings
from one machine to another.

The software opens initially with a default project open. That file can be edited, saved, and closed like any other file.

1. To define a new project, choose File | New.

2. If prompted to close, save, or edit offline.

3. Choose File | Save As.

4. Enter a password to secure the encrypted project file.

5. Choose the location in which to store the file.

www. ptc.com

125

ThingWorx Kepware Server

6. Click Save.

7. Begin configuring the project file by Adding a Channel.

See Also: Options - General, Saving a Project

Adding and Configuring a Channel
When creating a new project, users must first determine the communications driver that is required by the applic-
ation: this is referred to as a channel in the server. A number of channels can be defined within a single project,
depending on the driver or drivers installed. For more information, refer to the instructions below.

1. To start, add a new channel to the project by:
clicking Edit | Connectivity | New Channel - OR -

clicking the New Channel icon on the toolbar - OR -
right-clicking on the Connectivity node in the tree and choosing New Channel

2. In the channel wizard, leave the channel name at its default setting "Channel1". Then, click Next.

3. In Device Driver, select the communications driver to be applied to the channel. Then, click Next. In this
example, the Simulator Driver is used.

4. For the Simulator Driver, the next page is Channel Summary. Other devices may have additional channel
wizard pages that allow the configuration of other properties (such as communications port, baud rate, and
parity). For more information, refer to Channel Properties — Serial Communication.

5. Once complete, click Finish.

See Also: How to... Optimize the Server Project , Server Summary Information

Channel Creation Wizard
The Channel Creation Wizard steps through the process of configuring a channel (defined by the protocol being
used). Once a channel is defined, its properties and settings are used by all devices assigned to that channel. The
specific properties are dependent on the protocol or driver selected.

1. In the tree view, right-click on the Connectivity node and select New Channel (or choose Edit | Con-
nectivity | New Channel).

www. ptc.com

126

ThingWorx Kepware Server

2. Select type of channel to be created from the drop-down list of available drivers.

3. Click Next.

4. Enter a name for the channel to help identify it (used in tag paths, event log messages, and aliasing).

5. Click Next.

6. Configure the channel properties according to the options and environment.

7. Review the summary for the new channel and choose Back to make changes or Finish to close.

www. ptc.com

127

ThingWorx Kepware Server

Adding and Configuring a Device
Once a channel has been defined, a device can be added. The device identifies a communication link's physical
node or station, and can be thought of as a way to frame the connection's definition to a specific point of interest in
the application. In this respect, a device is the correct term for describing the connection to a database object. As
such, "device" refers to a specific device on a network, support multiple device nodes, and allows users to simulate
networked devices.

Note: In this example, the Simulator Driver is used. The options in device wizard depend on the driver.

1. To start, select the channel to which the device will be added.

2. To start, add a new device to the project by:
clicking Edit | Connectivity | New Device - OR -

clicking the New Device icon on the toolbar - OR -
right-clicking on the Connectivity node in the tree and choosing New Device

3. In the device wizard, leave the name at its default setting "Device1" and click Next.

4. In Model, select either an 8 or 16-bit register size for the device being simulated and click Next.

Note: Other device drivers may require users to select a device model instead. For this example, the
16-bit register size is chosen.

5. In ID, select the device ID (which is the unique identifier required by the actual communications protocol).
Then, click Next.

www. ptc.com

128

ThingWorx Kepware Server

Note: The device ID format and style depend on the communications driver being used. For the Sim-
ulator Driver, the device ID is a numeric value.

6. In Scan Mode, specify the device's scan rate. Then, click Next.

7. For the Simulator Driver, the next page is the Device Summary. Other drivers may have additional device
wizard pages that allow the configuration of other properties (such as Timing). For more information, refer
to Device Properties.

8. Once complete, click Finish.

Note: With the server's online full-time mode of operation, the server can start providing OPC data immediately.
At this point, however, the configuration can potentially be lost because the project hasn't been saved. Before sav-
ing, users can add tags to the server. For more information, refer to Adding User-Defined Tags.

Device Creation Wizard
The Device Creation Wizard steps through the process of configuring a device for communication and data col-
lection. The specific properties are dependent on the protocol or driver selected.

1. In the tree view, locate and select the channel to which device(s) are being added.

2. Right-click and select New Device or choose Edit | Connectivity | New Device).

3. Enter a name for the device to help identify it (used in tag paths, event log messages, and aliasing).

4. Click Next.

5. Configure the device properties according to the options and environment.

6. Review the summary for the new device and choose Back to make changes or Finish to close.

www. ptc.com

129

Device_Properties_Operating_Mode.htm

ThingWorx Kepware Server

Adding User-Defined Tags (Example)
The server can get data from a device to the client application in two ways. The most common method requires that
users define a set of tags in the server project and uses the name previously assigned to each tag as the item of
each link between the client and the server. This method makes all user-defined tags available for browsing within
OPC clients.

 User-defined tags support scaling. For more information, refer to Adding Tag Scaling.
 Some situations support browsing for and selecting multiple tags. For more information, refer to Browsing for

Tags.

1. To start, select a device name from the Connectivity tree node. In this example, the selected device is
"Device1".

2. Click Edit | Connectivity | New Tag. Alternatively, right-click on the device and select New Tag.

3. In Tag Properties — General, edit the properties to match the following:

l Tag Name MyFirstTag

l Address R000

l Description (Optional) My First Simulator Tag

l Data Type Word

l Client Access read / write

l Scan Rate 100 milliseconds. This property does not apply to OPC tags.

For more information, refer to Tag Properties — General.

4. If necessary, use Hints to determine the driver's correct settings. To invoke Hints, click on the question
mark icon in Tag Properties.

 Note The Address, Data Type, and Client Access fields depend on the communications driver. For
example, in the Simulator Driver, "R000" is a valid address that supports a data type of Word and has read /
write access.

5. For additional information, click Help. This invokes the "Address Descriptions" topic in the driver's help doc-
umentation.

6. Commit the tag to the server by pressing Apply. The tag should now be visible in the server.

7. In this example, a second tag must be added for use in Tag Properties — Scaling. To do so, click the New
icon in Tag Properties — General. This returns the properties to their default setting.

8. Enter the following:

www. ptc.com

130

ThingWorx Kepware Server

l Tag Name MySecondTag

l Address K000

l Description My First Scaled Tag

l Data Type Short

l Client Access read / write

9. Next, commit the new tag to the server by pressing Apply. The tag should now be visible in the server.

Error Messages
When entering tag information, users may be presented with an occasional error message from the server or
driver. The server generates error messages when users attempt to add a tag using the same name as an existing
tag. The communications driver generates errors for three possible reasons:

1. If there are any errors entered in the address's format or content (including in the range of a particular
device-specific data item).

2. When the selected data type is not available for the address.

3. If the selected client access level is not available for the address.

For more information on a specific error message, refer to Error Descriptions.

Dynamic Tag Addressing
Dynamic tag addressing defines tags solely in the client application. Instead of creating a tag item in the client that
addresses another tag item that has been created in the server, users only need to create a tag item in the client
that directly accesses the device address. On client connect, the server creates a virtual tag for that location and
start scanning for data automatically.

For more information, refer to Dynamic Tags.

Tips:

1. The server creates a special Boolean tag for every device in a project that can be used by a client to determ-
ine whether that device is functioning properly. To use this tag, specify the item in the link as "Error". This
tag is zero if the device is communicating properly, or one if the device is not.

2. If the data type is omitted, the driver chooses a default data type based on the device and address being ref-
erenced. The default data types for all locations are documented in the driver's help documentation. If the
data type specified is not valid for the device location, the server rejects the tag and an error posts in the
Event Log.

3. If a device address is used as the item of a link (such that the address matches the name of a user-defined
tag in the server), the link references the address pointed to by the user-defined tag. With the server's
online full-time operation, users can start using this project in an OPC client at this time.

Browsing for Tags
The server supports browsing for available tags and, in some cases, selecting multiple tags to add to a project.

1. Access the Tag Browser dialog box.

www. ptc.com

131

ThingWorx Kepware Server

2. If the Include system / internal tag groups is available, enable to enable making these groups available for
selection.

3. If the Branch level tag selection is available, enable to enable selection of branch nodes in the tree view on
the left (which selects all the associated tags in the right).

4. Navigate the tree in the left pane to locate the branch containing the tag(s) to add.

5. Unless Branch level tag selection is enabled, select the tag(s) in the right pane. Where adding multiple
tags is supported, standard keyboard functions (Shift, Ctrl) work to select multiple tags.

6. Click Apply.

See Also: Adding User Tags

Generating Multiple Tags
The Multiple Tag Generation Tool dynamically creates tags using user-defined driver nomenclature. For inform-
ation on using the tool, refer to the instructions below.

For more information on its properties, refer to Multiple Tag Generation.

1. To start, select a device and click Edit | Connectivity | New Tag. Alternatively, right-click on a device and
select New Tag.

2. In Tag Properties, select the Multiple Tag Generation icon (located to the bottom-right of the Identification
properties).

3. In Multiple Tag Generation, define the tag name, then configure the Data Properties properties as
desired.

www. ptc.com

132

ThingWorx Kepware Server

4. Click Add Static Text. In this group, enter the text as desired. Once finished, press OK.

5. Click Add Numeric Range. In this group, enter the base system, range, and increment. Once finished,
press OK.

6. Click Add Text Sequence. In this group, enter the text as desired. Separate each entry with a new line.
Once finished, press OK.

www. ptc.com

133

ThingWorx Kepware Server

7. Click Preview.

Note: Valid tags are displayed with a green checkmark. Invalid tags are displayed with a red x.

8. To add the tags as a group, use Add as Group.

www. ptc.com

134

ThingWorx Kepware Server

9. To change a tag's name or starting value, select Tag Name. Once finished, click OK.

10. To generate the tags, click Generate. If the generation is successful, users return to the Multiple Tag Gen-
eration dialog.

11. Click Close. Then, click OK. The generated tags should be visible in the tag display window.

See Also: Multiple Tag Generation

Adding Tag Scaling
Users have the option of applying tag scaling when creating a new tag in the server. This allows raw data from the
device to be scaled to an appropriate range for the application. There are two types of scaling: Linear and Square
Root. For more information, refer to Tag Properties — Scaling.

1. To start, open the tag's Tag Properties.

2. Open the Scaling group.

3. For Type, select Linear or Square Root.

4. Specify the expected data range from the device with the high and low values and clamps. The scaled data
type also allows users to specify how the resulting scaled value is presented to the OPC client application.

5. In Units, specify a string to the OPC client that describes the format or unit for the resulting engineering
value. To use the Units field, an OPC client that can access the Data Access 2.0 tag properties data is
required. If the client does not support these features, there is no need to configure this field.

6. Once the data has been entered as shown above, click OK.

Saving the Project
There should be a project configured with user-defined tags ready to be saved. How the project is saved depends
on whether the project is a Runtime project or an offline project.

www. ptc.com

135

ThingWorx Kepware Server

When editing a Runtime project, the server's online full-time operation allows immediate access to tags from a cli-
ent once it has been saved to disk. Because the changes are made to the actual project, users can save by clicking
File | Save.

There are several valid file formats for project files: .OPF, .SOPF, and .JSON. The .OPF format is a binary project
file format that is not encrypted. The .JSON (JavaScript Object Notation) format, while convenient, is human read-
able and text based, making it a less secure option to be used only where other security measures are in place. It is
recommended that users save projects as .SOPF files as this file type is encrypted and the most secure way to
save project files.

Users can overwrite the existing project or save edits as a new project and are also given the option of loading the
new project as the default Runtime project.

Open a saved project by choosing File | Open to locate and select the project file.

When editing an offline project, users have the option to save to the same project or to save as a new project. Once
completed, click Runtime | Connect and load the new project as the default Runtime project.

www. ptc.com

136

ThingWorx Kepware Server

When saving a new project with project file encryption enabled (on by default), a password must be set. Enter a
password or select No encryption (not recommended) and click Save. The password can be modified and project
encryption can be turned on or off under Project Properties | General | Project File Encryption. Click Cancel to
stop without saving the project.
The password must be at least 14 characters and no more than 512. Passwords should include a mix of upper-

case and lowercase letters, numbers, and special characters. Choose a strong unique password that avoids well-
known, easily guessed, or common passwords. Projects that are saved as encrypted files with a password are
saved as .SOPF files. The .JSON and .OPF files are not supported options for encrypted projects.
Note: An OPC client application can automatically invoke an OPC server when the client needs data. The OPC

server, however, needs to know what project to run when it is called on in this fashion. The server loads the most
recent project that has been loaded or configured. To determine what project the server will load, look to the Most
Recently Used file list found in File. The loaded project is the first project file listed.

Project files are saved into the following directory by default:
C:\Users\<username>\PTC\ThingWorx Kepware Server\V6

The server automatically saves copies of the project in the following directory:
C:\ProgramData\PTC\ThingWorx Kepware Server\V6

Tip: If the file has been saved to an alternate location; search for *.OPF, *.SOPF, or *.json to locate available pro-
ject files.

See Also: Application Data

Opening an Encrypted Project
When opening a project file that has been saved with project file encryption enabled, the user is prompted to enter
the password.

www. ptc.com

137

ThingWorx Kepware Server

Enter the password used to encrypt the project file and click OK (or click Cancel to terminate the file open oper-
ation).

Project files are saved to the data directory by default. For more information about saving files and file locations,
see Application Data and Saving Project Files.

Testing the Project
The server includes a full-featured OPC Quick Client that supports all of the operations available in any OPC client
application. The Quick Client can access all of the data available in the server application, and is used to read and
write data, perform structured test suites, and test server performance. It also provides detailed feedback regarding
any OPC errors returned by the server.

1. To start, locate the OPC Quick Client program in the same program group as the server. Then, run the OPC
Quick Client.

www. ptc.com

138

ThingWorx Kepware Server

2. Establish a connection by clicking Edit | New Server Connection.

3. In Server Properties, make connections with an OPC server either locally or remotely via DCOM. By
default, this dialog is pre-configured with the server's Prog ID (which is used by OPC clients to reference a
specific OPC server).

Note: Once a connection is made, two things may happen. If the server is running, the OPC Quick Client
makes a connection to the server. If the server is not running, it starts automatically.

4. Add a group to the connection. To do so, select the server connection and click Edit | New Group.

www. ptc.com

139

ThingWorx Kepware Server

Note: Groups act as a container for any tags accessed from the server and provide control over how
tags are updated. All OPC clients use groups to access OPC server data. A number of properties are
attached to a group that allow the OPC client to determine how often the data should be read from the tags,
whether the tags are active or inactive, whether a dead band applies, and so forth. These properties let the
OPC client control how the OPC server operates. For more information on group properties, refer to the
OPC Quick Client help documentation.

5. For the purpose of this example, edit the group properties to match the following image.

Note: The Update Rate, Percent Dead Band, and Active State properties control when and if data is
returned for the group's tags. Descriptions of the properties are as follows:

l Name: This property is used for reference from the client and can actually be left blank.

l Update Rate: icon to open how often data is scanned from the actual device and how often data is
returned to the OPC client as a result of that scan.

l Percent Dead Band: This property eliminates or reduces noise content in the data by only detect-
ing changes when they exceed the percentage change that has been requested. The percent
change is a factor of the data type of a given tag.

l Active State: This property turns all of the tags in this group either on or off.

6. Once complete, click OK.

www. ptc.com

140

ThingWorx Kepware Server

Accessing Tags
OPC server tags must be added to the group before they can be accessed. OPC data access specifications define
a tag browsing interface as one that allows an OPC client to directly access and display the available tags in an
OPC server. By allowing the OPC client application to browse the tag space of the OPC server, click on the desired
tags to automatically add them to a group.

1. To start, select the group in which tags will be placed. Click Edit | New Item.

Note: The Add Items dialog also provides a tree view of the Browsing section and can be used to
browse into an OPC server to find tags configured at the server. When using the "Example1" project, users
can access the tags previously defined by expanding the branches of the view.

2. Once the tree hierarchy is at the point shown in the image above, users can begin adding tags to the OPC
group by double-clicking on the tag name. As tags are added to the group, the Item Count shown at the bot-
tom of the Add Items dialog increases to indicate the number of items being added. If both "MyFirstTag"
and "MySecondTag" were added, the item count should be 2.

3. Once complete, click OK.

Note: Users should now be able to access data from the server using the two tags that were defined.

www. ptc.com

141

ThingWorx Kepware Server

Note: The first tag, "MyFirstTag," should contain a changing value. The second tag should be zero at
this point. If users only needed to test the reading of an OPC item, they are now finished. If, however, users
desired to change an OPC item, they can use one of the write methods to send new data to the OPC item.

Writing Data to the OPC Server
The OPC Quick Client supports two methods for writing data to an OPC server: Synchronous Writes and Asyn-
chronous Writes. Synchronous writes perform a write operation on the OPC server and wait for it to complete. Asyn-
chronous writes perform a write on the OPC server but do not wait for the write to complete. Either method can be
chosen when writing data to an OPC item: the different write methods are more of a factor in OPC client application
design.

1. To start, first select the item. Then, right-click and select Synchronous or Asynchronous Writes. For the
purpose of this example, right-click on "MyFirstTag" and select Asynchronous Write.

Note: Although the Asynchronous 2.0 Write dialog is displayed, the value continues to update.

2. To enter a new value for this item, click Write Value and enter a different value.

3. Click Apply to write the data. This allows users to continue writing new values, whereas clicking OK writes
the new value and closes the dialog.

4. Click OK.

Note: If no new data has been entered, clicking OK does not send data to the server.

Conclusion
At this point, all of the basic steps involved in building and testing an OPC project have been discussed. Users are
encouraged to continue testing various features of the server and the OPC Quick Client for greater understanding
and comprehension. For more information on the OPC Quick Client, refer to its help documentation.

www. ptc.com

142

ThingWorx Kepware Server

Users can now begin developing the OPC application. If using Visual Basic, refer to the supplied example projects.
These two projects provide both a simple and complex example of how OPC technology can be used directly in
Visual Basic applications.

How Do I...
For more information, select a link from the list below.

Allow Desktop Interactions
Create and Use an Alias
Optimize the Server Project
Process Array Data
Properly Name a Channel, Device, Tag, and Tag Group
Resolve Comm Issues When the DNS/DHCP Device Connected to the Server is Power Cycled
Select the Correct Network Cable
Use an Alias to Optimize a Project
Use DDE with the Server
Use Dynamic Tag Addressing
Use Ethernet Encapsulation
Work with Non-Normalized Floating-Point Values

Allow Desktop Interactions
Some communication interfaces require the server to interact with the desktop. For example, Windows Messaging
Layer is used by DDE and FastDDE. In Windows, services run in an isolated session that is inaccessible to users
logged on to the console. To allow desktop interaction, the process mode be set to Interactive so the Runtime can
run in the same user account as the current user. For information on changing the process mode, refer to Settings
- Runtime Process.

See Also: Accessing the Administration Menu

Create and Use an Alias
Complex Tag Reference Example
The image below displays a Complex tag reference in the server.

For example, to create a DDE link to an application for the "ToolDepth" tag, the DDE link must be entered as
"<DDE service name>|_ddedata!Channel1.Device1.Machine1.Cell2.ToolDepth".

Although the DDE link's <application>|<topic>!<item> format still exists, the content becomes more complex when
optional tag groups and the channel name are required as part of the topic. The alias map allows a shorter version
of the reference to be used in DDE client applications.

For more information, refer to What is the Alias Map.

Creating Aliases for Complex Address Paths
For information on creating aliases to simplify complex tag address paths, follow the instructions below.

www. ptc.com

143

ThingWorx Kepware Server

1. In the tree view, select the alias to edit and double-click to open the alias node.

2. In the detail view, right-click and select New Alias (OR choose Edit | Aliases | New Alias).

3. Browse to the group or device that contains the item to be referenced.

4. Enter an alias name to represent the complex tag reference. This alias name can now be used in the client
application to address the tag found in the server. For information on reserved characters, refer to How
To... Properly Name a Channel, Device, Tag, and Tag Group.

5. The complex topic and item name "_ddedata! Channel1.Device1.Machine1.Cell2" can be replaced by
using the alias "Mac1Cell2". When applied to the example above, the DDE link in the application can be
entered as "<DDE service name>|Mac1Cell2!ToolDepth".

Note: Although possible, it is not recommended that users create an alias that shares a name with a channel.
The client's item fails if it references a dynamic address using the shared name. For example, if an alias is named
"Channel1" and is mapped to "Channel1.Device1," an item in the client that references

www. ptc.com

144

ThingWorx Kepware Server

"Channel1.Device1.<address>" is invalid. The alias must be removed or renamed so that the client's reference can
succeed.

See Also: Alias Properties

Optimize a Server Project
Nearly every driver of this server supports at least 100 channels; meaning, 100 COM / serial ports or 100 source
sockets for Ethernet communications. To determine the number of supported channels available for each device,
refer to the Driver Information under Server Summary Information.

This server refers to communications protocols as a channel. Each channel defined in the application represents a
separate path of execution in the server. Once a channel has been defined, a series of devices must be defined
under that channel. Each of these devices represents a single device from which data is collected. While this
approach to defining the application provides a high level of performance, it won't take full advantage of the driver
or the network. An example of how the application may appear when configured using a single channel is shown
below.

Each device appears under a single channel. In this configuration, the driver must
move from one device to the next as quickly as possible to gather information at an
effective rate. As more devices are added or more information is requested from a
single device, the overall update rate begins to suffer.

If the driver could only define one single channel, the example shown above would be the only option available.
Using multiple channels distributes, however, the data collection workload by simultaneously issuing multiple
requests to the network. An example of how the same application may appear when configured using multiple chan-
nels to improve performance is shown below.

Each device has now been defined under its own channel. In this new configuration,
a single path of execution is dedicated to the task of gathering data from each
device. If the application has fewer devices, it can be optimized exactly how it is
shown here.

The performance improves even if the application has more devices than channels.
While 1 device per channel is ideal, the application benefits from additional chan-
nels. Although by spreading the device load across all channels causes the server
to move from device to device again, it does so with far fewer devices to process on
a single channel.

 This same process can be used to make multiple connections to one Ethernet device. Although the OPC server
may allow 100 channels for most drivers, the device ultimately determines the number of allowed connections. This
constraint comes from the fact that most devices limit the number of supported connections. The more connections
that are made to a device, the less time it has to process request on each connect. This means that there can be an
inverse tradeoff in performance as connections are added.

Process Array Data
Many of the drivers available for this server allow clients to access data in an array format. Arrays allow the client
application to request a specific set of contiguous data in one request. Arrays are one specific data type; users
would not have an array with a combination of Word and DWord data types. Furthermore, arrays are written to in
one transaction. To use arrays in the server, the client application must support the ability to at least read array
data.

www. ptc.com

145

ThingWorx Kepware Server

Processing Array Data in a DDE Client
Array data is only available to the client when using CF_TEXT or Advanced DDE clipboard formats.

For client applications using Advanced DDE, the number of elements in the array is specified in the SPACKDDE_
DATAHDR_TAG structure. Only single dimensional arrays are supported by this protocol. This structure should be
used when poking array data to the server.

For clients using CF_TEXT, one or two-dimensional arrays are supported. Data in each row is separated by a TAB
(0x09) character and each row is terminated with a CR (0x0d) and a LF (0x0a) character. When a client wants to
poke an array of data values, the text string written should have this delimiter format.

When poking to an Array tag in either format, the entire array does not need to be written, but the starting location is
fixed. If attempting to poke data in an array format to a tag that was not declared as an array, only the first value in
the array is written. If attempting to poke more data than the tag's array size, only as much data as the tag's array
size is written. If attempting to poke data while leaving some data values blank, the server uses the last known
value for that array element when writing back to the device. If the value in that register has been changed but has
not been updated in the server, it is overwritten with the old value. For this reason, it is best to be cautious when
writing data to arrays.

Processing Array Data in an OPC Client
In OPC clients that support arrays, the OPC item data value is actually a variant array data type. The OPC client
parses the array element data: some clients create sub tags for display purposes. For example, if the OPC client
created a tag in its database named 'Process,' and the associated OPC item was a single dimensional array of 5
elements, it may create 5 tags named 'Process_1', 'Process2,' and so forth. Other clients (such as the OPC Quick
Client) may display the data as Comma Separated Values (CSV).

Properly Name a Channel, Device, Tag, and Tag Group
When naming a channel, device, tag, or tag group, the following characters are reserved or restricted:

l Periods
l Double quotation marks
l Leading underscores
l Leading or trailing spaces

Note: Some of the restricted characters can be used in specific situations. For more information, refer to the list
below.

1. Periods are used in aliases to separate the original channel name and the device name. For example, a
valid name is "Channel1.Device1".

2. Underscores can be used after the first character. For example, a valid name is "Tag_1".

3. Spaces may be used within the name. For example, a valid name is "Tag 1".

Tip: Tag names must be unique. Tag group names must be unique. In addition, some UA Clients do not cor-
rectly interpret tag group and tag names that match, so it is NOT recommended to have any duplicate names
across tag group names and tag names.

Resolve Comm Issues when Server is Power Cycled
Certain drivers support DNS/DHCP resolution for connectivity, which allows users to assign unique domain / net-
work names for identification purposes. When starting and connecting to the network, the devices request an IP
address from the network DNS server. This process of resolving a domain name to an IP address for connectivity
takes time. For greater speed, the operating system caches all of the resolved IP / domain names and re-uses
them. The resolved names are held in cache for two hours by default.

 The server fails to reconnect to a device when the name of the IP address associated with the device's domain /
network changes. If this change is a result of the device being power cycled, it acquires a new IP. This change may
also be a result of the IP being manually changed on the device. In both cases, the IP address that was being used
no longer exists.

www. ptc.com

146

ThingWorx Kepware Server

Because the server automatically flushes the cache every 30 seconds, the IP is forced to resolve. If this does not
correct the issue, users can manually flush the cache by typing the command string "ipconfig / flushdns" in the PC's
command prompt.

 For more information, refer to the following Microsoft Support article Disabling and Modifying Client Side DNS
Caching.

Select the Correct Network Cable
Without prior experience of Ethernet enabled devices or serial to Ethernet converters, users may find selecting the
correct network cable a confusing task. There are generally two ways to determine the proper cable setup. If con-
necting to the device or converter through a network hub or switch, users need Patch Cable. A Patch Cable gets its
name from the days when a telephone operator-style board was used to patch or connect devices to each other. If
connecting directly to the device from the PC, however, users need a Crossover Cable. Both of these cables can
be purchased from an electronic or PC supply store.

Use an Alias to Optimize a Project
To get the best performance out of a project, it is recommended that each device be placed on its own channel. If a
project needs to be optimized for communication after it has been created, it can be difficult to change the client
application to reference the new item names. By using an alias map, however, users can allow the client to make
the legacy request to the new Configuration. To start, follow the instructions below.

1. To start, create a new channel for each device. Place the device under the new channel and delete the ori-
ginal channel.

2. Under Alias in the tree view, create a New Alias for each device in the Alias Map. The alias name is the ori-
ginal channel and device name separated by a period. For example, "Channel1.Device1".

For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag
Group.

www. ptc.com

147

http://support.microsoft.com/kb/318803
http://support.microsoft.com/kb/318803

ThingWorx Kepware Server

Note: The server validates any request for items against the alias map before responding back to the client
application with an error that the item does not exist.

Use DDE with the Server
Using DDE in an Application
Dynamic Data Exchange (DDE) is a Microsoft communications protocol that provides a method for exchanging
data between applications running on a Windows operating system. The DDE client program opens a channel to
the DDE server application and requests item data using a hierarchy of the application (service) name, topic name,
and item name.

 For DDE clients to connect to the server interface, the runtime must be allowed to interact with the desktop.
For more information, refer to How to Allow Desktop Interactions.

Example 1: Accessing a Register Locally (Using the Default Topic)
The syntax is <application>|<topic>!<item> where:

l application DDE service name
l topic _ddedata*
l item Modbus.PLC1.40001

*This is the default topic for all DDE data that does not use an alias map entry.

Note: An example of the syntax is "MyDDE|_ddedata!Modbus.PLC1.40001".

www. ptc.com

148

ThingWorx Kepware Server

Example 2: Accessing a Register Locally (Using an Alias Name as a Topic)
The syntax is <application>|<topic>!<item> where:

l application DDE service name
l topic ModPLC1*
l item 40001

*This is the topic using the alias map entry.

Note: An example of the syntax is "MyDDE|ModPLC1!40001" . For additional possible syntax, refer to the DDE
client's specific help documentation.

 See Also:
Project Properties — DDE
Project Properties — FastDDE & SuiteLink
What is the Alias Map?

Use Dynamic Tag Addressing
This server can also be used to dynamically reference a physical device data address from the server. The server
dynamically creates a tag for the requested item. Users cannot browse for tags from one client that were dynam-
ically added by another. Before adding tags dynamically, users should note the following:

l The correct syntax must be used for the data address. For more information on the specific driver's syntax,
refer to its help documentation.

l If users do not specify the requested item's data type, it is set to the default setting by the application. For
more information on the specific driver's supported data types, refer to its help documentation.

Note: In the examples below, the Simulator Driver is used with a channel name of 'Channel1' and a device
name of 'Device1'.

Example 1: Using Dynamic Tag Addressing in a Non-OPC Client
To get data from register 'K0001' in the simulated device, use an item ID of "Channel1.Device1.K001." The default
data type for this register is Short. Since non-OPC clients do not provide an update rate to the server, the Dynamic
tag's default update rate is 100 ms. Both data type and update rate can be overridden after the dynamic request is
sent.

To override the tag defaults, use the commercial AT sign ('@') at the end of the item. If intending to add the register
as a DWord (unsigned 32-bit) data type, use an item ID of "Channel1.Device1.K0001@DWord." To change the
default update rate to 1000 ms, use "Channel1.Device1.K0001@1000." To change both defaults, use "Chan-
nel1.Device1.K0001@DWord,1000."

Note: The client application must be able to accept special characters like the '@' in its address space.

Example 2: Using Dynamic Tag Addressing in an OPC Client
In an OPC client, the same syntax can be used to override the data type if the client application does not provide a
way to specify a data type when the OPC item is added. Since the item's update rate is not used in OPC, there is no
need to override it.

Note: The client application must be able to accept special characters like the '@' in its address space.

Use Ethernet Encapsulation
Ethernet Encapsulation mode is designed to provide communications with serial devices connected to terminal
servers on the Ethernet network. A terminal server is essentially a virtual serial port that converts TCP/IP mes-
sages on the Ethernet network to serial data. Once the message has been converted to serial form, users can con-
nect standard devices that support serial communications to the terminal server. The diagram below shows how to
employ Ethernet Encapsulation mode.

www. ptc.com

149

ThingWorx Kepware Server

Note: For unsolicited drivers that support Ethernet Encapsulation, users must configure the port and the protocol
settings at the channel level. This allows the driver to bind to the specified port and process incoming requests from
multiple devices. An IP address is not entered at the channel because the channel accepts incoming requests from
all devices.

Ethernet Encapsulation can be used over wireless network connections (such as 802.11b and CDPD packet net-
works) and has been developed to support a wide range of serial devices. By using a terminal server device, users
can place RS-232 and RS-485 devices throughout the plant operations while still allowing a single localized PC to
access the remotely mounted devices. Furthermore, Ethernet Encapsulation mode allows an individual network IP
address to be assigned to each device as needed. While using multiple terminal servers, users can access hun-
dreds of serial devices from a single PC.

Configuring Ethernet Encapsulation Mode
To enable Ethernet Encapsulation mode, open Channel Properties and select the Serial Communications group.
In the Connection Type drop-down menu, select Ethernet Encap.

Note: Only the drivers that support Ethernet Encapsulation allows the option to be selected.

www. ptc.com

150

ThingWorx Kepware Server

Note: The server's multiple channel support allows up to 16 channels on each driver protocol. This allows users
to specify one channel to use the local PC serial port and another channel to use Ethernet Encapsulation mode.

 When Ethernet Encapsulation mode is selected, the serial port settings (such as baud rate, data bits, and parity)
are unavailable. After the channel has been configured for Ethernet Encapsulation mode, users must configure the
device for Ethernet operation. When a new device is added to the channel, the Ethernet Encapsulation settings can
be used to select an Ethernet IP address, an Ethernet Port number, and the Ethernet protocol.

Note: The terminal server being used must have its serial port configured to match the requirements of the serial
device to be attached to the terminal server.

Work with Non-Normalized Floating-Point Values
A non-normalized floating-point value is defined as Infinity, Not-a-Number (NaN), or as a Denormalized Number.
For more information, refer to the table below.

Term Definition

Non-Normalized
Floating-Point
Value

An IEEE-754 floating point number that is one of the following:

l Negative Infinity to Quiet Negative NaN.
l Positive Infinity to Quiet Positive NaN.
l Negative Denormalized Values.
l Positive Denormalized Values.

NaN A number that exists outside of the range that may be represented as floating points. There
are two types of NaN representations: Quiet and Signaling.*

Denormalized
Number

A non-zero floating point number whose magnitude is less than the magnitude of the smal-
lest IEEE 754-2008 value that may be represented for a Float or a Double.

l For Floats, these include numbers between -1.175494E-38 and -1.401298E-45
(Negative Denormalized) and 1.401298E-45 and 1.175494E-38 (Positive Denor-
malized).

l For Doubles, these include numbers between -2.225074E-308 and -4.940657E-
324 (Negative Denormalized) and 4.940657E-324 and 2.225074E-308 (Positive
Denormalized).

*A floating-point value that falls within the Signaling NaN range is converted to a Quiet NaN before being trans-
ferred to a client for Float and Double data types. To avoid this conversion, use a single element floating-point
array.

Handling Non-Normalized IEEE-754 Floating-Point Values
Users can specify how a driver handles non-normalized IEEE-754 floating point values through the "Non-Normal-
ized Value Should Be" property located in Channel Properties — Advanced. When Unmodified is selected, all val-
ues are transferred to clients without any modifications. For example, a driver that reads a 32-bit float value of
0xFF800000(-Infinity) transfers that value "as is" to the client. When Replaced with Zero is selected, certain values
are replaced with zero before being transferred to clients. For example, a driver that reads a 32-bit float value of
0xFF800000(-Infinity) are replaced with zero before being transferred to a client.

Note: For information on which values are replaced with zero before being transferred to clients, refer to the
tables below.

IEEE-754 Range for 32-Bit Floating-Point Values

www. ptc.com

151

ThingWorx Kepware Server

Name
Hexadecimal
Range

Decimal Range

Quiet -NaN 0xFFFFFFFF to
0xFFC00001 N/A

Quiet +NaN 0x7FC00000 to
7FFFFFFF N/A

Indeterminate 0xFFC00000 N/A

Signaling -NaN 0xFFBFFFFF to
0xFF800001 N/A

Signaling +NaN 0x7F800001 to
7FBFFFFF N/A

-Infinity
(Negative Over-
flow)

0xFF800000 ≤ -3.4028235677973365E+38

+Infinity
(Positive Over-
flow)

0x7F800000 ≥ 3.4028235677973365E+38

Negative Normal-
ized
-1.m × 2(e-127)

0xFF7FFFFF to
0x80800000 -3.4028234663852886E+38 to -1.1754943508222875E-38

Negative Denor-
malized
-0.m × 2(-126)

0x807FFFFF to
0x80000001

-1.1754942106924411E-38 to -1.4012984643248170E-45 (-
7.0064923216240862E-46)

Positive Denor-
malized
0.m × 2(-126)

0x00000001 to
0x007FFFFF

(7.0064923216240862E-46) * 1.4012984643248170E-45
to 1.1754942106924411E-38

Positive Normal-
ized
1.m × 2(e-127)

0x00800000 to
0x7F7FFFFF 1.1754943508222875E-38 to 3.4028234663852886E+38

IEEE-754 Range for 64-Bit Floating-Point Values

Name Hexadecimal Range Decimal Range

Quiet -NaN 0xFFFFFFFFFFFFFFFF to
0xFFF8000000000001 N/A

Quiet +NaN 0x7FF8000000000000 to
0x7FFFFFFFFFFFFFFF N/A

Indeterminate 0xFFF8000000000000 N/A

Signaling -
NaN

0xFFF7FFFFFFFFFFFF to
0xFFF0000000000001 N/A

Signaling
+NaN

0x7FF0000000000001 to
0x7FF7FFFFFFFFFFFF N/A

-Infinity
(Negative
Overflow)

0xFFF0000000000000 ≤ -1.7976931348623158E+308

+Infinity
(Positive Over-
flow)

0x7FF0000000000000 ≥ 1.7976931348623158E+308

Negative
Normalized
-1.m × 2(e-
1023)

0xFFEFFFFFFFFFFFFF to
0x8010000000000000

-1.7976931348623157E+308 to -2.2250738585072014E-
308

Negative
Denormalized
-0.m × 2(-

0x800FFFFFFFFFFFFF to
0x8000000000000001

-2.2250738585072010E-308 to -4.9406564584124654E-
324 (-2.4703282292062328E-324)

www. ptc.com

152

ThingWorx Kepware Server

Name Hexadecimal Range Decimal Range
1022)

Positive
Denormalized
0.m × 2(-
1022)

0x0000000000000001 to
0x000FFFFFFFFFFFFF

(2.4703282292062328E-324) * 4.9406564584124654E-
324 to 2.2250738585072010E-308

Positive
Normalized
1.m × 2(e-
1023)

0x0010000000000000 to
0x7FEFFFFFFFFFFFFF

2.2250738585072014E-308 to
1.7976931348623157E+308

Configuration API Service
The Configuration API allows an HTTPS RESTful client to add, edit, read, and delete objects such as channels,
devices, and tags in the server. The Configuration API offers the following features:

l Object definition in standard human-readable JSON data format
l Support for triggering and monitoring actions on some objects within the server
l Security via HTTP basic authentication and HTTP over SSL (HTTPS)
l Support for user-level access based on the User Manager and Security Policies Plug-In
l Transaction logging with configurable levels of verbosity and retention

Note: This document assumes familiarity with HTTPS communication and REST concepts.

Initialization - The Configuration API is installed as a Windows servicedaemon and starts automatically with the
system.
Operation - The Configuration API supports connections and commands between the server and REST clients.
Shutdown - If the Configuration API must be stopped, use the Windows Service Control Manager to terminate the
Configuration API service.
If the Configuration API must be stopped, use the systemctl to stop the service.

Security
REST clients to the Configuration API must use HTTPS Basic Authentication or Bearer Token Authentication. The
user credentials are defined in the server User Manager User Group. Initial login to the Configuration API with
Basic Authentication uses the Administrator username and the password set during installation. Additional users
and groups should be created to allow the appropriate access; an Active Directory user is required to use Bearer
Token Authentication.

For information regarding how to use the Configuration API with Active Directory users, see the User Manager.

The product Administrator password must be at least 14 characters and no more than 512 characters. Pass-
words should be at least 14 characters and include a mix of uppercase and lowercase letters, numbers, and special
characters. Choose a strong unique password that avoids well-known, easily guessed, or common passwords.

The Administrator user account password cannot be reset, but additional administrative users can be added to
the Administrator user group. Best practices suggest each user with administrative access be assigned unique
accounts and passwords to ensure audit integrity and continual access through role and staff changes.

Individual user accounts are locked for 10 minutes after 10 successive login attempts with different, incorrect
passwords.

Documentation
Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable

actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-
port>/config/ (for default configurations).

Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-
umentation, include an “Accept” request header with “application/json”.

www. ptc.com

153

ThingWorx Kepware Server

Configuration API Service — Architecture
The diagram below shows the layout of the components. The Configuration API Service is installed on the same
machine with the server.

Configuration API Service — Documentation Endpoint
The documentation endpoint can be used to retrieve information about the various endpoints, including:

l Supported properties of the endpoint
l Child nodes of the endpoint
l Property meta data (default values, state, data ranges, etc.)
l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.
 Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

Supported Actions

HTTP(S) Verb Action
GET Retrieves the current server properties

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/doc
Accessing the documentation endpoint URL via a browser prompts for authentication. User credentials must be

used to access the documentation.

Configuration API Service — Endpoint Mapping
The Configuration API allows uses the following endpoint mapping scheme:

Documentation Endpoints
/config
/config/{version}/doc

www. ptc.com

154

ThingWorx Kepware Server

/config/{version}/doc/drivers/{driver_name}/channels
/config/{version}/doc/drivers/{driver_name}/devices
/config/{version}/doc/drivers/{driver_name}/models
/config/{version}/doc/drivers

Tip: The /config/{version}/doc endpoint provides a list of all endpoints for configuration objects and the doc-
umentation endpoints for the specific object. This can be used to find definitions for all objects in the API.

Project Connectivity Elements
/config/{version}/project
/config/{version}/project/aliases
/config/{version}/project/aliases/{alias_name}
/config/{version}/project/channels
/config/{version}/project/channels/{channel_name}
/config/{version}/project/channels/{channel_name}/devices
/config/{version}/project/channels/{channel_name}/devices/{device_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags/{tag_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags/{tag_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags/{tag_name}

Server Administration Endpoints
/config/{version}/admin
/config/{version}/admin/server_usergroups
/config/{version}/admin/server_users
/config/{version}/admin/ua_endpoints
/config/{version}/admin/config_api_settings
/config/{version}/admin/config_api_settings/configapi/bearer_auth_settings

Log Endpoints
/config/{version}/log
/config/{version}/event_log
/config/{version}/transaction_log
/config/{version}/audit_log

Health Status Endpoint
/config/{version}/status

About Endpoint
/config/{version}/about

Plug-in Endpoints
Plug-ins are considered project extensions and are managed under the Project endpoint:
/config/{version}/project/{namespace}
/config/{version}/project/{namespace}/{collection}
/config/{version}/project/{namespace}/{collection}/{object_name}

www. ptc.com

155

ThingWorx Kepware Server

Configuration API Service — Health Status Endpoint
The health status endpoint is used to retrieve information about the Configuration API REST service status. The
two values returned from a successful Health Status check are "Name" and "Healthy". Name represents the name
of the server being checked and Healthy represents if the service is running or not. The Configuration API REST
Service is "healthy" if the value returned is true. If the Configuration API service is unhealthy, no response is
returned.

l Supported properties of the endpoint
l Child nodes of the endpoint
l Property meta data (default values, state, data ranges, etc.)
l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.
 Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

Supported Actions

HTTP(S) Verb Action
GET Retrieves the status of the Config API REST Service

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/status
Accessing the status endpoint URL requires no authentication. Passing in credentials will have the same effect

as its unauthenticated use.

Response Body:
[

{
 “Name”: “ConfigAPI REST service”,
 “Healthy”: true
 }
]

Configuration API Service — About Endpoint
The about endpoint returns relevant product information about the server runtime such as ProductID, Pro-
ductName, and ProductVersion.

Supported Actions

HTTP(S) Verb Action
GET Retrieves the product information about the server runtime

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/about
Accessing the status endpoint URL requires no authentication. Passing in credentials will have the same effect

as its unauthenticated use.

Response Body (Example):
{
 "product_id": "012",
 "product_name": "KEPServerEX",
 "product_version": "V6.12.0.0",
 "product_version_major": 6,
 "product_version_minor": 12,
 "product_version_build": 0,
 "product_version_patch": 0
}

www. ptc.com

156

ThingWorx Kepware Server

Configuration API Service — Concurrent Clients
The Configuration API can serve multiple REST clients at the same time. To prevent a client from editing stale con-
figurations, the Server Runtime maintains a numeric project ID. Each time an object is edited through the Con-
figuration API or the local Configuration client, the Project ID changes. The current project ID is returned in each
GET response. PUT, POST, and DELETE requests will return a new Project ID in the response HTTPS header if
the update to the project is successful. The current project ID must be specified by the client in all PUT requests.

The best practice is to issue a GET request, save the current project ID, and use that ID for the following PUT
request. If only one client is used, the client may put the property “FORCE_UPDATE”: true in the PUT request body
to force the Configuration API server to ignore the project ID.

Configuration API Service — Log Retrieval
Messages from the event log, transaction log, and audit log can be retrieved from a REST client by sending a GET
request to the following endpoint: https://<hostname>:<port>/config/v1/<log_type> where <log_type> can be
replaced with one of the following values:

l event_log
l transaction_log
l audit_log

The response contains the log entries, formatted as comma-separated values.

Event Log (& Filtering)
Audit Log (& Filtering)

Sorting
Sorting allows the log to be sorted by a given property in ascending or descending order using the following prop-
erties:

l sortProperty: The property to sort by (i.e. timestamp)
l sortOrder: The sort order (ascending or descending)

Examples:
https://<hostname_or_ip>:<port>/config/v1/event_log?sortProperty=event&sortOrder=ascending
Sorts Event Log messages by event type in ascending order (from lowest to highest priority: Information, Warning,
Error, Security):

https://<hostname_or_ip>:<port>/config/v1/audit_log?sortProperty=user&sortOrder=ascending
Sorts Audit Log messages by user’s names in ascending order

Pagination
The log response can be paginated to break a long list of log entries into multiple pages. Pagination is enabled
when supplying the pageNumber and / or pageSize parameters:

l pageNumber: Represents the page index being accessed from a paginated response. The page number
must be an integer value between 1 and 2147483647. If this parameter is not specified but pageSize is, the
first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The page
size must be an integer value between 1 and 2147483647. If this parameter is not specified but pageNum-
ber is, 10 items per page are returned by default.

Below is an example of adding the pagination parameters to the endpoint:

l Using both pageSize and pageNumber:

https://<hostname_or_ip>:<port>/config/v1/event_log?pageNumber=1&pageSize=10

https://<hostname_or_ip>:<port>/config/v1/audit_log?pageNumber=5&pageSize=50

www. ptc.com

157

ThingWorx Kepware Server

Note: Sorting and pagination of the logs is limited to the first 100,000 records. This means in Extended Data
Store persistence mode, records beyond 100,000 are not considered for sorting and pagination.

Configuration API Service — Audit Logs
Messages from the audit log can be retrieved from a REST client by sending a GET request to the following end-
point: https://<hostname>:<port>/config/v1/<audit_log>. The response contains the log entries, formatted as
comma-separated values.

Audit Log

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/audit_log
Example Return:
[
{

 "id": 1,
 "timestamp": "2024-12-30T19:31:34.079",
 "action": "Project Add",
 "user": "Administrator",
 "interface": "Configuration Client",
 "details": "Created TagGroup 'Channel1.Device1.Group1'",
 "data": {
 "change": [

{
 "op": "add",
 "path": ".../Channel1/devices/Device1/tag_groups/Group1",
 "value": {
 "common.ALLTYPES_NAME": "Group1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_AUTOGENERATED": false
 }
 }
]
 }
 },
…
]

Filtering
The Configuration API Audit Log endpoint provides the ability to filter log entries using specified filter parameters in
the URI. These filters can be applied individually or combined, enabling you to refine the log query results based on
the criteria outlined below:

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/audit_log?limit=10&filter[user][eq]=Mike&filter
[interface][contains]=Client&filter[action][eq]=Project Edit

The filter[<field>][<mod>] parameter takes a field name to filter on, and an optional modifier.

Supported Field Names
Name Type Description
id number Sequentially increasing unique identifier

timestamp string The time at which the audit event occurred

action string The audit event that occurred (i.e. Project Add)

www. ptc.com

158

ThingWorx Kepware Server

Name Type Description
user string The user that initiated the action

interface string The mechanism though which the change was made

detail string Summary of the action performed

data object Unstructured change data about the audit event

Important Notes for Fields

l By default, all audits are displayed. An unspecified parameter means that everything will be included.
l If any fields outside of the specified ones are included in the filter, an error will occur, and an "invalid query

string" message will be reported.
l All filtering on the data field is treated as a string, so the object should be handled as a string for filtering

purposes.

Supported Modifiers
Modifier Name Description
eq Equals Field must be an exact match. Default if not specified

ne Not equals Audits that do not match the specified field

gt Greater than Values greater than the specified value

lt Less than Values less than the specified value

gte Greater than or equal Values greater than or equal to the specified value

lte Less than or equal Values less than or equal to the specified value

contains Contains Audits with specified field containing this value

starts_with Starts with Audits with specified field starting with this value

ends_with Ends with Audits with specified field ending with this value

ncontains Does not contain Audits with specified field not containing this value

nstarts_with Does not start with Audits with specified field not starting with this value

nends_with Does not end with Audits with specified field not ending with this value

Important Notes for Modifiers:
• The default modifier is assumed to be "equals," unless specified otherwise.
• Using any modifier not included in this list will result in an error, and an "invalid query string" message will be repor-
ted.

All the filters mentioned above can be combined to get specific audit information:

Examples:
config/v1/audit_log?filter[user]=jdoe&filter[action][ne]=Project Add&filter[action][ne]-
]=Project Edit
All audit entries with John Doe that’s not a Project Add or Project Edit
config/v1/audit_log?filter[timestamp][gt]=2021-01-01&filter[timestamp][lt]=2022-01-01
All audit entries between a Jan 1, 2021 to Jan 1 2022

Multiple Filters
To add multiple filters for the same field type, there are two ways to do it with different logical operators applied:

Scenario 1: Single filter with comma-separated values (combined as OR)
Example:
config/v1/audit_log?filter[user]=jdoe,afrank,mscot
Filters for audit entries by users jdoe, afrank, or mscott. Note: The commas act like a logical OR

Scenario 2: Multiple filter queries with single entries (combined as AND)
Examples:
config/v1/audit_log?filter[timestamp][gt]=2021-01-01&filter[timestamp][lt]=2022-01-01

www. ptc.com

159

ThingWorx Kepware Server

Filters for audit entries that occurred after January 1st, 2021, AND before January 1st, 2022
config/v1/audit_log?filter[user][ne]=jdoe&filter[user][ne]=afrank&filter[user][ne]=mscott
Filters for audit entries from all users except jdoe, afrank, and mscott

Note: Sorting and pagination of the eventlog is limited to the first 100,000 records. This means in Extended Data
Store persistence mode, records beyond 100,000 are not considered for sorting and pagination.

Configuration API Service — Event Logs
Messages from the event log can be retrieved from a REST client by sending a GET request to the following end-
point: https://<hostname>:<port>/config/v1/<event_log>. The response contains the log entries, formatted as
comma-separated values.

Event Log

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/event_log
Example Return:
[

{
 "timestamp": "2018-11-13T16:34:57.966",
 "event": "Security",
 "source": "ThingWorxKepwareEdge\\Runtime",
 "message": "Configuration session started by admin as Default User (R/W)."
 },

{
 "timestamp": "2018-11-13T16:35:08.729",
 "event": "Warning",
 "source": "Licensing",
 "message": "Feature Modbus TCP/IP Ethernet is time limited and will expire at
11/13/2019 12:00 AM."
 }
…
]

Filtering

Filtering: The Configuration API Event Log endpoint allows log items to be sorted or limited using filter parameters
specified in the URI. The filters, which can be combined or used individually, allow the results of the log query to be
restricted to a specific event type (Information, Warning, Error, Security) or time period (e.g. events which occurred
since a given date, events which occurred before a given date, or events that occurred between two dates).
Example filtered log query:

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/event_log?event-
t=Warning,Error&limit=10&start=2016-01-01T00:00:00.000&end=2016-01-02T20:00:00.000
where:

1. event = Event type to filter. Multiple event types can be provided as comma-separated list. For instance,
event=Information,Warning,Error,Security. Selects all event types.

2. limit = Maximum number of log entries to return. The default setting is 100 entries.

3. start = Earliest time to be returned in YYYY-MM-DDTHH:mm:ss.sss (UTC) format.

4. end = Latest time to be returned in YYYY-MM-DDTHH:mm:ss.sss (UTC) format.

Note: The Limit filter overrides the result of the specified time period. If there are more log entries in the time
period than the Limit filter allows, only the newest specified quantity of records that match the filter criteria are dis-
played.

www. ptc.com

160

ThingWorx Kepware Server

Configuration API Service — Content Retrieval
Content is retrieved from the server by issuing an HTTP(S) GET request. The URI specified in the request can tar-
get one of the following areas:

1. Online documentation (ex. https://<hostname_or_ip>:<port>/config/v1/doc or /config/v1/doc/drivers)

2. Event log entries (ex. https://<hostname_or_ip>:<port>/config/v1/event_log)

3. Transaction log entries (ex. https://<hostname_or_ip>:<port>/config/v1/transaction_log)

4. Audit log entries (ex. https://<hostname_or_ip>:<port>/config/v1/audit_log)

5. Project configuration (ex. https://<hostname_or_ip>:<port>/config/v1/project or /con-
fig/v1/project/channels/Channel1)

When targeting project configuration, a REST client can specify the type(s) of content that should be returned. In
this context the word “content” refers to a category or categories of data about a collection or object instance.

By default, when a GET request is issued using an endpoint that identifies a collection, the server will return a
JSON array that contains one value for each instance in the collection where each value is a JSON object that con-
tains the properties of the instance.

By default, when a GET request is made using an endpoint that identifies an object instance, the server will return a
JSON object that contains the properties of that instance.

The default behavior of these requests can be altered by specifying one or more “content” query parameters appen-
ded to the URL as in https://<hostname>:<port>/config/v1/project?content=children. The following table shows the
available content types and their applicability to each endpoint type:

Content Type Collection Endpoint Object Instance Endpoint
properties yes yes

property_definitions no yes

property_states no yes

type_definition yes yes

children yes yes

The following table shows the structure of the JSON response for a given content type:

GET Request URI JSON Response Structure

https://<hostname_or_ip>:<-
port>/config/v1/project?content=properties

{
<property name>: <value>,
<property name>: <value>,
...
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_defin-
itions

[
{<property definition>},
{<property definition>},
...
]

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_states

{
“allow”:
{
<property name>: true/false,
<property name>: true/false,
...
},

www. ptc.com

161

ThingWorx Kepware Server

GET Request URI JSON Response Structure
“enable”:
{
<property name>: true/false,
<property name>: true/false,
...
}
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=type_definition

{
"name": <type name>,
"collection": <collection name>,
"namespace": <namespace name>,
"can_create": true/false,
"can_delete": true/false,
"can_modify": true/false,
"auto_generated": true/false,
"requires_driver": true/false,
"access_controlled": true/false,
"child_collections": [<collection
names>]
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=children

{
<collection name>: [
{
“name”: <object instance name>,
“href”: <object instance uri>
},
...
],
<collection name>: [
{
“name”: <object instance name>,
“href”: <object instance uri>
},
...
],
...
}

Multiple content types can be specified in the same request by separating with a comma. For example,
https://<hostname>:<port>/config/v1/project?content=children,type_definition. When multiple types are specified,
the JSON response will contain a single object with a member for each requested content type as in:
{
 “properties”: <properties response structure>,
 “property_definitions”: <property definitions response structure>,
 “property_states”: <property states response structure>,
 “type_definition”: <type definition response structure>,
 “children”: <children response structure>
}

Type Definitions
The following table describes the members of the type definition JSON object.

Member Type Description
name string Object type name.

collection string Collection name. Identifies the collection in which objects of this type will exist. This name

www. ptc.com

162

ThingWorx Kepware Server

Member Type Description
constitutes a valid endpoint that can be addressed using the REST interface.

namespace string
Namespace that implements the object type. Objects that are implemented by the server
exist in the “servermain” namespace. Other namespaces are defined by optional com-
ponents such as drivers, plug-ins and client interfaces.

can_create bool Indicates whether or not instances of this type can be created by an end user. For
example, this is false for the “Project” type because it’s not something that can be created.

can_delete bool Indicates whether or not instances of this type can be deleted by an end user. Again, the
“Project” type is not something that can be deleted.

can_modify bool
Indicates whether or not instances of this type can be modified by an end user. For
example, the server has some auto-generated objects that exist to create a child col-
lection only and do not themselves have any modifiable properties.

auto_gen-
erated bool If true, instances of this type are auto-generated by the server. Typically objects of this

type will have the previous three members defined as “false”.

requires_
driver bool True if instances of this type cannot be created without supplying the name of an installed

driver.

access_
controlled bool True if the server provides group-level access control over the CRUD operations that can

be executed against an instance of this type (see User Manager in server help).

child_col-
lections array

An array of collection names that are supported as children under an object of this type.
For example, if a type includes “devices” in “child_collections”, then object instances of
that type will support one or more “Device” instance as a child.

Property Definitions
A property definition identifies the characteristics of a given property, including the type of data it supports, applic-
able ranges, default value, etc. The JSON structure of a property definition object is defined as follows:

Member Type Description
symbolic_
name string Identifies the property by canonical name in the form <namespace>.<property

name>.

display_
name

localized
string

The name the property would have if shown in the Server Configuration property
editor. Value will be returned in the language the server is currently configured to
use.

display_
description

localized
string

The description the property would have if shown in the Server Configuration
property editor. Value will be returned in the language the server is currently con-
figured to use.

group_name localized
string

The name of the property group in which this property belongs in the Server Con-
figuration property editor. The group represents the high-level category to which
the property belongs. Some objects may have only a single group.

section_
name

localized
string

The name of the collapsible section to which this property belongs in the Server
Configuration property editor. This name would appear right above the property
in the property editor.

read_only Boolean True if the property is informational, not expected to change once initially
defined.

type string Determines the data type of the property value (see “Property Types” below).

minimum_
value

number or
null (applies
to numeric
types)

Minimum value the property can have to be considered valid. If null, there is no
minimum.

maximum_
value

number or
null (applies
to numeric
types)

Maximum value the property can have to be considered valid. If null, there is no
maximum.

minimum_
length

number
(applies to
strings only)

Minimum length a string value may have. 0 means no minimum.

www. ptc.com

163

ThingWorx Kepware Server

Member Type Description

maximum_
length

number
(applies to
strings only)

Maximum length a string value may have. -1 means no maximum.

hints

arrays of
strings
(applies to
strings only)

An array of possible choices that may be assigned to the property value. This
member not included if no hints exist.

enumeration

object
(applies to
enumerations
only)

For enumeration properties, this object identifies the valid name / value pairs the
enumeration can have. Structure is as follows:

{
<name>: number,
<name>: number,
...
}

allow array of
objects

Defines a conditional dependency on one or more other properties that determ-
ines whether this property is relevant. Properties that are not allowed are not
shown in the Server Configuration property editor (see “Allow and Enable Condi-
tions” below).

enable array of
objects

Defines a conditional dependency on one or more other properties that determ-
ines whether this property should be enabled for the client to change. Properties
that are not enabled are grayed out in the Server Config property editor (see
“Allow and Enable Conditions” below).

To get specific information about the property definitions of a specific endpoint, add "?content=property_defin-
itions" to the end of the URL of a GET request.

For example, to get the property definitions for a channel named Channel1 with the server running on the local
host, the GET request would be sent to:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1?content=property_defin-
itions

The returned JSON block would look something like the following:
[

{
 "symbolic_name": "common.ALLTYPES_NAME",
 "display_name": "Name",
 "display_description": "Specify the identity of this object.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 1,
 "maximum_length": 256
 },

{
 "symbolic_name": "common.ALLTYPES_DESCRIPTION",
 "display_name": "Description",
 "display_description": "Provide a brief summary of this object or its use.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 0,

www. ptc.com

164

ThingWorx Kepware Server

 "maximum_length": 255
 },
…

Property Types
The following table describes the different values that a property definition may contain for the “type” member. The
“Value Type” identifies what JSON type the property value should have.

Type Name Value Type Description

AllowDeny bool Describes a property that contains the choices “Allow”=true and
“Deny”= false.

EnableDisable bool Describes a property that contains the choices “Enable”=true and “Dis-
able”= false.

YesNo bool Describes a property that contains the choices “Yes”=true and “No”=
false.

String string Generic string. Properties of this type include minimum_length and max-
imum_length specifiers.

StringArray array
Array of strings. Properties of this type include minimum_length and
maximum_length specifiers that apply to the strings themselves, not the
length of the array.

Password string

Obfuscated string that contains a password. When changing the value
of a property of this type, a plain-text password is expected. Password
values should only be changed over a secure connection.
The Administrator password must be at least 14 characters and no

more than 512 characters.

LocalFileSpec string A fully qualified file specification in the local file system.

UncFileSpec string A fully qualified file specification in a network location.

LocalPathSpec string A fully qualified path specification in the local file system.

UncPathSpec string A fully qualified path specification to a network location.

StringWithBrowser string Describes a property that has a string value (normally chosen from a col-
lection of dynamically generated strings).

Integer number Unsigned 32-bit integer value.

Hex number Unsigned 32-bit integer value intended to be displayed / edited in hexa-
decimal notation.

Octal number Unsigned 32-bit integer value intended to be displayed / edited in octal
notation.

SignedInteger number Signed 32-bit integer value.

Real4 number Single precision floating point value.

Real8 number Double precision floating point value.

Enumeration number One of the possible numeric values from the “enumeration” member of
the property definition.

PropArray object Describes a structure containing members that each have a fixed-
length array of values.

TimeOfDay number Integer value containing the number seconds since midnight that would
define a specific time of day.

Date number Unix time value that specifies midnight on a given date.

DateAndTime number Unix time value that specifies a specific time on a given date.

Blob array
Array of byte values that represents an opaque collection of data. Data
of this type originates in the server and is hashed to prevent modi-
fication.

Allow and Enable Conditions
For definitions that contain allow and/or enable conditions, this is the structure they would have in the JSON:

www. ptc.com

165

ThingWorx Kepware Server

<condition>:
[

{
 “depends_on”: <property name>
 “operation”: “==” or “!=”
 “value”: <value>
 },
...
]

Each condition identifies another property that is a dependent and how it depends as equal or not equal to the
value of that property. More than one dependency can exist, either on the same property or different ones. If mul-
tiple exist, the “operation” will always be the same. Evaluation of the expression to determine the state of the con-
dition when multiple dependencies exist is a logical “or” for “==” and a logical “and” for “!=”.

When using “content=property_states”, the returned JSON describes the outcome of the evaluation of these con-
ditions (if they exist) for each property.

Filtering
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be filtered
by providing a filter query parameter on the URL. If a filter value is specified, the query returns only those objects
that contain the filter value. The collection can be filtered by the Name or Description property. The request only
returns those objects where the Name or Description property contains the filter value. The following example
demonstrates the filter query parameter:

Filter channel list by channels that contain the text "_Siemens" through:
https://<hostname_or_ip>:<port>/config/v1/project/channels?filter=_Siemens
This only returns channel objects that include the string “_Siemens” in the name or description field.

Sorting
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be sorted
by any property. To request sorting, specify a property name and the sort order (ascending or descending). The fol-
lowing examples demonstrate the query parameters for sorting.

Sort channels by description, ascending:
https://<hostname_or_ip>:<-
port>/config/v1/project/channels?sortOrder=ascending&sortProperty&=common.ALLTYPES_
DESCRIPTION)

Sort devices by tag count, descending:
https://<hostname_or_ip>:<-
port>/-
con-
fig/v1/-
project/channels/Simulator/devices?sortOrder=descending&sortProperty=servermain.DEVICE_
STATIC_TAG_COUNT)

Tip: Sorting by a string type property value, such as common.ALLTYPES_NAME, sorts objects by number order-
ing (e.g. “A1”, “A10”, “A11”, “A100”). Sorting by a numeric type property value, such as servermain.CHANNEL_
UNIQUE_ID, sorts objects by numeric value (e.g. 1, 2, 10, 20).

Language Specifications
The server supports multiple languages. It will return localized text to the client in the language it is configured to
use. The client can override the configured language in a GET request by specifying an “Accept-Language” field in
the request header.
See the Protocol Specifications for more information.

As an example, if the server is configured for English and the client wants German, it can specify the following in
the request header: “Accept-Language: de”

www. ptc.com

166

https://www.rfc-editor.org/rfc/rfc9110.html

ThingWorx Kepware Server

Note: If the client specifies a language that is not supported by the server, the currently configured language is
used.

Pagination Parameters

During content retrieval (GET requests) on project configuration endpoints, collections can be paginated to break
up a response into multiple pages. Pagination is enabled when supplying the pageNumber and / or pageSize para-
meters:

l pageNumber: Represents the page index being accessed from a paginated response. The page number
must be an integer value between 1 and 2147483647. If this parameter is not specified but pageSize is, the
first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The page
size must be an integer value between 1 and 2147483647. If this parameter is not specified but pageNum-
ber is, 10 items per page are returned by default.

Below are examples of adding the pagination parameters to a Project Configuration endpoint:

l Requesting both pageSize and pageNumber:
https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=1&pageSize=1

l Requesting the specified number of items with only the pageSize parameter:
https://<hostname_or_ip>:<port>/config/v1/channels/?pageSize=1

Note: without specifying the pageNumber parameter, the first page of results is returned.
l Requesting the specified page with only the pageNumber parameter:

https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=2

Note: without specifying the pageSize parameter, up to 10 items are returned for the specified page.

When information is paginated, an additional object is appended to the body of the collection being retrieved. Here
is an example of pagination information returned with the body of a paginated response:
“pageIndex”: 1,
“totalPages”: 1,
“totalCount”: 1,
“hasPreviousPage”: false,
“hasNextPage”: false

Definitions for the returned pagination information:

l pageIndex: An integer representing page being accessed. This page contains a subset of content returned
from an unpaginated request. The pageIndex value is the same as the pageNumber parameter.

l totalPages: The total integer number of pages used to present the collection content
l totalCount: The number of objects within the entire collection.
l hasPreviouPage: A Boolean value returning true if there are any prior pages with content before the page

being accessed and false otherwise.
l hasNextPage: A Boolean value returning true if there is another page containing objects after the page

being accessed and false otherwise.

The table below describes the pagination behavior based on the parameters supplied in the request:

pageNumber pageSize Paginated? Page Index Returned Items Per Page

N/A N/A False N/A Total

x y True x Up to y

x N/A True x 10

N/A y True 1 Up to y

If no pagination parameters are specified, requests return the entire JSON response body and no pagination
information. Below is an example of a non-paginated request and response:

www. ptc.com

167

ThingWorx Kepware Server

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/

Example JSON response where collection of object size N=2:
[

{
 Object Information
 },

{
 Object Information
 }
]

If the pageNumber and/or pageSize pagination parameters are specified, requests return a subset of the entire
JSON response body with pagination information. Below is an example of a paginated request and response.

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

Example JSON response where collection of object size N=2:
[

{
 Object Information
 },

{
 "pageIndex": 1,
 "totalPages": 2,
 "totalCount": 2,
 "hasPreviousPage": false,
 "hasNextPage": true
 }
]
If a collection is empty and pagination is specified, only the pagination information is returned in the JSON
response body:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

Example JSON response where collection of object size N=0:
[

{
 "pageIndex": 1,
 "totalPages": 0,
 "totalCount": 0,
 "hasPreviousPage": false,
 "hasNextPage": false
 }
]
Pagination only works for collections of objects. If the JSON payload contains a single object instance, pagination
information is not appended to the response.

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>? pageNum-
ber=1&pageSize=1
Note: there is only one channel created in this instance.

Example JSON response where Just an object Instance is returned:

www. ptc.com

168

ThingWorx Kepware Server

[
{

 Object Information
 }
]

Configuration API Service — Server Administration
The server administration endpoint is used to manage general server settings, independent of the currently loaded
project.

Supported Actions
HTTP(S) Verb Action
GET Retrieves the current server properties

PUT Updates the server properties

Child Endpoints
Endpoint Description
https://<hostname_or_ip>:<port>/config/v1/admin/server_user-
groups

Endpoint used to manage the servers user
groups

https://<hostname_or_ip>:<port>/config/v1/admin/server_users Endpoint used to manage the server users

GET /config/v1/admin
Returns the set of server properties as they are configured when the request is processed.

Resource Information

Type Description
Resource URL https://<hostname/port>:<port>/config/v1/admin

Response Format JSON

Parameters

Type Description
content=properties Returns the server properties

content=property_definitions Returns a detailed description for each property in the admin endpoint

content=property_states Returns the property states

content=type_definition Returns the type definitions

content=children Returns a collection of child endpoints underneath the admin endpoint

Properties

Property Name Type Description
common.ALLTYPES_
DESCRIPTION String Provide a brief summary of this object or its use.

libadminsettings.EVENT_
LOG_CONNECTION_PORT Integer

The TCP/IP port number that should be used for the event log. You
may need to configure your network firewall settings to permit com-
munication on this port.

libadminsettings.EVENT_
LOG_PERSISTENCE Enum The persistence mode to use for event log records.

libadminsettings.EVENT_
LOG_MAX_RECORDS Integer The number of records the log can contain. Once reached, oldest

records will be discarded.

libadminsettings.EVENT_
LOG_LOG_FILE_PATH String The directory where log files will be stored.

libadminsettings.EVENT_ Integer The maximum size in KB that any one log file can contain.

www. ptc.com

169

ThingWorx Kepware Server

Property Name Type Description
LOG_MAX_SINGLE_FILE_
SIZE_KB

libadminsettings.EVENT_
LOG_MIN_DAYS_TO_
PRESERVE

Integer The age at which log files whose newest record is older than the spe-
cified value are to be deleted.

libadminsettings.OPC_
DIAGS_PERSISTENCE Enum The persistence mode to use for OPC Diagnostics records.

libadminsettings.OPC_
DIAGS_MAX_RECORDS Integer The number of records the log can contain. Once reached, oldest

records will be discarded.

libadminsettings.OPC_
DIAGS_LOG_FILE_PATH String The directory where log files will be stored.

libadminsettings.OPC_
DIAGS_MAX_SINGLE_FILE_
SIZE_KB

Integer The maximum size in KB that any one log file can contain.

libadminsettings.OPC_
DIAGS_MIN_DAYS_TO_
PRESERVE

Integer The age at which log files whose newest record is older than the spe-
cified value are to be deleted.

libadminsettings.COMM_
DIAGS_PERSISTENCE Enum The persistence mode to use for Communications Diagnostics

records.

libadminsettings.COMM_
DIAGS_MAX_RECORDS Integer The number of records the log can contain. Once reached, oldest

records will be discarded.

libadminsettings.COMM_
DIAGS_LOG_FILE_PATH String The directory where log files will be stored.

libadminsettings.COMM_
DIAGS_MAX_SINGLE_FILE_
SIZE_KB

Integer The maximum size in KB that any one log file can contain.

libadminsettings.COMM_
DIAGS_MIN_DAYS_TO_
PRESERVE

Integer The age at which log files whose newest record is older than the spe-
cified value are to be deleted.

libadminsettings.CONFIG_
API_PERSISTENCE Enum The persistence mode to use for Configuration API records.

libadminsettings.CONFIG_
API_MAX_RECORDS Integer The number of records the log can contain. Once reached, oldest

records will be discarded.

libadminsettings.CONFIG_
API_LOG_FILE_PATH String The directory where log files will be stored.

libadminsettings.CONFIG_
API_MAX_SINGLE_FILE_
SIZE_KB

Integer The maximum size in KB that any one log file can contain.

libadminsettings.CONFIG_
API_MIN_DAYS_TO_
PRESERVE

Integer The age at which log files whose newest record is older than the spe-
cified value are to be deleted.

Configuration API Service — Data
The Configuration API Service receives requests in standard JSON format from the REST client. These requests
are consumed by the server and broken down into create, read, update, or delete commands.

Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable
actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-
port>/config/ (for default configurations).

Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-
umentation, include an “Accept” request header with “application/json”.

www. ptc.com

170

ThingWorx Kepware Server

 Object names containing spaces, or other characters disallowed in URL formatting, must be percent-encoded to
be correctly interpreted by the Configuration API. Percent encoding involves replacing disallowed characters with
their hexadecimal representation. For example, an object named 'default object' is percent-encoded as
default%20object. The following characters are not permitted in a URL and must be encoded:

*spac-
e* ! # $ & ' () * + , / : ; = ? @ []

%20 %2-
1

%2-
3

%2-
4

%2-
6

%2-
7

%2-
8

%2-
9

%2-
A

%2-
B

%2-
C

%2-
F

%3-
A

%3-
B

%3-
D

%3-
F

%4-
0

%5-
B

%5-
D

All leading and trailing spaces are removed from object names before the server validates them. This can create
a discrepancy between the object name in the server and the object name a user provides via the Configuration
API. Users can send a GET on the parent object after sending a PUT/POST to verify the new or modified object
name in the server matches what was sent via the API.

An attempt to perform a POST/PUT/DELETE with the API as a non-admin user fails if a user has the server con-
figuration open at the same time. The error is a 401 status code (unauthorized). Only one user can write to the
runtime at a time; the API cannot take permissions from the server configuration if it has insufficient credentials.

Create an Object
An object can be created by sending an HTTPS POST request to the Configuration API. When creating a new
object, the JSONmust include required properties for the object (ex. each object must have a name), but doesn’t
require all properties. All properties not included in the JSON are set to the default value on creation.

Example POST JSON body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
}

Create Multiple Objects
Multiple objects may be added to a given collection by including the JSON property objects in an array.

Example POST JSON body:
[
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 },
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 }
]

When a POST includes multiple objects, if one or more cannot be processed due to a parsing failure or some other
non-property validation error, the HTTPS status code 207 (Multi-Status) will be returned along with a JSON object
array containing the status for each object in the request.

For example, if two objects are included in the request and the second one specifies a non-validation error (in this
case a parsing error), two objects are output. One is a success, and the other is an error:
[
{

 “code”: 201,
 “message”: “Created”
 },
{

www. ptc.com

171

ThingWorx Kepware Server

 “code”: 400,
 “message”: "Failed to parse JSON document at line 21: Property servermain.CHANNEL_
WRITE_OPTIMIZATIONS_DUTY_CYCLE cannot be converted to the expected type."
 }
]

If the error is a property validation error, the same HTTPS status code 207 is returned, but two error objects are
returned rather than one per property validation error. The basic error object contains the error code and error mes-
sage (such as above). The more comprehensive error message returns the property that caused the error, the error
description, the line of input that caused the error, the error code, and error message.
Tip: When there is a property validation error on multi-object requests, the order of the objects returned main-

tains the sequential order of the input.

For example, if two objects are included in the request and the second one specifies the same name as the first,
this is a property validation error:
{
 “property”: “common.ALLTYPES_NAME”,
 “description”: “The name “Channel1” is already used.”,
 “error_line”: 7,
 “code”: 400,
 “message”: "Validation failed on property common.ALLTYPES_NAME in object definition at
line 7: The name 'Channel1' is already used."
}

The first object returned is a response to successful creation of Channel1, while the second and third response
objects correspond to the property validation error.

Create an Object with Child Hierarchy
An object may be created with a full child object hierarchy beneath it. To do this, include that hierarchy in the POST
request just as it would appear when saved in a JSON project file.

For example, to create a channel with a device underneath it, the following JSON could be used:
{
"common.ALLTYPES_NAME": "Channel1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"devices":
[
{
"common.ALLTYPES_NAME": "Device1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"servermain.DEVICE_MODEL": 0
}
]

}

There is no response body when a child object is created unless there is an error during creation (such as a parsing
error or property validation error). A response header with the Project_ID is returned with a successful request.
That response header includes the Project_ID value, which is a new Project_ID after successful object creation.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Read an Object
An object can be read by sending an HTTPS GET request to the Configuration API. All object properties are
returned on every GET request and each object includes a Project_ID. The Project_ID property is used to track

www. ptc.com

172

ThingWorx Kepware Server

changes in the configuration and is updated on any change from the Configuration API or a server configuration cli-
ent. This property should be saved and used in all PUT requests to prevent stale data manipulations.

Example response body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678
}
The header of a successful GET request contains the Project_ID.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

 See Also: Content Retrieval

Edit an Object
An object can be edited by sending an HTTPS PUT request to the Configuration API. PUT requests require the Pro-
ject_ID or Force_Update property in the JSON body. Setting Force_Update to True ignores Project_ID validation.

Example PUT body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678,
 "FORCE_UPDATE": true
}
Normally, when a PUT request succeeds and all properties are assigned successfully, there is no response body
returned to the client; there is only a 200 status code to indicate success. There can be cases where a property is
included in a PUT request that is not assigned to the object instance by the Server Runtime. In these cases, a
response body will be generated as follows:

The header of a successful PUT request contains the new Project_ID that changed.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Body:
{,
 "not_applied":,

{,
 "servermain.CHANNEL_UNIQUE_ID": 2466304381
 },
 "code": 200,
 "message": "Not all properties were applied. This could be due to active client ref-
erence or property is disallowed/disabled/read-only."
}

www. ptc.com

173

ThingWorx Kepware Server

The response indicates which property or properties were not applied to the object instance where each contains
the value that is actually in use. There are several possible reasons why the property value could not be applied,
such as:

l The property is read-only and cannot be changed.
l There is a client reference on the object that restricts what properties can be updated.
l The property is not allowed based on the values of other properties on which this condition depends.
l The property is not enabled based on the values of other properties on which this condition depends.
l The value was transformed in some way (ex. rounded or truncated).

Delete an Object
An object can be deleted by sending an HTTPS DELETE request to the Configuration API. The Configuration API
does not allow deleting multiple items on the same level with a single request (such as deleting all of the devices in
a channel), but can delete an entire tree (such as deleting a device deletes all its child tags).

The header of a successful DELETE request contains the new Project_ID that changed.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Errors
All Configuration API Service requests return errors in JSON format.

Example:
{
 "code": 400,
 "message": "Invalid property: 'NAME'."
}
See Also: Troubleshooting

Configuration API Service — Channel Properties
The following properties define a channel using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

Note: Changing this property causes the API endpoint URL to change.

common.ALLTYPES_DESCRIPTION

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.CHANNEL_DIAGNOSTICS_CAPTURE

Ethernet Communication Properties

servermain.CHANNEL_ETHERNET_COMMUNICATIONS_NETWORK_ADAPTER_STRING

Advanced Properties

servermain.CHANNEL_NON_NORMALIZED_FLOATING_POINT_HANDLING

www. ptc.com

174

ThingWorx Kepware Server

Write Optimizations

servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD

servermain.CHANNEL_WRITE_OPTIMIZATIONS_DUTY_CYCLE

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Channel
To create a channel via the Configuration API service, only a minimum set of properties are required; all others are
set to the default value. Once a channel is defined, its properties and settings are used by all devices assigned to
that channel. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the channel endpoint.

The example below creates a channel named Channel1 that uses the Simulator driver on a server running on the
local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels
Body:
{
 “common.ALLTYPES_NAME”: “Channel1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

Refer to the driver specific help documentation to find out what properties are required to create a channel for
that driver.

Configuration API Service — Updating a Channel
To update a property or collection of properties on a channel, a GET request must first be sent to the endpoint to be
updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the channel being updated is Channel1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1
The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Channel1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.CHANNEL_DIAGNOSTICS_CAPTURE": false,
 "servermain.CHANNEL_UNIQUE_ID": 2154899492,
 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…
To update or change a channel property, a PUT request is sent to the channel with the Project ID and the new prop-
erty value defined. In the following example, the channel name will change from Channel1 (from above) to Sim-
ulator.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1

www. ptc.com

175

ThingWorx Kepware Server

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

Following the PUT, a GET can be sent to the channel’s endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator
The response from the GET request should show the property value has changed. The response to the GET above
should look similar to the following:

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",

"servermain.CHANNEL_DIAGNOSTICS_CAPTURE": false,
"servermain.CHANNEL_UNIQUE_ID": 2154899492,

 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…

Configuration API Service — Removing Channel
To remove a channel, send a DELETE command to the channel endpoint to be removed. This causes the channel
and all of its children to be removed.

In the example below, the channel Simulator will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a GET to the "channels" endpoint; the removed channel will not be in the list of channels returned
from the GET request.

Configuration API Service — Device Properties
The following properties define a device using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

common.ALLTYPES_DESCRIPTION

servermain.DEVICE_CHANNEL_ASSIGNMENT

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.DEVICE_MODEL * Not required, but verify the default is acceptable

servermain.DEVICE_ID_STRING * Required parameter

servermain.DEVICE_DATA_COLLECTION

www. ptc.com

176

ThingWorx Kepware Server

servermain.DEVICE_SIMULATED

Scan Mode

servermain.DEVICE_SCAN_MODE

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_PROVIDE_INITIAL_UPDATES_FROM_CACHE

Auto Demotion

servermain.DEVICE_AUTO_DEMOTION_ENABLE_ON_COMMUNICATIONS_FAILURES

servermain.DEVICE_AUTO_DEMOTION_DEMOTE_AFTER_SUCCESSIVE_TIMEOUTS

servermain.DEVICE_AUTO_DEMOTION_PERIOD_MS

servermain.DEVICE_AUTO_DEMOTION_DISCARD_WRITES

Tag Generation

servermain.DEVICE_TAG_GENERATION_ON_STARTUP

servermain.DEVICE_TAG_GENERATION_DUPLICATE_HANDLING

servermain.DEVICE_TAG_GENERATION_GROUP

servermain.DEVICE_TAG_GENERATION_ALLOW_SUB_GROUPS

Tip: To Invoke Automatic Tag Generation, send a PUT with an empty body to the TagGeneration service end-
point on the device.
Note: All files in the user_data directory must be world readable or owned by the ThingWorx Kepware Edge user

and group that were created during installation, by default tkedge.
See Also: For more information, see Services help.

Timing
servermain.DEVICE_CONNECTION_TIMEOUT_SECONDS

servermain.DEVICE_REQUEST_TIMEOUT_MILLISECONDS

servermain.DEVICE_RETRY_ATTEMPTS

servermain.DEVICE_INTER_REQUEST_DELAY_MILLISECONDS

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Device
To create a device via the Configuration API service, only a minimum set of properties are required; all others are
set to the default value. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the device endpoint
under a channel.

The example below will create a device named Device1 under Channel1 that uses the Simulator driver on a server
running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices

www. ptc.com

177

ThingWorx Kepware Server

Body:
{
 “common.ALLTYPES_NAME”: “Device1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

Refer to the driver specific help documentation to find out what properties are required to create a device for that
driver.

Configuration API Service — Updating a Device
To update a property or collection of properties on a device, a GET request must first be sent to the endpoint to be
updated to get the Project ID.

For more information about the Project ID, see the Concurrent Clients section.

In the example below, the device being updated is Device1 under Channel1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1
The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Device1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <project_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

To update or change a device property a PUT request is sent to the device with the Project ID and the new property
value defined. In the following example the device name will change from Device1 (from above) to Simulator.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

Following the PUT, a GET can be sent to the device endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

The response from the GET request will show the property value has changed. The response to the GET above
should look similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",
 "common.ALLTYPES_DESCRIPTION": "",

www. ptc.com

178

ThingWorx Kepware Server

 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <device_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

Configuration API Service — Removing a Device
To remove a device, send a DELETE to the device endpoint to be removed. This will cause the device and all of its
children to be removed.

In the example below, the device Simulator will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a get to the devices endpoint and the removed device will not be in the list of devices returned from
the GET request.

Configuration API Service — Creating a Tag
To create a tag via the Configuration API service, only a minimum set of properties are required; all others are set
to the default value. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tags endpoint
under a device.

The example below will create a tag named MyTag for address R5 under Channel1/Device1 that uses the Sim-
ulator driver on a server running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tags

Body:
{
 “common.ALLTYPES_NAME”: “MyTag”,
 "servermain.TAG_ADDRESS": "R5"
}

Tags can also be created within a tag group. The process for adding a tag group is the same except the URL
changes to include the tag_group endpoint and the group name.
In the following example, the tag group RampTags already exists and a tag named MyTag is created under it with
the address R5.
For more information on creating a tag group, see Creating a Tag Group section.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
group/RampTags/tags

Body:
{
 “common.ALLTYPES_NAME”: “MyTag”,
 "servermain.TAG_ADDRESS": "R5"
}

Tip:
The properties of tags vary by protocol, device, model, and data type. Always consult the target device and data for
the correct properties. Generally, the following example for data type definition can be followed:
{
 "symbolic_name": "servermain.TAG_DATA_TYPE",

www. ptc.com

179

ThingWorx Kepware Server

 "display_name": "Data Type",
 "display_description": "Select the format of the incoming tag data.",
 "read_only": false,
 "type": "Enumeration",
 "default_value": -1,
 "enumeration": {
 "Default": -1,
 "String": 0,
 "Boolean": 1,
 "Char": 2,
 "Byte": 3,
 "Short": 4,
 "Word": 5,
 "Long": 6,
 "DWord": 7,
 "Float": 8,
 "Double": 9,
 "BCD": 10,
 "LBCD": 11,
 "Date": 12,
 "LLong": 13,
 "QWord": 14,
 "String Array": 20,
 "Boolean Array": 21,
 "Char Array": 22,
 "Byte Array": 23,
 "Short Array": 24,
 "Word Array": 25,
 "Long Array": 26,
 "DWord Array": 27,
 "Float Array": 28,
 "Double Array": 29,
 "BCD Array": 30,
 "LBCD Array": 31,
 "Date Array": 32,
 "LLong Array": 33,
 "QWord Array": 34
}

Refer to the driver specific help documentation to find out what properties are required to create a tag for that
driver.

Configuration API Service — Updating a Tag
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to be
updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the tag being updated is MyTag under Channel1/Device1.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

The GET request will return a JSON blob similar to the following.

Body:

www. ptc.com

180

ThingWorx Kepware Server

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "MyTag",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…
To update or change a tag property, a PUT request is sent to the tag with the Project ID and the new property value
defined.
In the following example, the tag name will change from MyTag (from above) to Tag1.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1"
}

Following the PUT a GET can be sent to the tag’s endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

The response from the GET request will show the property value has changed. The response to the GET above
should look similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…

Configuration API Service — Removing a Tag
To remove a tag, send a DELETE to the tag’s endpoint to be removed. This will cause the tag and all of its children
to be removed.
In the example below, the tag Tag1 will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a get to the tags endpoint and the removed tag will not be in the list of tags returned from the GET
request.

www. ptc.com

181

ThingWorx Kepware Server

Configuration API Service — Creating a Tag Group
To create a tag group via the Configuration API service, only a group name is required.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tag_groups end-
point under a device.

The example below will create a tag group named RampTags under Channel1/Device1 that uses the Simulator
driver on a server running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups

Body:
{
 “common.ALLTYPES_NAME”: “RampTags”
}

Tag groups can have tags and more tag groups nested under them. To add a Tag, see the Creating a Tag section.

To nest a Tag Group within another group, another POST action is required to add the existing group name and the
tag_groups endpoint to the end of the URL.

Continuing the example above, the new request would look like the following.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags/tag_groups

Body:
{
 “common.ALLTYPES_NAME”: “1-10”
}

Configuration API Service — Updating a Tag Group
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to be
updated to get the Project ID.
For more information about the Project ID, see the Concurrent Clients section.

In the example below, the tag group being updated is RampTags under Channel1/Device1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags
The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}
To update or change a tag group property, a PUT request is sent to the tag group with the Project ID and the new
property value defined.
In the following example, the tag group name will change from RampTags (from above) to RampGroup.

www. ptc.com

182

ThingWorx Kepware Server

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag
Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampGroup"
}
Following the PUT, a GET can be sent to the tag group endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup
The response from the GET request will show the property value has changed. The response to the GET above
should look similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}

Configuration API Service — Removing a Tag Group
To remove a tag group, send a DELETE to the tag group endpoint to be removed. This will cause the tag group and
all of its children to be removed. In the example below the tag group RampGroup will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a get to the tag_groups endpoint and the removed tag group will not be in the list of tag groups
returned from the GET request.

Configuration API Service — Property Validation Error Object
When making a POST request to create an object or making a PUT request to update an object or project prop-
erties, new values for those properties may be input as the body of the PUT or POST request to change the values.
If there is a property validation error, two error objects appear. The first error object contains an error code and a
message detailing why the error occurred. The second error object shows the same error code and error message
in addition to an error property value, a description of that error property, and the line of input that created the error.
The following example shows the error object of a POST request to create an object with a name that already
exists.

Response Body:
{
 “property”: “common.ALLTYPES_NAME”,
 “description”: “The name “Channel1” is already used.”,
 “error_line”: 7,
 "code": 400,
 "message": "Validation failed on property common.ALLTYPES_NAME in object definition at
line 7: The name 'Channel1' is already used."
}

www. ptc.com

183

ThingWorx Kepware Server

Configuration API Service — Creating a User
To create a user via the Configuration API service, only a minimum set of properties are required; all others are set
to the default value.

Only members of the Administrators group can create users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_users end-
point.

The example below creates a user named User1 that is a member of the server Administrators user group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Body:
{
 "common.ALLTYPES_NAME": "User1",
 "libadminsettings.USERMANAGER_USER_GROUPNAME": "Administrators",
 "libadminsettings.USERMANAGER_USER_PASSWORD": "<Password>"
}
 The Administrator user account password cannot be reset, but additional administrative users can be added to

the Administrator user group. Best practices suggest each user with administrative access be assigned unique
accounts and passwords to ensure audit integrity and continual access through role and staff changes.

 The product Administrator password must be at least 14 characters and no more than 512. Passwords should
include a mix of uppercase and lowercase letters, numbers, and special characters. Choose a strong unique pass-
word that avoids well-known, easily guessed, or common passwords.

Configuration API Service — Updating a User
To update a user via the Configuration API service, provide new values for the properties that require updating.
Only members of the Administrators group can update users.
There is no PROJECT_ID field for users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-
s/<username> endpoint.

The example below updates the user named User1 to add a description and move it to a different user group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users/User1

Body:
{
"common.ALLTYPES_DESCRIPTION": "The user account of User1", "libadminsettings.USERMANAGER_
USER_GROUPNAME": "Operators"
}

Configuration API Service — Creating a User Group
To create a group via the Configuration API service, only a minimum set of properties are required; all others are
set to the default value. Once a user group is defined, its permissions are used by all users assigned to that user
group.

Only members of the Administrators group can create user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-
groups endpoint.

The example below creates a user group named Operators:

www. ptc.com

184

ThingWorx Kepware Server

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Body:
{
 “common.ALLTYPES_NAME”: “Operators”,
}

Configuration API Service — Updating a User Group
To edit a user group via the Configuration API service, provide new values for the properties that require updating.
Only members of the Administrators group can update user groups.
There is no PROJECT_ID field for user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the server_user-
groups/<groupname> endpoint.

The example below updates the user group named Operators to have permissions to modify server settings, cause
clients to be disconnected, and loading new runtime projects; it also updates the description of the group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators

Body:
{
 "common.ALLTYPES_DESCRIPTION": "User group for standard operators",
 "libadminsettings.USERMANAGER_SERVER_MODIFY_SERVER_SETTINGS": true,
 "libadminsettings.USERMANAGER_SERVER_DISCONNECT_CLIENTS": true,
 "libadminsettings.USERMANAGER_SERVER_REPLACE_RUNTIME_PROJECT": true
}

Note: Group permissions for the administrator group are locked and cannot be modified by any user to prevent
an administrator from accidentally disabling a permission that could prevent administrators from modifying any
user permissions. Only users in the Administrator group can modify the permissions for other groups.

Configuration API Service — Removing a User or Group
To remove a user or user group via the Configuration API service, send a DELETE command to the endpoint to be
removed. Removing a group causes all of it’s users to be deleted as well. In the example below, the group Oper-
ators is removed and all users that are members of that group are deleted.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users/Operators

Configuration API Service — User Management
The User Manager controls client access to the project's objects (which are the channels, devices, tags. etc.) and
their corresponding functions. The User Manager allows permissions to be specified by user groups. For example,
the User Manager can restrict user access to project tag data based on its permissions from the parent user group.
Note: The configuration API service cannot be used to configure Active Directory users – that can only be done

via Server Administration.

The User Manager has built-in groups each contain a built-in user. The default groups are Administrators, Server
Users, Anonymous Clients, and ThingWorx Interface Users. The default users in these groups are Administrator,
Default User, Data Client, and ThingWorx Interface. Users cannot rename or change the description fields of built-
in user groups or users. Neither the default groups nor the default users can be disabled.

The User Manager has built-in groups each contain a built-in user. The default groups are Administrators, Server
Users, and Anonymous Clients. The default users in these groups are Administrator, Default User, and Data Client.

www. ptc.com

185

ThingWorx Kepware Server

Users cannot rename or change the description fields of built-in user groups or users. Neither the default groups
nor the default users can be disabled.

To allow adequate access for data transfer between the server and the ThingWorx Platform, project modification
must be enabled for the ThingWorx Interface Users group. The request to grant the correct access for this func-
tionality should look similar to the following:

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/ThingWorx Interface User-
s/project_permissions/Servermain Project

Body:
{
 "libadminsettings.USERMANAGER_PROJECTMOD_EDIT": true
}
Notes:

1. The Administrator user account password cannot be reset, but additional administrative users can be
added to the Administrator user group. Best practices suggest each user with administrative access be
assigned unique accounts and passwords to ensure audit integrity and continual access through role and
staff changes.

2. A project cannot load without correct user information.
3. There is no ”Project_ID” property on the User Management endpoints. All PUTs are accepted and the last

PUT to a given endpoint is applied.

User Groups

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Supported Actions

HTTP(S) Verb Action
POST Create the specified group

GET Retrieves a list of all groups

DELETE Removes the specified group and all of its users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>

Supported Actions

HTTP(S) Verb Action
GET Retrieves the specified group

PUT Updates the specified group

DELETE Removes the specified user

Properties

Property Name Type Required Description
common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_
DESCRIPTION String No Provide a brief summary of this object or its

use.

libadminsettings.USERMANAGER_
GROUP_ENABLED Enable/Disable No The group's enabled-state takes pre-

cedence over the users enabled state.

libadminsettings.USERMANAGER_
IO_TAG_READ Enable/Disable No Allow/deny clients belonging to the group

to access I/O tag data.

libadminsettings.USERMANAGER_
IO_TAG_WRITE Enable/Disable No

Allow/deny clients belonging to the group
to modify I/O tag data. Note: When
USERMANAGER_IO_TAG_READ is set to
false, this property is also set to false and

www. ptc.com

186

ThingWorx Kepware Server

Property Name Type Required Description
disabled to prevent write-only tags.

libadminsettings.USERMANAGER_
IO_TAG_DYNAMIC_
ADDRESSING

Enable/Disable No Allow/deny clients belonging to the group
to add items using dynamic addressing.

libadminsettings.USERMANAGER_
SYSTEM_TAG_READ Enable/Disable No Allow/deny clients belonging to the group

to access system tag data.

libadminsettings.USERMANAGER_
SYSTEM_TAG_WRITE Enable/Disable No

Allow/deny clients belonging to the group
to modify system tag data. Note: When
USERMANAGER_SYSTEM_TAG_READ
is set to false, this property is also set to
false and disabled to prevent write-only
tags.

libadminsettings.USERMANAGER_
INTERNAL_TAG_READ Enable/Disable No Allow/deny clients belonging to the group

to access internal tag data.

libadminsettings.USERMANAGER_
INTERNAL_TAG_WRITE Enable/Disable No

Allow/deny clients belonging to the group
to modify internal tag data. Note: When
USERMANAGER_INTERNAL_TAG_
READ is set to false, this property is also
set to false and disabled to prevent write-
only tags.

libadminsettings.USERMANAGER_
SERVER_MANAGE_LICENSES Enable/Disable No Allow/deny users belonging to the group to

access the license manager.

libadminsettings.USERMANAGER_
SERVER_RESET_OPC_DIAGS_
LOG

Enable/Disable No
Allow/deny users belonging to the group to
clear all logged OPC diagnostics mes-
sages.

libadminsettings.USERMANAGER_
SERVER_RESET_COMM_
DIAGS_LOG

Enable/Disable No
Allow/deny users belonging to the group to
clear all logged communications dia-
gnostics messages.

libadminsettings.USERMANAGER_
SERVER_MODIFY_SERVER_
SETTINGS

Enable/Disable No Allow/deny users belonging to the group to
access this property sheet.

libadminsettings.USERMANAGER_
SERVER_DISCONNECT_
CLIENTS

Enable/Disable No
Allow/deny users belonging to the group to
take action that can cause data clients to
be disconnected.

libadminsettings.USERMANAGER_
SERVER_RESET_EVENT_LOG Enable/Disable No Allow/deny users belonging to the group to

clear all logged event messages.

libadminsettings.USERMANAGER_
SERVER_OPCUA_DOTNET_
CONFIGURATION

Enable/Disable No
Allow/deny users belonging to the group to
access the OPC UA or XI configuration
manager.

libadminsettings.USERMANAGER_
SERVER_CONFIG_API_LOG_
ACCESS

Enable/Disable No
Allow/deny users belonging to the group to
access the Configuration API Transaction
Log.

libadminsettings.USERMANAGER_
SERVER_REPLACE_RUNTIME_
PROJECT

Enable/Disable No Allow/deny users belonging to the group to
replace the running project.

libadminsettings.USERMANAGER_
BROWSE_BROWSENAMESPACE Enable/Disable No Allow/deny clients belonging to the user

group to browse the project namespace.

Project Permissions

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_per-
missions

Supported Actions

www. ptc.com

187

ThingWorx Kepware Server

HTTP(S) Verb Action
GET Retrieves a list of all project permissions

Child Endpoints

Properties

Endpoint Description
/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Alias

Configure default 'Servermain Alias' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Channel

Configure default 'Servermain Channel' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Device

Configure default 'Servermain Device' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Meter Order

Configure default 'Servermain Meter Order' access
permissions for the selected user group.
Note: Add and delete properties are disabled for

this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Phone Number

Configure default 'Servermain Phone Number'
access permissions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Phone Priority

Configure default 'Servermain Phone Priority'
access permissions for the selected user group.
Note: Add and delete properties are disabled for

this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Project

Configure default 'Servermain Project' access per-
missions for the selected user group.
Note: Add and delete properties are disabled for

this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Tag

Configure default 'Servermain Tag' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Tag Group

Configure default 'Servermain Tag Group' access
permissions for the selected user group.

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_per-
missions/<PermissionName>

Supported Actions

HTTP(S) Verb Action
GET Retrieves the specified project permission

PUT Updates the specified project permission

Properties

Property Name Type Description
common.ALLTYPES_NAME String Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String Provide a brief summary of this object or its
use.

libadminsettings.USERMANAGER_
PROJECTMOD_ADD Enable/Disable Allow/deny users belonging to the group to

add this type of object.

libadminsettings.USERMANAGER_ Enable/Disable Allow/deny users belonging to the group to

www. ptc.com

188

ThingWorx Kepware Server

Property Name Type Description
PROJECTMOD_EDIT edit this type of object.

libadminsettings.USERMANAGER_
PROJECTMOD_DELETE Enable/Disable Allow/deny users belonging to the group to

delete this type of object.

Users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Supported Actions

HTTP(S) Verb Action
POST Create the specified user

GET Retrieves a list of all users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_users/<UserName>

Supported Actions

HTTP(S) Verb Action
GET Retrieves the specified user

PUT Updates the specified user

Properties

Property Name Type Required Description
common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_
DESCRIPTION String No Provide a brief summary of this object or its

use.

libadminsettings.USERMANAGER_
USER_GROUPNAME String Yes The name of the parent group.

libadminsettings.USERMANAGER_
USER_ENABLED Enable/Disable No The group‘s enabled-state takes pre-

cedence over the users enabled state.

libadminsettings.USERMANAGER_
USER_PASSWORD Password No

The user’s password. This is case-sens-
itive.
The password must be at least 14 char-

acters and no more than 512 characters.
Passwords should include a mix of upper-
case and lowercase letters, numbers, and
special characters. Avoid well-known, eas-
ily guessed, or common passwords.

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has the appro-
priate permissions.

Configuration API Service — Configuring User Group Project Permissions
All user groups contain a collection of project permissions. Each project permission corresponds to a specific per-
mission applied when interacting with objects in the project. All permissions are always present under a user group
(and therefore cannot be created nor deleted). An individual project permission can be granted or denied by updat-
ing that specific project permission under the desired User Group.
Only members of the Administrators group can update a user group’s project permissions.
There is no PROJECT_ID field for project permissions.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the project_per-
missions/<permission_name> endpoint.

The example below updates the user-created user group named Operators to grant permission to users of that
group to add, edit, and delete channels:

www. ptc.com

189

ThingWorx Kepware Server

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators/project_per-
missions/Servermain Channel

Body:
{
 "libadminsettings.USERMANAGER_PROJECTMOD_ADD": true,
 "libadminsettings.USERMANAGER_PROJECTMOD_EDIT": true,
 "libadminsettings.USERMANAGER_PROJECTMOD_DELETE": true
}

Configuration API Service — Configuration API Settings
The Configuration API Settings that can be modified through the configapi endpoint are the CORS Allowed Origins
and Enable Bearer Authentication.
Tip: Only members of the Administrators group or those with Modify Server Settings enabled can make changes

to this endpoint.

Using a REST-based API tool; such as Postman, Insomnia, or Curl; make a PUT request to the config_api_set-
tings/configapi endpoint.

The example below updates CORS Allowed Origins to everything (“*”) and enables Token-Based Bearer Authentic-
ation:

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/admin/config_api_settings/configapi

Body:
{
 "libadminsettings.CONFIGURATION_API_SERVICE_CORS": “*”,
 "libadminsettings.ENABLE_BEARER_AUTHENTICATION": true
}

Configuration API Service — Bearer Authentication Settings
The Bearer Authentication Settings endpoint is how the Public Certificate Management is handled for Token Based
Authentication. Usage of this endpoint is intended to Create, Update, and Delete Public Key Only certificates that
are used by the server to validate a JSONWeb Token passed in with Bearer Authentication.
Tip: Only members of the Administrators group or those with Modify Server Settings enabled can make changes

to this endpoint.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the config_api_set-
tings/configapi/bearer_auth_settings/certificates endpoint.

The example below is an example of how to clear all certificates from the local store, if no key is being added with a
PUT command both the Key ID and Certificate fields must be empty:

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/admin/config_api_settings/configapi/bearer_auth_
settings/certificates

Body:
{
 "libadminsettings.BEARER_AUTH_CLEAR_CERT_STORE": true,
 "libadminsettings.BEARER_AUTH_CLEAR_EXPIRED_CERTS": true,
 "libadminsettings.BEARER_AUTH_KEY_ID": "",
 "libadminsettings.BEARER_AUTH_CERTIFICATE": ""
}

www. ptc.com

190

ThingWorx Kepware Server

Configuration API Service — Invoking Services
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project load service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

Service Architecture
Services are designed to provide stateless interaction with the object on which they operate. Services are com-
prised of two components: a service and a job. The job executes the work asynchronously and provides a mech-
anism through which a client can monitor the job for completion or for any errors that occurred during its operation.
After a job completes, it is scheduled for deletion automatically by the server; no action is required by the client to
clean up the job after it completes.

Service
The service is the interface through which an action is invoked. The service exposes all parameters that can be spe-
cified during its invocation as properties. To see the available parameters, perform a HTTPS GET on the service
endpoint. All properties, besides the name and description of the service, are the parameters that can be included
when invoking a service. Depending on the service, some or all parameters may be required.

Invocation of a service is accomplished by performing a HTTPS PUT request on the service endpoint with any para-
meters specified in the body of the request. Services may limit the total number of concurrent invocations. If the
maximum number of concurrent invocations has been reached, the request is rejected with an "HTTPS 429 Too
Many Requests" response. If the limit has not been reached, the server responds with an "HTTPS 202 Accepted"
response and the body of the response including a link to the newly created job.

Successful PUT response example:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

Busy PUT response example:
{
 "code": 429,
 "message": "The server is busy. Retry the operation at a later time."
}

Job
The job represents a specific request accepted by the server. To check the status of a job, perform a HTTPS GET
request on the job endpoint. The servermain.JOB_COMPLETE property represents the current state of the job as
a Boolean. The value of this property remains false until the job has finished executing. If the job fails to execute for
any reason, it provides the client with an appropriate error message in the servermain.JOB_STATUS_MSG prop-
erty.

Job Cleanup
Jobs are automatically deleted by the server after a configurable amount of time. By default, after a job has com-
pleted, the client has 30 seconds to interact with it before the job is deleted. If a longer amount of time is required by
the client or the client is operating over a slow connection, the client can use the servermain.JOB_TIME_TO_
LIVE_SECOND parameter when invoking the service to increase the time-to-live up to a maximum of five minutes.
Each job has its own time-to-live and it may not be changed after a job has been created. Clients are not allowed to
manually delete jobs from the server, so it is best to choose the shortest time-to-live without compromising the cli-
ent’s ability to get the information from the job before it is deleted.

See Also: Tag Generation, Project Load, Project Save

www. ptc.com

191

ThingWorx Kepware Server

Configuration API Service — Automatic Tag Generation
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project load service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

Automatic Tag Generation
The Automatic Tag Generation service operates under a device endpoint for a driver that supports Automatic Tag
Generation. The properties that support Automatic Tag Generation for the device must be configured prior to ini-
tiating Automatic Tag Generation. See the driver specific documentation for related properties.

To initiate Automatic Tag Generation, a PUT is sent to the TagGeneration endpoint with a defined empty payload.
In the following example, Automatic Tag Generation is initiated on Channel1/Device1.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration

The response should look something like the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/con-
fig/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information

Note: Not all drivers support Automatic Tag Generation.

Tip: Automatic Tag Generation files must be located in the <installation_directory>/user_data directory. All files
in the user_data directory must be world readable or owned by the ThingWorx Kepware Server user and group that
were created during installation, by default this is tkedge.

Configuration API Service — Project Load
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project load service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

Project Load
Projects can be loaded by interacting with the ProjectLoad service on the ProjectLoad endpoint. First a GET
request must be sent to get the Project ID to later be used in the PUT request.

www. ptc.com

192

ThingWorx Kepware Server

The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

The server should respond with something similar to the following.

Body:
{
 "PROJECT_ID": 3531905431,
 "common.ALLTYPES_NAME": "ProjectLoad",
 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,
 "servermain.PROJECT_FILENAME": "",
 "servermain.PROJECT_PASSWORD": ""
}

To initiate the project load, a PUT request is sent to the server with the project file name, the project file password,
and the Project ID. If there is no password on the project, that field is not required. Project loading supports SOPF,
OPF, and JSON file types. The request should look similar to the following.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

Body:
{
 "PROJECT_ID": 3531905431,
 "servermain.PROJECT_FILENAME": "MyProject.json",
 "servermain.PROJECT_PASSWORD": ""
}
where the .json or .opf project file full path is specified, such as /<install directory>/<version>/.
Note: the location of the file is limited to within the install / version directory.

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

See Also: Project Save

Configuration API Service — Project Save
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project save service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectSave endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

www. ptc.com

193

ThingWorx Kepware Server

Project Save
Projects can be loaded by interacting with the ProjectSave service on the ProjectSave endpoint. A GET request
must be sent to get the Project ID to later be used in the PUT request. The GET request should look similar to the
following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave
The server should respond with something similar to the following.

Body:
{
 "PROJECT_ID": 2401921849,
 "common.ALLTYPES_NAME": "ProjectSave",
 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,
 "servermain.PROJECT_FILENAME": ""
}
To initiate the project save, a PUT request is sent with the project file path and name of the file with the extension
(SOPF, OPF, or JSON), the password to encrypt it with, and the Project ID. The password property is required for
SOPF file and ignored otherwise. The path is relative to the user data folder. The PUT request should look similar
to the following.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

Body:
{
 "PROJECT_ID": 2401921849,
 "servermain.PROJECT_FILENAME": "Projects/MyProject.SOPF",
 "servermain.PROJECT_PASSWORD": "MyPassword"
}
Note: the location of the file is limited to within the install / version directory.

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectSave/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

See Also: Project Load

Configuration API Service — Project Import / Export
Project import and export functionality uses the Project Load and Project Save services, where the input is
provided as a project file. However, the Project Import / Export Configuration endpoint is specifically designed to

www. ptc.com

194

ThingWorx Kepware Server

work exclusively with JSON objects. For Project Export, serialize query parameter is used. For Project Import,
JSON project load service is used.

Project Export Configuration
The Project Export Configuration endpoint is designed to provide the complete project in JSON format. To utilize
this functionality, perform a GET operation on the config/v1/project, including the serialize query parameter in the
request.

{{host}}:{{port}}/config/v1/project?content=serialize

The server should respond with something similar to the following:
{
 "project": {
 "common.ALLTYPES_DESCRIPTION": "object instance description.",
 "servermain.PROJECT_TITLE": "object name",
 "channels": […
],
 "aliases": […
],
 "client_interfaces": […
],
 "_advancedtags": […
],
 …
 "_datalogger": […
],
 "_iot_gateway": […
],
 "_ua_gateway": […
],
 …
}

Project Import Configuration
Projects can be loaded by interacting with the JsonProjectLoad service for the Project Import Configuration end-
point.
To initiate the JSON project load, a PUT request is sent to the server with the JSON object of complete project. The
request should look similar to the following.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/JsonProjectLoad

Body:
{
 "project": {
 "common.ALLTYPES_DESCRIPTION": "object instance description.",
 "servermain.PROJECT_TITLE": "object name",
 "channels": […
],
 "aliases": […
],
 "client_interfaces": […
],
 "_advancedtags": […
],
 …
 "_datalogger": […
],
 "_iot_gateway": […

www. ptc.com

195

ThingWorx Kepware Server

],
 "_ua_gateway": […
],
 …
}

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/JsonProjectLoad/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/JsonProjectLoad/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is 30 seconds by default.

See the Job Cleanup section for more information.

See Also: Project Load, Project Save

Configuration API Service — UA Gateway

UA Gateway Status
The UA Gateway status and other properties can be accessed by performing the following GET request:

Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway

Configuring Internal Communications
The Kepware server communicates internally with the UA Gateway service using two ports: for inbound and out-
bound communication. These values should only need to be changed if they conflict with ports already in use on
the machine where the server is running. To change the ports, update the value for UAG_PLUGIN_IPC_PORT or
UAG_SERVER_IPC_PORT by performing the following PUT request:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway

Message body
{
 "PROJECT_ID": <project-id-number>,
 "ua_gateway.UAG_PLUGIN_IPC_PORT": <desired-port-value>,
 "ua_gateway.UAG_SERVER_IPC_PORT": <desired-port-value>
}

Server Interface
The UA Gateway server interface is used to configure how UA clients connect to the UA Gateway. The UA Gate-
way Server Interface contains configuration settings common to all UA server endpoints, such as authentication
options and encryption settings.

Server Interface Settings

www. ptc.com

196

ThingWorx Kepware Server

The server interface settings set the security used when a UA client connects to the UA Gateway and Local Dis-
covery Server. These settings can be queried through the REST API at the following endpoint:

Endpoint (GET):
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Interface

This should return a result similar to the following:

Response:
{
 "PROJECT_ID": <project-id-number>,
 "common.ALLTYPES_NAME": "Server Interface",
 "common.ALLTYPES_DESCRIPTION": "The server interface of the OPC UA Gateway. Configuring
this interface and adding server endpoints will allow other OPC UA clients to connect to
the OPC UA Gateway.",
 "ua_gateway.UA_SERVER_INTERFACE_CONCURRENT_SESSIONS": 0,
 "ua_gateway.UA_SERVER_INTERFACE_USER_IDENTITY_POLICY_ANONYMOUS": false,
 "ua_gateway.UA_SERVER_INTERFACE_USER_IDENTITY_POLICY_USERNAME_PASSWORD": true,
 "ua_gateway.UA_SERVER_INTERFACE_USER_IDENTITY_POLICY_X509": true,
 "ua_gateway.UA_SERVER_INTERFACE_SECURITY_POLICIES_NONE": false,
 "ua_gateway.UA_SERVER_INTERFACE_SECURITY_POLICIES_BASIC256SHA256": 2,
 "ua_gateway.UA_SERVER_INTERFACE_SECURITY_POLICIES_AES128_SHA256_RSAOAEP": 0,
 "ua_gateway.UA_SERVER_INTERFACE_SECURITY_POLICIES_AES256_SHA256_RSAPSS": 0,
 "ua_gateway.LDS_REGISTRATION_ENABLED": true,
 "ua_gateway.LDS_MAX_REGISTRATION_INTERVAL": 30000,
 "ua_gateway.UA_SERVER_INTERFACE_MAX_SUBSCRIPTION_LIFETIME": 3600000,
 "ua_gateway.UA_SERVER_INTERFACE_MIN_SUBSCRIPTION_LIFETIME": 10000
 "ua_gateway.UA_SERVER_INTERFACE_MAX_SESSION_TIMEOUT": 3600000,
 "ua_gateway.UA_SERVER_INTERFACE_MIN_SESSION_TIMEOUT": 10000,
 "ua_gateway.UA_SERVER_INTERFACE_MAX_NOTIFICATIONS_PER_PUBLISH": 1000,
 "ua_gateway.UA_SERVER_INTERFACE_MAX_NOTIFICATION_QUEUE_SIZE": 100
}

Tip: To configure the Server Interface Settings, perform a PUT on the Server Interface API endpoint with a PUT
request body that contains the PROJECT ID (obtained from the GET request) and the properties you wish to
change in the same format as the GET request response above. Properties you do not wish to change can be omit-
ted from the PUT request body.
Note: The UA Gateway Service supports secure connections from a client whose certificate has a key size of at

least 2045.

Server Interface Properties
To obtain more information on each server interface property, perform a GET with the following endpoint url:

Endpoint (GET):
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face?content=property_definitions

Concurrent Sessions Property:
"ua_gateway.UA_SERVER_INTERFACE_CONCURRENT_SESSIONS"

Tips:

l This read-only property returns the total count of current clients connected (sessions) to endpoints of the
UA Gateway server interface.

l The server interface supports a maximum of 128 concurrent clients to connect to the UA Gateway server
interface.

Server Interface Enumeration Values:

www. ptc.com

197

ThingWorx Kepware Server

For the server interface properties titled “UA_SERVER_INTERFACE_SECURITY_POLICIES_<TYPE>,” the enu-
meration values either disable the security policy or set the desired Message Mode for connecting with the given
security policy. The enumeration values are as follows:

l "Disabled": 0,
l "Sign": 1,
l "Sign & Encrypt": 2,
l "Sign; Sign & Encrypt": 3

Server Interface — Local Discovery Server Connectivity Options
The UA Gateway can connect with an OPC application, called Local Discovery Server, which maintains a list of
OPC UA servers running on the same host.
For more information about Local Discover Server, refer to the OPC Foundation website.

When set to true, the LDS_REGISTRATION_ENABLED property of the server interface indicates that the UA Gate-
way should attempt to register with a Local Discovery Server.
When set to false (default), the Local Discovery Server registration is disabled.

The LDS_MAX_REGISTRATION_INTERVAL_PROPERTY of the server interface specifies the maximum interval
(in milliseconds) to register with the LDS.
Under certain conditions, the UA Gateway may attempt to register with a Local Discovery Server more fre-

quently.

Server Endpoint
A Server Endpoint represents the endpoint which a client connects to in order to communicate with the UA Gate-
way Service.

To create a new Server Endpoint, use the following rest request:

Endpoint POST
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Interface/ua_
server_endpoints

Message body:
{
 "common.ALLTYPES_NAME": "Server Endpoint12",
 "common.ALLTYPES_DESCRIPTION": "",
 "ua_gateway.UA_SERVER_ENDPOINT_NETWORK_ADAPTER": “All”,
 "ua_gateway.UA_SERVER_ENDPOINT_PORT": 6000,
 "ua_gateway.UA_SERVER_ENDPOINT_PROTOCOL": 0,
 "ua_gateway.UA_SERVER_ENDPOINT_ENABLED": true
}

Server Endpoint Properties
To get the list of currently configured endpoints use the following request:

Endpoint GET
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Interface/ ua_
server_endpoints

Example network adapter enum values:

l "All": 0
l "Localhost Only": 16777343
l "vmxnet3 Ethernet Adapter": -2134267712

UA Gateway supports only a single UA server endpoint protocol value:

www. ptc.com

198

https://apps.opcfoundation.org/LDS/Overview.htm

ThingWorx Kepware Server

l "TCP": 0

To query the available parameters for a server endpoint, configure a Server Endpoint and then perform a GET
request on it with the following endpoint URL:

Endpoint GET
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Interface/ua_
server_endpoints/<configured endpoint name>?content=property_definitions

Client Interface
Configuring the client interface and adding client connections allows communication between the UA Gateway and
other OPC UA servers.

Client Connections
To connect the UA Gateway to a new server, a new client-connection must be created using the following endpoint:

Endpoint POST
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Interface/ua_
client_connections

Message body:
{
 "common.ALLTYPES_NAME": "Connection1",
 "common.ALLTYPES_DESCRIPTION": "",
 "ua_gateway.UA_CLIENT_CONNECTION_URL_NAME": "opc.tcp://<network-adapter>:<port>",
 "ua_gateway.UA_CLIENT_CONNECTION_IDENTITY_POLICY": 1,
 "ua_gateway.UA_CLIENT_CONNECTION_USER_NAME": "<User>",
 "ua_gateway.UA_CLIENT_CONNECTION_USER_PASSWORD": "<Password>",
 "ua_gateway.UA_CLIENT_CONNECTION_SECURITY_POLICY": 2,
 "ua_gateway.UA_CLIENT_CONNECTION_MESSAGE_MODE": 1,
 "ua_gateway.UA_CLIENT_CONNECTION_ENABLED": true,
 "ua_gateway.UA_CLIENT_CONNECTION_PUBLISHING_INTERVAL": 500,
 "ua_gateway.UA_CLIENT_CONNECTION_SUBSCRIPTION_LIFETIME": 500000,
 "ua_gateway.UA_CLIENT_CONNECTION_SESSION_TIMEOUT": 60000,
 "ua_gateway.UA_CLIENT_CONNECTION_MAX_MONITORED_ITEMS_PER_SUBSCRIPTION": 2147483647,
 "ua_gateway.UA_CLIENT_CONNECTION_PASSTHROUGH_ENABLED": true,
 "ua_gateway.UA_CLIENT_CONNECTION_MONITORED_ITEM_QUEUE_SIZE_OVERRIDE": 1,
 "ua_gateway.UA_CLIENT_CONNECTION_DISCARD_POLICY": 0
}

To get a list of existing client connections, query the ua_client_connections collection endpoint:

Endpoint GET
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Interface/ua_
client_connections

Performing a GET on this ua_client_connections endpoint returns the property values of each server, as well as the
connection status.

To change a property value of a connection, perform a PUT on the connection endpoint:

Endpoint PUT
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Interface/ua_
client_connections<ALLTYPES_NAME of connection>

The body of the PUT request must contain the PROJECT_ID as returned in a GET request on the endpoint, as well
as the desired endpoint properties. Properties that do not need to be changed do not need to be sent in a PUT
request.

www. ptc.com

199

ThingWorx Kepware Server

Client Connections Enumeration Values
UA_CLIENT_CONNECTION_IDENTITY_POLICY:

l "Anonymous": 0
l "Username/Password": 1

UA_CLIENT_CONNECTION_SECURITY_POLICY

l "None (Insecure)": 0,
l "Basic256 (Deprecated)": 1,
l "Basic128Rsa15 (Deprecated)": 2,
l "Basic256Sha256": 3,
l "Aes256_Sha256_RsaPss": 4,
l "AES128_Sha256_RsaOaep": 5

UA_CLIENT_CONNECTION_MESSAGE_MODE

l "None": 0,
l "Sign": 1,
l "Sign & Encrypt": 2

Client Connections Properties

To query the properties available on a client connection, perform a GET on the following endpoint:

Endpoint GET
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Interface/ua_
client_connections/<client-connection-name>?content=property_definitions

Tip: The UA Gateway supports secure connections to servers with a certificate key size of at least 1024.

See Also: Default UAG Connection

Default Connection to the OPC UA Server
When the UA Gateway is installed for the first time, either through a new installation or an upgrade, a default con-
nection to the legacy UA Server interface is automatically created on the UA Gateway Client Interface.

This is intended to make integration easier, but can be removed or customized to suit the needs and policies of
your environment.

Warning: Loading a project file without a UA Gateway connection deletes this default connection.
Notes:

l if there is an existing UA Gateway and an update is installed, there are no changes. No default connection
is created; the previous project file is used.

l If UA Gateway is not installed and the server is upgraded OR a fresh installation is performed, the default
connection is created in the new project, which can then be updated.

The default connection on the client interface uses the default settings of the legacy OPC UA server. These
defaults are as follows:

l Identity Policy: Username / Password
l Security Policy: Basic256Sha256
l Message Mode: Sign & Encrypt
l URL: default network adapter and port

See Also: OPC UA Interface

The user name / password used in this default connection utilizes a unique UA Gateway interface user found by
default in the User Manager. This default user can be modified to change the assigned permissions, but cannot be
renamed, deleted, or assigned a new password. The password for this user is unique to each server instance.

www. ptc.com

200

ThingWorx Kepware Server

Note: If the settings on the legacy OPC UA server are changed, the settings for this connection on the UA Gate-
way client interface must be updated to match. To update connection settings, perform a PUT with the changed
properties on the connection endpoint.

See Also: UA Gateway Client Connections, OPC UA Server Properties

When the UA Gateway Application Instance Certificate or the legacy OPC UA Server Application Instance Cer-
tificate are updated, the certificate is automatically trusted to ensure the default connection persists.

Re-Creating and Editing the Default Connection
If the default connection gets removed, it can be re-created with the following steps:

1. Retrieve the UA Gateway user password by performing a GET request on the user endpoint. For the user
endpoint, see Configuration API Service – Updating a User.

2. Create a connection using the UA Gateway as the user name and the password retrieved above. Security
settings must match those enabled in the legacy OPC UA server.

If you need to update the default connection, perform a PUT request on the connection endpoint.

See Also: Configuration API Service – UA Gateway - Client Connections

Configuration API Service — Enabling and Disabling UA Gateway Connections
During configuration and troubleshooting, it is useful to enable and disable client and server connections without
deleting them (and all their associated settings and data).

To enable and disable client and server connections via the Configuration API service, see the following examples.

Example client connection:
{
 "PROJECT_ID": 2005109980,
 "common.ALLTYPES_NAME": "Host",
 "common.ALLTYPES_DESCRIPTION": "",
 "ua_gateway.UA_CLIENT_CONNECTION_STATUS": "Connected",
 "ua_gateway.UA_CLIENT_CONNECTION_URL_NAME": "opc.tcp://192.168.111.1:49920",
 "ua_gateway.UA_CLIENT_CONNECTION_IDENTITY_POLICY": 0,
 "ua_gateway.UA_CLIENT_CONNECTION_USER_NAME": "",
 "ua_gateway.UA_CLIENT_CONNECTION_USER_PASSWORD": "",
 "ua_gateway.UA_CLIENT_CONNECTION_SECURITY_POLICY": 0,
 "ua_gateway.UA_CLIENT_CONNECTION_MESSAGE_MODE": 0,
 "ua_gateway.UA_CLIENT_CONNECTION_ENABLED": true,
 "ua_gateway.UA_CLIENT_CONNECTION_PUBLISHING_INTERVAL": 500,
 "ua_gateway.UA_CLIENT_CONNECTION_SUBSCRIPTION_LIFETIME": 500000,
 "ua_gateway.UA_CLIENT_CONNECTION_SESSION_TIMEOUT": 60000,
 "ua_gateway.UA_CLIENT_CONNECTION_PASSTHROUGH_ENABLED": true,
 "ua_gateway.UA_CLIENT_CONNECTION_MONITORED_ITEM_QUEUE_SIZE_OVERRIDE": 1,
 "ua_gateway.UA_CLIENT_CONNECTION_DISCARD_OLDEST_OVERRIDE": 0
}

Example server endpoint:
{
 "PROJECT_ID": 2005109980,
 "common.ALLTYPES_NAME": "ServerEndpoint1",
 "common.ALLTYPES_DESCRIPTION": "",
 "ua_gateway.UA_SERVER_ENDPOINT_NETWORK_ADAPTER": 0,
 "ua_gateway.UA_SERVER_ENDPOINT_PORT": 69901,
 "ua_gateway.UA_SERVER_ENDPOINT_PROTOCOL": 0,
 "ua_gateway.UA_SERVER_ENDPOINT_URI": "opc.tcp://PRODUCTION1:69901",
 "ua_gateway.UA_SERVER_ENDPOINT_ENABLED": false
}

www. ptc.com

201

ThingWorx Kepware Server

Configuration API Service — UA Gateway Certificate Management
To establish a secure channel, OPC UA specifications require that certificates are shared between the client and
server and that they are accepted by each party.

UA Gateway Client and Server Interface Peer Certificate Management
The UA Gateway uses self-signed X.509 certificates to manage channel creation. The server interface receives cer-
tificates from UA clients attempting to connect and the client interface receives certificates from the UA servers for
which client interface connections are configured to connect. These certificates from external UA applications are
referred to as peer certificates.

To get the list of certificates received from clients, use the following query:

Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face/certificates

To get the list of certificates received from servers, use the following query:

Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/certificates

Trusting and Rejecting UA Gateway Peer Certificates

To trust /reject a specific peer certificate the following request can be used:

For client interface peer certificates:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/certificates/<certificate-name>

For server interface peer certificates:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face/certificates/<certificate-name>

Message body:
{
 "PROJECT_ID": "<project_id>”,
 "ua_gateway.UA_CERTIFICATE_TRUST_STATUS": 1
}

Tip: You can obtain the Project ID property value by performing a GET on the same endpoint.

Results should follow the format:
"ua_gateway.UA_CERTIFICATE_TRUST_STATUS": 1 – Trusted
"ua_gateway.UA_CERTIFICATE_TRUST_STATUS": 0 – Rejected

Delete UA Gateway Peer Certificates
To clean up unused peer certificates in the server or client interface trusted and rejected certificate stores, the API
can be used to query the certificate name and then delete the specified certificate.

Once the certificate name is obtained (see Configuration API Service – UA Gateway Certificate Management:
Client and Server Interface Certificate Management), append the REST API endpoint with your certificate name,
and perform a DELETE.
For Server Interface Peer Certificates:

www. ptc.com

202

ThingWorx Kepware Server

Endpoint (DELETE)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face/certificates/{Certificate Name}

For Client Interface Peer Certificates:

Endpoint (DELETE)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/certificates/{Certificate Name}

For example, to delete a Server Interface Peer Certificate, the following can be used to delete Certificate1:

Endpoint (DELETE)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face/certificates/Certificate1

UA Gateway Application Instance Certificates
The application instance certificates are what the UA Gateway uses to identify itself to other UA applications. The
server interface instance certificate is presented to clients that connect to the UA Gateway and the client interface
instance certificate is presented to other UA servers to which the UA Gateway connects.

Note: If the application instance certificates are invalid, the following event log message appears:
“The {Specified Interface} Application Instance Certificate is invalid and will need to be updated (UA {client or
server} must trust the new certificate to connect). {StatusCode}" Description: {ex.Message}.”

Tip: Examples of invalid certificate causes include bad private key, an empty application URI, small key size
(2048 min), missing thumbprint, missing or incorrect subject.

UA Gateway Application Instance Certificates
To view the currently active application instance certificates the following queries can be run for each interface:

For the Server Interface Application Instance Certificate:
Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face/server_instance_certificates/Server Instance Certificate

For the Client Interface Application Instance Certificate:
Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/client_instance_certificates/Client Instance Certificate

Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway/certificates

Example response for the server interface instance certificate:
[

{
 "PROJECT_ID": <ProjectID>,
 "common.ALLTYPES_NAME": "Server Interface Instance Certificate",
 "common.ALLTYPES_DESCRIPTION": "A self-signed certificate.",
 "ua_gateway.UA_CERTIFICATE_FILE_NAME": "<certificate-name.der>",
 "ua_gateway.UA_CERTIFICATE_ISSUER": ""<certificate-issuer>",
 "ua_gateway.UA_CERTIFICATE_SUBJECT": "<certificate-subject>",
 "ua_gateway.UA_CERTIFICATE_APPLICATION_NAME": "PTC OPC UA Gateway",
 "ua_gateway.UA_CERTIFICATE_URI": "<certificate-uri>",
 "ua_gateway.UA_CERTIFICATE_VALID_FROM": "<year-month-date-utf",
 "ua_gateway.UA_CERTIFICATE_VALID_TO": "2023-10-18T00:00:00.000",
 "ua_gateway.UA_CERTIFICATE_THUMBPRINT": "<certiifcate-thumbprint>",
 "ua_gateway.UA_CERTIFICATE_VERSION": "<version>",

www. ptc.com

203

ThingWorx Kepware Server

 "ua_gateway.UA_DISTINGUISHED_NAMES": "CN = PTC OPC UA Gateway\n"
 }
]

Note: The UA Gateway server interface instance certificate is automatically trusted by the legacy OPC UA
server. The legacy OPC UA server automatically trusts the UA Gateway server interface instance certificate. These
application instance certificates are automatically re-trusted for this connection when either of the certificates are
reissued.

See Also: Project Properties — OPC UA, Default Connection to the OPC UA Server

Reissuing UA Gateway Application Instance Certificates
To reissue one of the UA Gateway’s Application Instance Certificates, the ReIssueInstanceCertificate service is
available on each Instance Certificate endpoint.

To reissue the Server Interface Instance Certificate, perform a PUT on the following endpoint:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face/server_instance_certificates/Server Instance Cer-
tificate/services/ReIssueInstanceCertificate

To reissue the Client Interface Instance Certificate, perform a PUT on the following endpoint:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/client_instance_certificates/Client Instance Cer-
tificate/services/ReIssueInstanceCertificate

Generating a CSR for a UA Gateway Application Instance Certificates
The UA Gateway API provides a service for generating a Certificate Signing Request (CSR) for both Application
Instance Certificates. Getting the CSR requires four steps.

Step 1: Generate CSR
To generate a CSR for the the given Application Instance Certificate, start by performing a PUT on the interface
endpoint’s GenerateCSR service. This will create a job under the GenerateCSR service that will contain the res-
ulting CSR.

You must specify the length of time (milliseconds) you would like the generated CSR to persist for using the fol-
lowing Message body:

Message body:
{
 "servermain.JOB_TIME_TO_LIVE_SECONDS": {job lifetime in milliseconds}
}

For the Server Interface Instance Certificate:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Inter-
face/server_instance_certificates/Server Instance Certificate/services/GenerateCSR

For the Client Interface Instance Certificate:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/client_instance_certificates/Client Instance Certificate/services/GenerateCSR

Example Response:

www. ptc.com

204

ThingWorx Kepware Server

{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/_ua_gateway/ua_server_interfaces/Server Interface/server_
instance_certificates/Server Instance Certificate/services/GenerateCSR/jobs/job2"
}

Step 2: Poll Job Status
Perform a GET on the href value returned in Step 1 to view the Job Status.
Example “href”
Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/client_instance_certificates/Client Instance Cer-
tificate/services/GenerateCSR/job/Job1

Example Response:
{
 "PROJECT_ID": 1212285485,
 "common.ALLTYPES_NAME": "job1",
 "servermain.JOB_COMPLETE": true,
 "servermain.JOB_STATUS": 3,
 "servermain.JOB_STATUS_MSG": ""
}
Note: if the JOB_STATUS_MSG returns a value, this indicates there was an error in generating the CSR and

provides details on the cause.

Example of common failure message:
"servermain.JOB_STATUS_MSG": "The Distinguished Names String in the Server Instance Cer-
tificate is not valid."

To resolve, perform a PUT on the existing Application Instance Certificate to set the UA_DISTINGUISHED_
NAMES property. See the UA Gateway Application Instance Certificates section above.

Step 3: Get CSR Result
To get the resulting CSR, append the href endpoint with “/results” and perform a GET.

Example Endpoint (GET)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_client_interfaces/Client Inter-
face/client_instance_certificates/Client Instance Cer-
tificate/services/GenerateCSR/job/Job1/results

Example Response:
[

{
 "PROJECT_ID": 1212285485,
 "common.ALLTYPES_NAME": "result",
 "common.ALLTYPES_DESCRIPTION": "",
 "ua_gateway.UA_CSR": "-----BEGIN CERTIFICATE REQUEST-----
 \nMIIC1zCCAb8CAQAwHTEbMBkGA1UEAwwSUFRDIE9QQyBVQSBHYXRld2F5MIIBIjAN\nBgkqhkiG9w0BAQEFA-
AOCAQ8AMIIBCgKCAQEAyK4y-
hVQZQCfM2u9wCKLZBrVPb8CH\nU1ZdeTm-
rpJ2e4/T7lWcmOAay/CABvcNg33PPTKAJTtS7EI85dZA5bQqiONjB9H5Z\n-
q5/rVC2Gzt-
wpc9cglrIrOB+VUJb84PHKkjyW8KjGMDm4odEymz2M3Nc3Uhz0bMbu\nA7o9TFtzTIH-
dookYd+GzxPk7Ejw+5Zi74dQd4z5GT8n-
fiId-
cdDyJqhvF/xALK3y-

www. ptc.com

205

ThingWorx Kepware Server

i\n-
vdmWYzCS7oRf/sk-
vnPuTMDigh15c-
s8gFe/Oy-
iMJj+5qfWTK0v7K5fHk-
dB8z2w-
bQl\n+r-
pogrqyFmZimK81iipvIG9wLEsG/b2VHnu5rQaTxAbKplANx-
hAzvVt6iQIDAQAB\noHUw-
cwYJKoZIhvcNAQkOMWYwZDAMBgNVHRMBAf8EAjAAMA4GA1UdDwEB/wQEAwIC\n9DBEBgNVHREEPTA7hix1cm46UFRD-
LUpaVzhIUjM6VUE6VUFHYXRld2F5L1Nl-
cnZl\nckludGVyZmFjZYILcHRjLWp6dzhocjMwDQYJKoZIhvcNAQELBQADg-
gEBAFSn3552\nGhSG/ji88am-
cp8RuZrZU76dRAan-
jwxmMn1k6neOr51GxyQePO8adRDz1AL7M+UXU\n8S7wiiUEv7Sujt8uOqftkNO6UqF8TlMPxKryFnKG03aZUE20wLq-
dOyK-
ducYXWVIB\nUPTk-
cDqM7MC5d-
hbCWn-
q2wEIvAzymtBFmJr-
pozZBKVFmWe6CZJ+OOOljxAlMDIrCA\nRHIu-
bitFgSOi2fIr-
rPHB-
mouiRJ4+O1n61PWQxvQijJUelVwYQ+BKy0g-
g8jw65jyZ\n-
mYLcugczmqNkp5vXwTf/EwPxNAjL+PMW8j+2XJGoRKUrOW1DDS8UdqeqHTgVlAjn\nWeNVxLsLKAqltZ4=\n-----
END CERTIFICATE REQUEST-----\n"
 }
]

Step 4: Save the CSR
Copy the value of UA_CSR to a text file. Note that “\n” corresponds to carriage returns. Depending on the text
editor, you may need to manually convert these.
This is the CSR ready to use with your Certificate Authority (CA).

X.509 User Authentication
The X.509 policy is enabled by default. To enable / disable X.509 user certificates as a user policy for connections
to the server interface, use the following request:

Endpoint (PUT)
{{host}}:{{port}}/config/v1/project/_ua_gateway/ua_server_interfaces/Server Interface

Message body:
{
 "PROJECT_ID": "<PROJECT-ID-NUMBER>”,
 "ua_gateway.UA_SERVER_INTERFACE_USER_IDENTITY_POLICY_X509": true/false
}
where the project ID is obtained from the response of the GET request on the same endpoint.

Note: X.509 support is in conformance with the 1.02 version of the specification from the OPC Foundation.

See Also: UA Gateway Certificate Management

Configuration API Service — Reinitialize Runtime Service
The Runtime Service can be reinitialized by interacting with the ReinitializeRuntime service. To initiate the rein-
itialization, a PUT request is sent to the endpoint with a body that defines the service name and the job’s desired
Time to Live (timeout).

www. ptc.com

206

ThingWorx Kepware Server

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime

Body:
{
 "common.ALLTYPES_NAME" : "ReinitializeRuntime",
 "servermain.JOB_TIME_TO_LIVE_SECONDS" : 30
}

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ReinitializeRuntime/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime/jobs/job1

Jobs are automatically cleaned up after the wait time expires. This wait time is configurable.

See Also: Job Cleanup

Configuration API Service — Response Codes
One of the following response codes may be returned from a REST request. Where possible, the body of the
response contains specific error messages to help identify the cause of the error and possible solutions:

l HTTPS/1.1 200 OK
l HTTPS/1.1 201 Created
l HTTPS/1.1 202 Accepted
l HTTPS/1.1 207 Multi-Status
l HTTPS/1.1 400 Bad Request
l HTTPS/1.1 401 Unauthorized
l HTTPS/1.1 403 Forbidden
l HTTPS/1.1 404 Not Found
l HTTPS/1.1 429 Too Many Requests
l HTTPS/1.1 500 Internal Server Error
l HTTPS/1.1 503 Server Runtime Unavailable
l HTTPS/1.1 504 Gateway Timeout
l HTTPS/1.1 520 Unknown Error

Consult the Configuration API Service Event Log Messages

Device Demand Poll
Device Demand Poll is useful for customers that require full control of polling devices from their client applications.
It is particularly helpful in SCADA industries like oil and gas, water / waste water, electric, and others that may
experience significant communication delays.

Many client-side SCADA systems either do not have configurable scan rates or have scan rates whose minimum
value is too long for the data updates that are required by SCADA operators. To bypass this limitation, the SCADA
system can perform writes to the Device Demand Poll tags available in the server. In this scenario, each device in
the server exposes a _DemandPoll tag that polls all referenced tags on the device when written to by a client.

www. ptc.com

207

ThingWorx Kepware Server

During the poll, the _DemandPoll tag becomes True (1). It returns to False (0) when the final active tag signals that
the read requests have completed. Subsequent writes to the _DemandPoll tag fails until the tag value returns to
False. The demand poll respects the read / write duty cycle for the channel. Client-side SCADA scripts (such as a
Refresh button script) can be developed to write to the _DemandPoll tag and cause a poll to occur. The poll results
are passed on to the client application.

For more information, refer to System Tags.

Note: The procedure described above is not OPC-compliant behavior. If this is a problem, it is recommended
that communications be separated onto two devices. One device can use the classic OPC update interval, and the
other device can set the Scan Mode to "Do not scan, demand poll only" and only poll when the _DemandPoll tag is
written.

Regardless of whether Device Demand Poll is being utilized, clients that are limited by tag scan rates may also
encounter operator wait time due to the server complying with the OPC client's group update rate. To circumvent
this OPC-compliant behavior, users can configure the "Ignore group update rate, return data as soon as it is avail-
able" setting. This returns the poll results immediately and disregards the update interval.

For more information, refer to Project Properties — OPC DA Compliance.

See Also: Device Properties — Scan Mode

Configuring from iFIX Applications
For information on configuring process database blocks to reference IGS I/O addresses, select a link from the list
below.

Overview: Creating Datablocks Inside iFIX Applications
Setting Options for IGS
Entering Driver Information in iFIX Database Manager
Specifying I/O Drivers in the Device Field
Specifying I/O Addresses in iFIX Database Manager
Specifying Signal Conditioning in iFIX Database Manager
I/O Signal Conditioning Options
Using Offset fields with Analog and Digital Registers (AR/DR)
Project Startup for iFIX Applications

Overview: Creating Datablocks Inside iFIX Applications
The IGS Driver Configuration program does not need to be used to create all of the IGS driver tags. With the correct
information, users can add IGS driver tags while configuring the database in the iFIX Database Manager. To do so,
the following information is required:

l The driver's three-letter acronym. For the IGS driver, the acronym is "IGS".
l The name of the channel, device, and tag from which data will be collected (as defined in the IGS Driver

Configuration program).
l Any other information about the tag, such as the array element of the bit offset.

 For more information on entering data in the Database Manager for automatic datablock creation, refer to Enter-
ing Driver Information in iFIX Database Manager.

Entering Driver Information in iFIX Database Manager
For information on entering driver specifications for a database block in the iFIX Database Manager, refer to the
instructions below.

1. In the iFIX Database Manager, click Blocks | Add.

www. ptc.com

208

ThingWorx Kepware Server

2. Select the type of block and click OK.

3. In Tag Name, specify a name for the database block. Then, enter driver-appropriate information in the
remaining properties.

Note: This driver does not use the Hardware Options and Signal Conditioning fields.

See Also: For information on the valid entries required for each field, select a link from the list below.
Specifying the I/O Driver in iFIX Database Manager
Specifying I/O Addresses in iFIX Database Manager
Specifying Signal Conditioning in iFIX Database Manager

Specifying the I/O Driver in iFIX Database Manager
To identify the I/O driver that the database block will access, locate the Driver property in the Database Manager.
Then, specify the driver's three-letter acronym. To use the IGS driver, enter "IGS".

To find the default driver, open the System Configuration Utility (SCU) and click SCADA Configuration. The
default driver is the first driver listed in the Configured I/O Driver list box.

www. ptc.com

209

ThingWorx Kepware Server

Note: For Database Manager to recognize the acronym entered, it must appear in the SCU's Configured I/O
Driver list box.

Specifying I/O Addresses in iFIX Database Manager
To specify the datablock address to be accessed, locate the I/O Address property in the Database Manager. Then,
enter the I/O address. This field is not case sensitive. For an IGS driver, I/O addresses typically consist of the name
of the channel, device, and tag and are specific to the driver.

Note: Multiple blocks may use the same I/O address with the IGS server.

The I/O address for the driver has the following format: Channel_Name.Device_Name.Tag_Name

where:

l Channel_Name This is the name of the protocol or driver being used in the IGS server project. It must
match the channel name in the IGS configuration.

l Device_Name This is the name of the PLC or other hardware with which the server communicates. It must
match the device name for the specified channel in the IGS configuration.

l Tag_Name This is the name of the address within the PLC or other hardware device with which the server
communicates. It must match the tag name for the specified channel and device in the IGS configuration.

Note: If tags were imported from a Controllogix L5K file, the full path to the tag name must be included.

Bit Addressing
Bit addressing can be accomplished by using one of the following two methods:

1. If a Digital Register (DR) block is being used, bits within integer data (or bits within Boolean array data) can
be specified with the numbered fields F_0, F_1, F_2, and so forth. For more information, refer to Using Off-
set fields with Analog and Digital Registers (AR/DR).

2. If a DR block is not being used, a tag should be configured in the IGS server project with the desired bit spe-
cified in the tag address. Alternatively, specify the appropriate bit address in the block's I/O address so that
the tag may be dynamically created. For more information, refer to the IGS device driver help doc-
umentation.

Notes:

1. Users may also specify an integer tag in the I/O address of DA and DI blocks; however, only the least sig-
nificant bit of that integer can be read or written to with these block types.

2. Because bit addressing is not supported when tags are imported from the L5K file, users must manually
add bit addresses and their associated tag names in the IGS server configuration program. For example,

www. ptc.com

210

ThingWorx Kepware Server

assume that the global controller tag "ValveArea3" is configured as a short data type in the L5K import file.
To address bit 1 of this tag in the iFIX PDB, users must first manually add the bit 1 address and its cor-
responding tag name in the IGS server configuration program. In this example, "ValveArea3_1" is the des-
ignated tag name for the bit 1 address. The I/O addressing for the bit address in the iFIX PDB is
"Channel1.Device1.Global.ValveArea3_1".

Array Addressing
Many of the IGS server's device drivers support arrays. Users may access individual elements of an array tag using
Analog Register (AR) blocks and the numbered fields F_0, F_1, F_2, and so forth. Digital Registers (DR) may be
used to access any bit within any element of a Boolean or integer array. For more information, refer to Using Offset
fields with Analog and Digital Registers (AR/DR).

The entire array can be accessed in text form using a TX block. Access to individual elements or bits within an
array using other means is not currently supported. If other types of blocks are used, the data must be addressed
with individual tags. For more information on array addressing support and syntax, refer to the IGS device driver
help documentation.

Specifying Signal Conditioning in iFIX Database Manager
The IGS driver can apply signal conditioning to the data. Users can configure signal conditioning options for each
block defined in the iFIX Database Manager. For more information, refer to the instructions below.

1. In Signal Conditioning, specify the desired algorithm. For no signal conditioning, select None.

2. Specify the Engineering Units (EGU) range for the conditioned data.

Note: For more information on supported signal conditioning algorithms, refer to iFIX Signal Conditioning
Options.

iFIX Signal Conditioning Options
The following signal conditioning options are available through the iFIX Database Manager:

3BCD
4BCD
8AL
8BN
12AL
12BN
13AL
13BN
14AL

www. ptc.com

211

ThingWorx Kepware Server

14BN
15AL
15BN
20P
TNON

Note: Linear and logarithmic scaling is available through the server for Static tags only. For more information,
refer to Tag Properties — Scaling and Static Tags (User-Defined).

3BCD Signal Conditioning
Description 3-digit Binary Coded Decimal (BCD) value

Input Range 0-999

Scaling Scales 3-digit Binary Coded Decimal values to the database block's EGU range.

Read
Algorithm

Reads from a 3-digit BCD register. The Raw_value is then separated into three nibbles (4 bits)
prior to scaling the value. Each nibble is examined for a value greater than 9 (A-F hex). If a hexa-
decimal value between A and F is found, a range alarm is generated, indicating the value is not
within BCD range. Otherwise, the value is scaled with the following algorithm:
Result=((Raw_value/999) * Span_egu) + Lo_egu.

Read
Algorithm
Variables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write
Algorithm

Writes to a 3-digit BCD register using the following algorithm:
Result=(((InputData-Lo_egu) / Span_egu) * 999) + .5.

Write
Algorithm
Variables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

4BCD Signal Conditioning
Description 4-digit Binary Coded Decimal (BCD) value

Input Range 0-9999

Scaling Scales 4-digit Binary Coded Decimal values to the database block's EGU range.

Read Algorithm Reads from a 4-digit BCD register. The Raw_value is then separated into four nibbles
(4 bits) prior to scaling the value. Each nibble is examined for a value greater than 9
(A-F hex). If a hexadecimal value between A and F is found, a range alarm is gen-
erated, indicating the value is not within BCD range. Otherwise, the value is scaled
with the following algorithm:
Result=((Raw_value/9999) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write Algorithm Writes to a 4-digit BCD register using the following algorithm:
Result=(((InputData-Lo_egu) / Span_egu) * 9999) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

8AL Signal Conditioning
Description 8-bit binary number

Input Range 0-255

www. ptc.com

212

ThingWorx Kepware Server

Description 8-bit binary number

Scaling Scales 8-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 8BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/255) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 8BN, and returns a status indic-
ating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 255) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

8BN Signal Conditioning
Description 8-bit binary number

Input Range 0-255

Scaling Scales 8-bit binary values to the database block's EGU range. Ignores the most sig-
nificant byte.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/255) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write Algorithm Writes to an 8-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 255) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

12AL Signal Conditioning
Description 12-bit binary number

Input Range 0-4095

Scaling Scales 12-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 12BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/4095) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 12BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 4095) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

www. ptc.com

213

ThingWorx Kepware Server

12BN Signal Conditioning
Description 12-bit binary number

Input Range 0-4095

Scaling
Scales 12-bit binary values to the database block's EGU range. Ignores the most sig-
nificant nibble (4-bits). Out of range value are treated as 12-bit values. For example,
4096 is treated as 0 because the four most significant bits are ignored.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/4095) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 4095) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

13AL Signal Conditioning
Description 13-bit binary number

Input Range 0-8191

Scaling Scales 13-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 13BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/8191) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 13BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 8191) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

13BN Signal Conditioning
Description 13-bit binary number

Input Range 0-8191

Scaling Scales 13-bit binary values to the database block's EGU range. Ignores the most sig-
nificant 3 bits.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/8191) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 8191) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.

www. ptc.com

214

ThingWorx Kepware Server

Description 13-bit binary number

InputData - the database block's current value.
Result - the value sent to the process hardware.

14AL Signal Conditioning
Description 14-bit binary number

Input Range 0-16383

Scaling Scales 14-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 14BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/16383) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 14BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 16383) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

14BN Signal Conditioning
Description 14-bit binary number

Input Range 0-16383

Scaling Scales 14-bit binary values to the database block's EGU range. Ignores the most sig-
nificant 2 bits.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result=((Raw_value/16383) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result=(((InputData-Lo_egu)/Span_egu) * 16383) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

15AL Signal Conditioning
Description 15-bit binary number

Input Range 0-32767

Scaling Scales 15-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register with alarming using the same algorithm as 15BN, and
returns a status indicating whether the value is out of range and in an alarm state, or
OK.
Result=((Raw_value/32767) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

www. ptc.com

215

ThingWorx Kepware Server

Description 15-bit binary number

Write Algorithm Writes to a 16-bit register with alarming using the same algorithm as 15BN, and
returns a status indicating whether the value is out of range and in an alarm state, or
OK.
Result=(((InputData-Lo_egu)/Span_egu) * 32767) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

15BN Signal Conditioning
Description 15-bit binary number

Input Range 0-32767

Scaling Scales 15-bit binary values to the database block's EGU range. Ignores the most sig-
nificant bit.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/32767) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 32767) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

20P Signal Conditioning
Description 6400 – 32000 clamp

Input Range 6400 – 32000

Scaling Scales binary values to the database block's EGU range. Clamps value to 6400 –
32000 range.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =(((Raw_value-6400)/25600) * Span_egu) + Lo_egu.

Read Algorithm
Variables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 25600) + 6400.5.

Write Algorithm
Variables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

TNON Signal Conditioning
Description 0 – 32000 Clamp

Input Range 0 – 32000

Scaling Scales binary values to the database block's EGU range. Clamps value to 0 – 32000
range.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/32000) * Span_egu) + Lo_egu.

www. ptc.com

216

ThingWorx Kepware Server

Description 0 – 32000 Clamp

Read Algorithm
Variables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 32000) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

Project Startup for iFIX Applications
The server's iFIX interface has been enhanced to provide iFIX users with better startup performance. This enhance-
ment applies to iFIX applications that use Analog Output (AO), Digital Output (DO), and/or Alarm Values that were
previously initialized improperly on startup. The server maintains a special iFIX configuration file for the default
server project that contains all items that to be accessed by the iFIX client. This configuration file is used to auto-
matically start scanning items before iFIX requests item data. Therefore, data updates that are only requested once
(such as AO/DO) have an initial value when requested by iFIX. For information on using this feature for existing
iFIX projects, refer to the instructions below.

1. To start, export the PDB database from the iFIX Database Manager.

2. Re-import the exported file so that each item in the database is re-validated with the server.

3. In the Confirm Tag Replacement message box, select Yes to all.

Note: A new configuration file is created in the same folder as the default server project file, containing
the name "default_FIX.ini".

4. Depending on how long it takes to read an initial value for all the items in the project, it may be necessary to
delay the start of SAC processing. Doing so allows the server enough time to retrieve all initial updates
before the iFIX client requests data from the server. For more information on the specific iFIX version, refer
to the iFIX documentation.

5. Restart both the iFIX application and the server to put the changes into effect.

Note: For new projects (or when adding additional items to an existing iFIX database) users do not need to per-
form the steps described above. The item is validated by the server upon its addition to the database. If valid, the
server adds the item to the configuration file.

Store and Forward Service
The Store and Forward Service allows different server components to store data on a local disk for a period of time.
The service installs with components that require store and forward functionality. The Store and Forward service
starts and stops automatically based on features that support store and forward.

See Also:
ThingWorx Project Properties
Store and Forward Configuration Settings
Store and Forward System Tags
ThingWorx Access Rights

Built-In Diagnostics
When communications problems occur, users can utilize both OPC and channel diagnostics to help determine the
cause of the issue. These views provide diagnostics on both the server-level and driver-level. Since they may affect
performance, users should only utilize diagnostics when debugging or trouble-shooting. For more information,
select a link from the list below.

OPC Diagnostics Viewer

www. ptc.com

217

ThingWorx Kepware Server

Channel Diagnostics

OPC Diagnostics Viewer
The OPC Diagnostics Viewer provides both a real-time and historical view of OPC events occurring between an
OPC client and the server. An event is a method call that a client makes to the server, or a callback that the server
makes to a client.

Accessing the OPC Diagnostics Viewer
The OPC Diagnostics Viewer is separate from the main server configuration window. To access the OPC Dia-
gnostics Viewer, click View | OPC Diagnostics.

Note: Although the viewer can be accessed when capture is disabled, there are no diagnostics until it is
enabled.
 For information on enabling OPC diagnostics, refer to Project Properties — OPC DA, Project Properties — OPC

UA Settings, and Project Properties — OPC HDA.

 For information on the log settings properties, refer to Settings - Event Log.

Live Data Mode
The OPC Diagnostics Viewer opens in Live Data Mode, which displays the persisted OPC Diagnostics data that is
currently available from the Event Log. The viewer is updated in real time. To pause the display, click View | Pause
or select the Pause icon. Although data continues to be captured, the display does not update.

To save an OPC Diagnostics file, click File | Save As and select OPC Diagnostic Files (*.opcdiag).

File Data Mode
The OPC Diagnostics Viewer can open and display saved OPC Diagnostics files. When a saved file is opened, the
viewer switches to File Data Mode and display the name and data from the loaded file. Users can switch between
the modes through the View menu. Once a file is closed, the view switches to Live Data, and the File Data view is
unavailable until another file is loaded.

View Menu

www. ptc.com

218

ThingWorx Kepware Server

Descriptions of the options are as follows:

l Live Data When enabled, this option displays any persisted OPC Diagnostics data that is currently avail-
able from the Event Log. The default setting is enabled. For more information, refer to Live Data Mode.

l File Data When enabled, this option displays data from a saved OPC Diagnostics file. The default setting is
disabled. For more information, refer to File Data Mode.

l Always on Top When enabled, this option forces the OPC Diagnostics window to remain on the top of all
other application windows. The default setting is enabled.

l Autoscroll When enabled, this option scrolls the display as new events are received to ensure that the most
recent event is visible. It turns off when users manually select an event (or when a selection is made by
Find/Find Next).

l Toolbar When enabled, this option displays a toolbar of icons for quick access to the options available
through the File, Edit, and View menus. The default setting is enabled.

l Information Bar When enabled, this option displays a bar of information above the OPC Diagnostics data.
The default setting is enabled.

Find
This dialog searches the Diagnostics View for key information transferred between the client and server. For
example, this search functionality can be used to find all actions on a particular item ID or group name.

Descriptions of the properties are as follows:

l Find What This field specifies the search criteria.
l Match Case When enabled, the search criteria is case sensitive.
l Search Details When enabled, the search criteria includes details.

Note: When an event or detail with the specified text is found, the line containing the text is highlighted. To per-
form a Find Next operation (and look for the next occurrence of the specified text), press "F3". When the last

www. ptc.com

219

ThingWorx Kepware Server

occurrence is found, a message box indicates this condition. Users can change the search criteria at any time by
pressing "Ctrl+F".

Filter
This dialog specifies which events is visible in the OPC Diagnostics Viewer. For example, most clients make con-
tinuous GetStatus calls into the server to determine whether the server is still available. By filtering this event, users
can just examine the diagnostics data. The filtering applied is to the view, not to the capture. All event types are cap-
tured regardless of the filter settings. Furthermore, because filters can be applied while the dialog is open, settings
can be changed and applied independently. Changes may be made without closing and reopening the dialog.

Note: Each method (such as "IOPCCommon" or "GetErrorString") of every OPC Data Access 1.0, 2.0, and 3.0
interface that is supported by the server is available as a filter.

Descriptions of the options are as follows:

l Check Selected: When clicked, this button enables all events under the selected item for viewing. All meth-
ods for all interfaces are selected by default.

For more information, refer to OPC DA Events and OPC UA Services.
l Uncheck Selected When clicked, this button enables all event types and methods under the selected item.
l Import When clicked, this button allows users to select an INI file for import to the Filter.
l Export When clicked, this button allows users to export the Filter as an INI file.

Notes:

1. Because the Filter settings are persisted when the OPC Diagnostics Viewer is closed, users can reopen
and view the OPC diagnostic files at a later time. Files opened in File Data Mode may be filtered. When a
file is saved from the OPC Diagnostics Viewer, only the events that are displayed as a result of the applied
filter is saved. If an unfiltered data file is required, users must turn off filtering before saving the file.

2. The server's performance is affected when diagnostic information is captured because it is an additional
layer of processing that occurs between the client/server communications. Furthermore, logging OPC

www. ptc.com

220

ThingWorx Kepware Server

Diagnostics in the Extended Datastore Persistence Mode can consume a lot of disk space. The Windows
Event Viewer reports any related errors. For information on persistence modes, refer to Settings - Event
Log.

OPC DA Events
For more information on a specific OPC Diagnostic Event, select a link from the list below.

IClassFactory
Server
IOPCCommon
IOPCServer
IConnectionPointContainer (Server)
IConnectionPoint (Server)
IOPCBrowse
IOPCBrowseServerAddressSpace
IOPCItemProperties
IOPCItemIO
Group
IOPCGroupStateMgt
IOPCGroupStateMgt2
IOPCItemMgt
IOPCItemDeadbandMgt
IOPCItemSamplingMgt
IOPCSyncIO
IOPCSyncIO2
IOPCAsyncIO
IDataObject
IAdviseSink
IAsyncIO2
IAsyncIO3
IConnectionPointContainer (Group)
IConnectionPoint (Group)
IOPCDataCallback
IEnumOPCItemAttributes

IClassFactory
The IClassFactory interface contains several methods intended to deal with an entire class of objects. It is imple-
mented on the class object for a specific class of objects and is identified by a CLSID.

l QueryInterface: The client can ask the object whether it supports any outgoing interfaces by calling
QueryInterface for IConnectionPointContainer. If the object answers "yes" by handing back a valid pointer,
the client knows it can attempt to establish a connection.

l AddRef: Increments the reference count for an interface on an object. It should be called for every new
copy of a pointer to an interface on a given object.

l Release: Decreases the reference count of the interface by 1.
l CreateInstance: Creates an uninitialized object.
l LockServer: Allows instances to be created quickly when called by the client of a class object to keep a

server open in memory.

Server
The client calls CoCreateInstance to create the server object and the initial interface.

www. ptc.com

221

ThingWorx Kepware Server

l QueryInterface: The client can ask the object whether it supports any outgoing interfaces by calling
QueryInterface for IConnectionPointContainer. If the object answers "yes" by handing back a valid pointer,
the client knows it can attempt to establish a connection.

l AddRef: Increments the reference count for an interface on an object. It should be called for every new
copy of a pointer to an interface on a given object.

l Release: Decreases the reference count of the interface by 1.

IOPCCommon
This interface is used by all OPC server types (DataAccess, Alarm&Event, Historical Data, and so forth). It provides
the ability to set and query a Locale ID which would be in effect for the particular client/server session. The actions
of one client do not affect other clients.

l GetErrorString: Returns the error string for a server specific error code. The expected behavior is that this
includes handling of Win32 errors as well (such as RPC errors).

l GetLocaleID: Returns the default Locale ID for this server/client session.
l QueryAvailableLocaleIDs: Returns the available Locale IDs for this server/client session.
l SetClientName: Allows the client to optionally register a client name with the server. This is included primar-

ily for debugging purposes. The recommended behavior is that users set the Node name and EXE name
here.

l SetLocaleID: Sets the default Locale ID for this server/client session. This Locale ID is used by the GetEr-
rorString method on this interface. The default value for the server should be LOCALE_SYSTEM_
DEFAULT.

IOPCServer
This is an OPC server's main interface. The OPC server is registered with the operating system as specified in the
Installation and Registration Chapter of this specification.

l AddGroup: Adds a group to a server. A group is a logical container for a client to organize and manipulate
data items.

l CreateGroupEnumerator: Creates various enumerators for the groups provided by the server.
l GetErrorString: Returns the error string for a server specific error code.
l GetGroupByName: Returns an additional interface pointer when given the name of a private group (cre-

ated earlier by the same client). Use GetPublicGroupByName to attach to public groups. This function can
be used to reconnect to a private group for which all interface pointers have been released.

l GetStatus: Returns current status information for the server.
l RemoveGroup Deletes the group. A group is not deleted when all the client interfaces are released, since

the server itself maintains a reference to the group. The client may still call GetGroupByName after all the
interfaces have been released. RemoveGroup() causes the server to release its 'last' reference to the
group, which results in the group being deleted.

IConnectionPointContainer (Server)
This interface provides the access to the connection point for IOPCShutdown.

l EnumConnectionPoints: Creates an enumerator for the connection points supported between the OPC
group and the client. OPCServers must return an enumerator that includes IOPCShutdown. Additional
vendor specific callbacks are allowed.

l FindConnectionPoint: Finds a particular connection point between the OPC server and the client.
OPCServers must support IID_IOPCShutdown. Additional vendor specific callbacks are allowed.

IConnectionPoint (Server)
This interface establishes a call back to the client.

l Advise: Establishes an advisory connection between the connection point and the caller's sink object.
l EnumConnections: Creates an enumerator object for iteration through the connections that exist to this

connection point.
l GetConnectionInterface: Returns the IID of the outgoing interface managed by this connection point.
l GetConnectionPointContainer: Retrieves the IConnectionPointContainer interface pointer to the con-

nectable object that conceptually owns the connection point.

www. ptc.com

222

ThingWorx Kepware Server

l Unadvise: Terminates an advisory connection previously established through the Advise method.
l ShutdownRequest Allows the server to request that all clients disconnect from the server.

IOPCBrowse
IOPCBrowse interface provides improved methods for browsing the server address space and for obtaining the
item properties.

l GetProperties: Returns an array of OPCITEMPROPERTIES, one for each item ID.
l Browse: Browses a single branch of the address space and returns zero or more OPCBROWSEELEMENT

structures.

IOPCBrowseServerAddressSpace
This interface provides a way for clients to browse the available data items in the server, giving the user a list of the
valid definitions for an item ID. It allows for either flat or hierarchical address spaces and is designed to work well
over a network. It also insulates the client from the syntax of a server vendor specific item ID.

l BrowseAccessPaths: Provides a way to browse the available AccessPaths for an item ID.
l BrowseOPCItemIDs: Returns an IENUMString for a list of item IDs as determined by the passed prop-

erties. The position from which the browse is made can be set in ChangeBrowsePosition.
l ChangeBrowserPosition: Provides a way to move up, down or to in a hierarchical space.
l GetItemID: Provides a way to assemble a fully qualified item ID in a hierarchical space. This is required

since the browsing functions return only the components or tokens that make up an item ID and do not
return the delimiters used to separate those tokens. Also, at each point one is browsing just the names
below the current node (e.g. the units in a cell).

l QueryOrganization: Provides a way to determine if the underlying system is inherently flat or hierarchical
and how the server may represent the information of the address space to the client. Flat and hierarchical
spaces behave somewhat different. If the result is flat, the client knows that there is no need to pass the
Branch or Leaf flags to BrowseOPCItem IDs or to call ChangeBrowsePosition.

IOPCItemProperties
This interface can be used to browse the available properties associated with an item ID as well as to read the prop-
erties' current values.

l GetItemProperties: Returns a list of the current data values for the passed ID codes.
l LookUpItemIDs: Returns a list of item IDs for each of the passed ID codes if any are available. These indic-

ate the item ID which could be added to an OPC group and used for more efficient access to the data cor-
responding to the item properties.

l QueryAvailableProperties: Returns a list of ID codes and descriptions for the available properties for this
item ID. This list may differ for different item IDs. This list is expected to be relatively stable for a particular
item ID, although it could be affected from time to time by changes to the underlying system's configuration.
The item ID is passed to this function because servers are allowed to return different sets of properties for
different item IDs.

IOPCItemIO
The purpose of this interface is to provide an easy way for basic applications to obtain OPC data.

l Read: Reads one or more values, qualities, and timestamps for the items specified. This is functionally sim-
ilar to the IOPCSyncIO::Read method.

l WriteVQT: Writes one or more values, qualities, and timestamps for the items specified. This is functionally
similar to the IOPCSyncIO2::WriteVQT except that there is no associated group. If a client attempts to write
VQ, VT, or VQT it should expect that the server will write them all or none at all.

Group
The client calls CoCreateInstance to create the server object and the initial interface.

l QueryInterface: The client can ask the object whether it supports any outgoing interfaces by calling
QueryInterface for IConnectionPointContainer. If the object answers "yes" by handing back a valid pointer,
the client knows it can attempt to establish a connection.

l AddRef: Increments the reference count for an interface on an object. It should be called for every new

www. ptc.com

223

ThingWorx Kepware Server

copy of a pointer to an interface on a given object.
l Release: Decreases the reference count of the interface by 1.

IOPCGroupStateMgt
IOPCGroupStateMgt allows the client to manage the overall state of the group. Primarily, this accounts for changes
made to the group's update rate and active state.

l CloneGroup: Creates a second copy of a group with a unique name.
l GetState: Gets the current state of the group. This function is typically called to obtain the current values of

this information prior to calling SetState. This information was all supplied by or returned to the client when
the group was created.

l SetName: Changes the name of a private group. The name must be unique. The name cannot be changed
for public groups. Group names are required to be unique with respect to an individual client to server con-
nection.

l SetState: Sets various properties of the group. This represents a new group which is independent of the ori-
ginal group.

IOPCGroupStateMgt2
This interface was added to enhance the existing IOPCGroupStateMgt interface.

l SetKeepAlive: Causes the server to provide client callbacks on the subscription when there are no new
events to report. Clients can be assured of the health of the server and subscription without resorting to
pinging the server with calls to GetStatus().

l GetKeepAlive: Returns the currently active keep-alive time for the subscription.

IOPCItemMgt
This interface allows a client to add, remove and control the behavior of items is a group.

l AddItems: Adds one or more items to a group. It is acceptable to add the same item to the group more than
once, generating a second item with a unique ServerHandle.

l CreateEnumerator: Creates an enumerator for the items in the group.
l RemoveItems: Removes items from a group. Removing items from a group does not affect the address

space of the server or physical device. It indicates whether or not the client is interested in those particular
items.

l SetActiveState: Sets one or more items in a group to active or inactive. This controls whether or not valid
data can be obtained from read cache for those items and whether or not they are included in the IAdvise
subscription to the group. Deactivating items does not result in a callback, since by definition callbacks do
not occur for inactive items. Activating items generally results in an IAdvise callback at the next UpdateRate
period.

l SetClientHandles: Changes the client handle for one or more items in a group. In general, it is expected
that clients set the client handle when the item is added and not change it later.

l SetDataTypes: Changes the requested data type for one or more items in a group. In general, it is expec-
ted that clients set the requested data type when the item is added and not change it later.

l ValidateItems: Determines if an item is valid and could be added without error. It also returns information
about the item such as canonical datatype. It does not affect the group in any way.

IOPCItemDeadbandMgt
Force a callback to IOPCDataCallback::OnDataChange for all active items in the group, whether they have
changed or not. Inactive items are not included in the callback. The MaxAge value determines where the data is
obtained. There is only one MaxAge value, which determines the MaxAge for all active items in the group. This
means some of the values may be obtained from cache while others could be obtained from the device, depending
on the "freshness" of the data in the cache.

l SetItemDeadband: Overrides the deadband specified for the group for each item.
l GetItemDeadband: Gets the deadband values for each of the requested items.
l ClearItemDeadband: Clears the individual item PercentDeadband, effectively reverting them back to the

deadband value set in the group.

IOPCItemSamplingMgt

www. ptc.com

224

ThingWorx Kepware Server

This optional interface allows the client to manipulate the rate at which individual items within a group are obtained
from the underlying device. It does not affect the group update rate of the callbacks for OnDataChange.

l SetItemSamplingRate: Sets the sampling rate on individual items. This overrides the update rate of the
group as far as collection from the underlying device is concerned. The update rate associated with indi-
vidual items does not affect the callback period.

l GetItemSamplingRate: Gets the sampling rate on individual items, which was previously set with
SetItemSamplingRate.

l ClearItemSamplngRate: Clears the sampling rate on individual items, which was previously set with
SetItemSamplingRate. The item reverts to the update rate of the group.

l SetItemBufferEnable: Requests that the server turns on or off, depending on the value of the Enable prop-
erty, the buffering of data for the identified items, which are collected for items that have an update rate
faster than the group update rate.

l GetItemBufferEnable: Queries the current state of the servers buffering for requested items.

IOPCSyncIO
IOPCSyncIO allows a client to perform synchronous read and write operations to a server. The operations run to
completion.

l Read: Reads the value, quality and timestamp information for one or more items in a group. The function
runs to completion before returning. The data can be read from cache in which case it should be accurate to
within the UpdateRate and percent deadband of the group. The data can be read from the device, in which
case an actual read of the physical device must be performed. The exact implementation of cache and
device reads are not defined by the specification.

l Write: Writes values to one or more items in a group. The function runs to completion. The values are writ-
ten to the device, meaning that the function should not return until it verifies that the device has actually
accepted or rejected the data. Writes are not affected by the active state of the group or item.

IOPCSyncIO2
This interface was added to enhance the existing IOPCSyncIO interface.

l ReadMaxAge: Reads one or more values, qualities and timestamps for the items specified. This is func-
tionally similar to the OPCSyncIO::Read method except no source is specified (device or cache). The
server determines whether the information is obtained from the device or cache. This decision is based on
the MaxAge property. If the information in the cache is within the MaxAge, the data is obtained from the
cache; otherwise, the server must access the device for the requested information.

l WriteVQT: Writes one or more values, qualities and timestamps for the items specified. This is functionally
similar to the IOPCSyncIO::Write except that Quality and Timestamp may be written. If a client attempts to
write VQ, VT or VQT it should expect that the server will write to all or none.

IOPCAsyncIO
IOPCAsyncIO allows a client to perform asynchronous read and write operations to a server. The operations are
queued and the function returns immediately so that the client can continue to run. Each operation is treated as a
transaction and is associated with a Transaction ID. As the operations are completed, a callback is made to the IAd-
vise Sink in the client (if one is established). The information in the callback indicates the Transaction ID and the
error results. By convention, 0 is an invalid Transaction ID.

l Cancel: Requests that the server cancel an outstanding transaction.
l Read: Reads one or more items in a group. The results are returned via the IAdvise Sink connection estab-

lished through the IDataObject. For cache reads the data is only valid if both the group and the item are act-
ive. Device reads are not affected by the active state of the group or item.

l Refresh: Forces a callback for all active items in the group, whether they have changed or not. Inactive
items are not included in the callback.

l Write: Writes one or more items in a group. The results are returned via the IAdviseSink connection estab-
lished through the IDataObject.

IDataObject
IDataObject is implemented on the OPCGroup rather than on the individual items. This allows the creation of an
Advise connection between the client and the group using the OPC Data Stream Formats for the efficient data
transfer.

www. ptc.com

225

ThingWorx Kepware Server

l DAdvise: Creates a connection for a particular stream format between the OPC group and the client.
l DUnadvise: Terminates a connection between the OPC group and the client.

IAdviseSink
The client only has to provide a full implementation of OnDataChange.

l OnDataChange: This method is provided by the client to handle notifications from the OPC group for excep-
tion based data changes, Async reads and Refreshes and Async Write Complete.

IAsyncIO2
This interface is similar to IOPCAsync(OPC 1.0) and is intended to replace IOPCAsyncIO. It was added in OPC
2.05.

l Cancel2: Requests that the server cancel an outstanding transaction.
l GetEnable: Retrieves the last Callback Enable value set with SetEnable.
l Read: Reads one or more items in a group. The results are returned via the client's IOPCDataCallback con-

nection established through the server's IConnectionPointContainer. Reads are from device and are not
affected by the active state of the group or item.

l Refresh2: Forces a callback to IOPCDataCallback::OnDataChange for all active items in the group,
whether they have changed or not. Inactive items are not included in the callback.

l SetEnable: Controls the operation of OnDataChange. Setting Enable to False disables any
OnDataChange callbacks with a transaction ID of 0 (not the result of a Refresh). The initial value of this vari-
able when the group is created is True; OnDataChange callbacks are enabled by default.

l Write: Writes one or more items in a group. The results are returned via the client's IOPCDataCallback con-
nection established through the server's IConnectionPointContainer.

IAsyncIO3
This interface was added to enhance the existing IOPCAsyncIO2 interface.

l ReadMaxAge: Reads one or more values, qualities and timestamps for the items specified. This is func-
tionally similar to the OPCSyncIO::Read method except it is asynchronous and no source is specified
(device or cache). The server determines whether the information is obtained from the device or cache.
This decision is based on the MaxAge property. If the information in the cache is within the MaxAge, the
data is obtained from the cache; otherwise, the server must access the device for the requested inform-
ation.

l WriteVQT: Writes one or more values, qualities and timestamps for the items specified. The results are
returned via the client's IOPCDataCallback connection established through the server's ICon-
nectionPointContainer. This is functionally similar to the IOPCAsyncIO2::Write except that Quality and
Timestamp may be written. If a client attempts to write VQ, VT or VQT it should expect that the server will
write them all or none at all.

l RefreshMaxAge: Forces a callback to IOPCDataCallback::OnDataChange for all active items in the group,
whether or not they have changed. Inactive items are not included in the callback. The MaxAge value
determines where the data is obtained. There is only one MaxAge value, which determines the MaxAge for
all active items in the group. This means some of the values may be obtained from cache while others can
be obtained from the device, depending on the type of the data in the cache.

IConnectionPointContainer (Group)
This interface provides functionality similar to the IDataObject but is easier to implement and to understand. It also
provides the functionality missing from the IDataObject interface. The client must use the new IOPCAsyncIO2 inter-
face to communicate via connections established with this interface. The old IOPCAsnyc continues to com-
municate via IDataObject connections as in the past.

l EnumConnectionPoints: Creates an enumerator for the connection points supported between the OPC
group and the client.

l FindConnectionPoint: Finds a particular connection point between the OPC group and the client.

IConnectionPoint (Group)
This interface establishes a call back to the client.

www. ptc.com

226

ThingWorx Kepware Server

l Advise: Establishes an advisory connection between the connection point and the caller's sink object.
l EnumConnections: Creates an enumerator object for iteration through the connections that exist to this

connection point.
l GetConnectionInterface: Returns the IID of the outgoing interface managed by this connection point.
l GetConnectionPointContainer: Retrieves the IConnectionPointContainer interface pointer to the con-

nectable object that conceptually owns the connection point.
l Unadvise: Terminates an advisory connection previously established through the Advise method.

IOPCDataCallback
To use connection points, the client must create an object that supports both the IUnknown and IOPCDataCallback
interface.

l OnDataChange: This method is provided by the client to handle notifications from the OPC group for excep-
tion based data changes and Refreshes.

l OnReadComplete: This method is provided by the client to handle notifications from the OPC group on
completion of Async reads.

l OnWriteComplete: This method is provided by the client to handle notifications from the OPC group on
completion of AsyncIO2 Writes.

l OnCancelComplete: This method is provided by the client to handle notifications from the OPC group on
completion of Async cancel.

IEnumOPCItemAttributes
IEnumOPCItemAttributes allows clients to find out the contents of a group and the attributes of those items. Most of
the returned information is either supplied by or returned to the client at the time it called AddItem.

l Clone: Creates a second copy of the enumerator. The new enumerator is initially in the same state as the
current enumerator.

l Next: Fetches the next 'celt' items from the group.
l Reset: Resets the enumerator back to the first item.
l Skip: Skips over the next 'celt' attributes.

For more information on the general principles of connection points, refer to Microsoft documentation.

OPC UA Services
For more information on a specific OPC Diagnostic Event, select a link from the list below.

AttributeServiceSet
DiscoveryServiceSet
MonitoredItemServiceSet
OtherServices
SecureChannelServiceSet
SessionServiceSet
SubscriptionServiceSet
ViewServiceSet

AttributeServiceSet
This service set provides services to access attributes that are part of nodes.

l Read: This service is used to read one or more attributes of one or more nodes. For constructed attribute
values whose elements are indexed, such as an array, this service allows clients to read the entire set of
indexed values as a composite, to read individual elements or to read ranges of elements of the composite.

l Write: This service is used to write values to one or more attributes of one or more nodes. For constructed
attribute values whose elements are indexed, such as an array, this service allows clients to write the entire
set of indexed values as a composite, to write individual elements or to write ranges of elements of the com-
posite.

DiscoveryServiceSet

www. ptc.com

227

ThingWorx Kepware Server

This service set defines services used to discover the endpoints implemented by a server and to read the security
configuration for those endpoints.

l FindServers: This service returns the servers known to a server or discovery server.
l GetEndpoints: This service returns the endpoints supported by a server and all of the configuration inform-

ation required to establish a secure channel and session.

MonitoredItemServiceSet
This service set allows clients to define monitored items to subscribe to data and events. Each monitored item iden-
tifies the item to be monitored and the subscription to use to send notifications. The item to be monitored may be
any node attribute.

l CreateMonitoredItems: This service is used to create and add one or more MonitoredItems to a Sub-
scription. A MonitoredItem is deleted automatically by the server when the Subscription is deleted.

l DeleteMonitoredItems: This service is used to remove one or more MonitoredItems of a Subscription.
When a MonitoredItem is deleted, its triggered item links are also deleted.

l ModifyMonitoredItems: This service is used to modify MonitoredItems of a Subscription. Changes to the
MonitoredItem settings are immediately applied by the server.

l SetMonitoringMode: This service is used to set the monitoring mode for one or more MonitoredItems of a
Subscription. Setting the mode to disabled causes all queued notifications to be deleted.

l SetTriggering: This service is used to create and delete triggering links for a triggering item. Triggered
items and their links cause a monitored item to report samples when their monitoring mode doesn’t allow for
that by default.

OtherServices
OtherServices represents miscellaneous services and notifications.

l ServiceFault: This response is provided any time a service fails.
l Unsupported: These services are not supported by this server.

SecureChannelServiceSet
This service set defines services used to open a communication channel that ensures the confidentiality and integ-
rity of all messages exchanged with the server.

l CloseSecureChannel: This service is used to terminate a SecureChannel.
l OpenSecureChannel: This service is used to open or renew a SecureChannel that can be used to ensure

confidentiality and integrity for message exchange during a session. This service requires the com-
munication stack to apply the various security algorithms to the messages as they are sent and received.

SessionServiceSet
This service set defines services for an application layer connection establishment in the context of a session.

l ActivateSession: This service is used by the client to specify the identity of the user associated with the ses-
sion.

l Cancel: This service is used to cancel any outstanding service requests. Successfully cancelled service
requests shall respond with Bad_RequestCancelledByClient ServiceFaults.

l CloseSession: This service is used to terminate a session.
l CreateSession: This service is used by the client to create a Session and the server returns two values

which uniquely identify the Session. The first value is the sessionId which is used to identify the Session in
the Server’s AddressSpace. The second is the authenticationToken which is used to associate an incoming
request with a Session.

SubscriptionServiceSet
Subscriptions are used to report notifications from MonitoredItems to a client.

l CreateSubscription: This service is used to create a subscription. Subscriptions monitor a set of Mon-
itoredItems for Notifications and return them to the client in response to Publish requests.

www. ptc.com

228

ThingWorx Kepware Server

l DeleteSubscriptions: This service is invoked to delete one or more subscriptions that belong to the client’s
session. Successful completion of this service causes all MonitoredItems that use the Subscription to be
deleted.

l ModifySubscription: This service is used to modify a subscription.
l Publish: This service is used for two purposes. First, it is used to acknowledge the receipt of Noti-

ficationMessages for one or more Subscriptions. Second, it is used to request the server to return a Noti-
ficationMessage or a keep-alive message. Since Publish requests are not directed to a specific
Subscription, they may be used by any Subscription.

l Republish: This service requests the Subscription to republish a NotificationMessage from its retrans-
mission queue.

l SetPublishingMode: This service is used to enable or disable sending of notifications on one or more sub-
scriptions.

l TransferSubscriptions: This service is used to transfer a subscription and its MonitoredItems from one Ses-
sion to another.

ViewServiceSet
Clients use the browse services of this service set to navigate through the AddressSpace.

l Browse: This service is used to discover the References of a specified Node. The browse service also sup-
ports a primitive filtering capability.

l BrowseNext: This service is used to request the next set of Browse or BrowseNext response information
that is too large to be sent in a single response. “Too large” in this context means that the server is not able
to return a larger response or that the number of results to return exceeds the maximum number of results
to return that was specified by the client in the original browse request.

l RegisterNodes: This service can be used by clients to register the Nodes that they know they will access
repeatedly (e.g. Write, Read). It allows Servers to set up anything needed so that the access operations will
be more efficient.

l TranslateBrowsePathsToNodeIds: This service is used to request that the server translates one or more
browse paths to NodeIds. Each browse path is constructed of a starting Node and a RelativePath. The spe-
cified starting Node identifies the Node from which the RelativePath is based. The RelativePath contains a
sequence of ReferenceTypes and BrowseNames.

l UnregisterNodes: This service is used to unregister NodeIds that have been obtained via the Register-
Nodes service.

For more information on the general principles of connection points, refer to Microsoft documentation.

Communication Diagnostics
The server's diagnostic features provide real-time information on the communication driver's performance. All read
and write operations can be viewed in the Diagnostics Viewer or tracked directly in the OPC client application with
built-in Diagnostics tags. The Diagnostic Viewer also provides a real-time protocol view, which is useful when mak-
ing changes to key communication parameter settings (such as baud rate, parity, or device IDs). The changes'
effects are displayed in real-time. Once the correct communication and device settings are set, the data exchange
with the device is visible.

Enabling Communication Diagnostics
To enable Communication Diagnostics, right-click on the channel in the Project View and click Properties | Enable
Diagnostics. Alternatively, double-click on the channel and select Enable Diagnostics. Users may enable dia-
gnostics after channel creation.
See Also: Channel Properties — General

Accessing the Communication Diagnostics Viewer
To access the Communication Diagnostics Viewer, right-click on the channel or device in the Project View and
select Diagnostics. Alternatively, select the channel or device and click View | Communication Diagnostics. The
Communication Diagnostics Viewer operates in a mode-less form that allows it to exist while other dialogs in the
server are open. Once the viewer is open, it should begin capturing the real-time protocol data. If communications
are occurring properly, there is a stream of communications messages between the server and the device. Users
should be able to view the TX and RX events, as well as the Total Event count.

www. ptc.com

229

ThingWorx Kepware Server

Note: Although the Communication Diagnostics Viewer can be opened when capture is disabled, there are no
diagnostics until it is enabled. When enabled, the viewer displays "Capturing". When disabled, the viewer displays
"Diagnostics capture disabled".

Reset Statistics
Clicking Reset Statistics sets the counts for TX, RX, Good Reads, Failed Reads, Good Writes, and Failed Writes to
zero. Total Events are not set to zero because it specifies the actual number of events in the viewer.
 For information on the log settings, refer to Settings - Event Log.

Accessing the Context Menu
If communications do not appear to be working normally, users can access the channel properties and modify the
communications parameters. The Diagnostic Window remains displayed even after the channel properties are dis-
played, allowing users to change the properties and monitor their effect. The Diagnostic Window must be displayed
before any dialogs are accessed.

If a communications problem persists, right-click in the Diagnostic Window to invoke the context menu. Then, use
the available selections to tailor the Diagnostic Window's operation.

www. ptc.com

230

ThingWorx Kepware Server

Descriptions of the options are as follows:

l Hex When enabled, the TX/RX details are formatted using hexadecimal notation.
l ASCII When enabled, the TX/RX details are formatted using ASCII notation.
l Find This option invokes a dialog for entering a search string to be applied to the event details. For more

information, refer to Find.
l Copy: This option formats the protocol capture buffer's contents as text for easy "cut and paste" into an

email or fax message. This information helps Technical Support analyze and diagnose many com-
munications issues.

l Save as Text File: This option saves all the events in the view to a specified file name (as text).
l Autoscroll: This option scrolls the display as new events are received to ensure that the most recent one is

visible. It is turned off when users manually select an event (or when a selection is made by Find/Find
Next).

l Always on Top: This option forces the Diagnostics Window to remain on the top of all other application win-
dows. This is the default setting.

l Delete All Events: This option clears the log being maintained by the Event Log and results in the deletion
of data.

Find
This dialog searches the Diagnostics View for key information transferred between the client and server.

Search all data for This field specifies the search criteria.

Note: When an event or detail with the specified text is found, the line containing the text is highlighted. To per-
form a Find Next operation (and look for the next occurrence of the specified text), press "F3". When the last occur-
rence is found, a message box is displayed indicating this condition. Users can change the search criteria at any
time by pressing "Ctrl+F".

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Consult the
OPC server help on filtering and sorting the Event Log detail view. Server help contains many common messages,

www. ptc.com

231

ThingWorx Kepware Server

so should also be searched. Generally, the type of message (informational, warning) and troubleshooting inform-
ation is provided whenever possible.

Tip: Messages that originate from a data source (such as third-party software, including databases) are presen-
ted through the Event Log. Troubleshooting steps should include researching those messages online and in
vendor documentation.

Server Summary Information
The server provides basic summary information about itself and any drivers and plug-ins that are currently
installed.

About the Server
The server version is readily available for review and provides a way to find driver-specific information. To access,
click Help | Support Information in the server Configuration. To display the version information of all installed com-
ponents, click Versions.

Component Version Information
The Version Information window displays all installed drivers and plug-ins along with their version numbers. For
driver-specific information, select a component and click Summary.

Driver Information
The Driver Information window provides a summary of the driver's default settings. For example, each driver dis-
plays its maximum number of supported channels.

www. ptc.com

232

ThingWorx Kepware Server

Descriptions of the sections of information available is as follows:

Summary provides the driver name and type, the maximum number of supported channels, and the number of
models in the driver.

COMM Defaults displays the driver's default settings, which may or may not match the settings of the device being
configured.

Driver flag definitions displays the driver library functions and indicates whether they have been enabled in the
driver.

Model Information displays device-specific addressing and features. It lists the name for each supported model in
addition to its addressing values and other features.

The <name> device driver was not found or could not be loaded.
Error Type:
Error

Possible Cause:

1. If the project has been moved from one PC to another, the required drivers may have not been installed yet.

2. The specified driver may have been removed from the installed server.

www. ptc.com

233

ThingWorx Kepware Server

3. The specified driver may be the wrong version for the installed server version.

Possible Solution:

1. Re-run the server install and add the required drivers.

2. Re-run the server install and re-install the specified drivers.

3. Ensure that a driver has not been placed in the installed server directory (which is out of sync with the
server version).

Unable to load the '<name>' driver because more than one copy exists ('<name>'
and '<name>'). Remove the conflicting driver and restart the application.
Error Type:
Error

Possible Cause:
Multiple versions of the driver DLL exist in the driver's folder in the server.

Possible Solution:

1. Re-run the server install and re-install the specified drivers.

2. Contact Technical support and verify the correct version. Remove the driver that is invalid and restart the
server and load the project.

Invalid project file.
Error Type:
Error

Failed to open modem line '<line>' [TAPI error = <code>].
Error Type:
Error

Possible Cause:
TAPI attempted to open the modem line for the server and encountered an error.

Possible Solution:
Correct the condition for the specified error. Then re-attempt to open the modem line.

Unable to add channel due to driver-level failure.
Error Type:
Error

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Unable to add device due to driver-level failure.
Error Type:
Error

www. ptc.com

234

ThingWorx Kepware Server

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Version mismatch.
Error Type:
Error

Invalid XML document:
Error Type:
Error

Possible Cause:
The server is unable to parse the specified XML file.

Possible Solution:
If the server project was edited using a third-party XML editor, verify that the format is correct via the schemas for
the server and drivers.

Unable to load project <name>:
Error Type:
Error

Possible Cause:

1. The project was created using a version of the server that contained a feature or configuration that has
been obsoleted and no longer exists in the server that is trying to load it.

2. The project was created in a server version that is not compatible with the version trying to load it.

3. The project file is corrupt.

Possible Solution:
Save project as XML(V5) or JSON(V6), remove the unsupported feature that is defined in the project file and then
save and load the updated project file into the server that is trying to load it.

 Note:
Every attempt is made to ensure backwards compatibility in the server so that projects created in older versions
may be loaded in newer versions. However, since new versions of the server and driver may have properties and
configurations that do not exist in older versions, it may not be possible to open or load an older project in a newer
version.

Unable to backup project file to '<path>' [<reason>]. The save operation has been
aborted. Verify the destination file is not locked and has read/write access. To con-
tinue to save this project without a backup, deselect the backup option under Tools
| Options | General and re-save the project.
Error Type:
Error

Possible Cause:

1. The destination file may be not locked by another application.

2. The destination file or the folder where it is located does not allow read/write access.

www. ptc.com

235

ThingWorx Kepware Server

Possible Solution:

1. Ensure that the destination file is not locked by another application, unlock the file, or close the application.

2. Ensure that the destination file and with the folder where it is located allow read and write access.

<feature name> was not found or could not be loaded.
Error Type:
Error

Possible Cause:
The feature is not installed or is not in the expected location.

Possible Solution:
Re-run the server install and select the specified feature for installation.

Unable to save project file <name>:
Error Type:
Error

Device discovery has exceeded <count> maximum allowed devices. Limit the dis-
covery range and try again.
Error Type:
Error

<feature name> is required to load this project.
Error Type:
Error

The current language does not support loading XML projects. To load XML pro-
jects, change the product language selection to English in Server Administration.
Error Type:
Error

Possible Cause:
Loading XML projects file allowed only in English environment.

Possible Solution:
Change the product language selection to English in Server Administration and try again.

Unable to load the project due to a missing object. | Object = '<object>'.
Error Type:
Error

Possible Cause:
Editing the JSON project file may have left it in an invalid state.

Possible Solution:
Revert any changes made to the JSON project file.

Invalid Model encountered while trying to load the project. | Device = '<device>'.
Error Type:

www. ptc.com

236

ThingWorx Kepware Server

Error

Possible Cause:
The specified device has a model that is not supported in this version of the server.

Possible Solution:
Open this project with a newer version of the server.

Cannot add device. A duplicate device may already exist in this channel.
Error Type:
Error

Auto-generated tag '<tag>' already exists and will not be overwritten.
Error Type:
Warning

Possible Cause:
Although the server is regenerating tags for the tag database, it has been set not to overwrite tags that already
exist.

Possible Solution:
If this is not the desired action, change the setting of the "On Duplicate Tag" property for the device.

Unable to generate a tag database for device '<device>'. The device is not
responding.
Error Type:
Warning

Possible Cause:

1. The device did not respond to the communications request.

2. The specified device is not on, not connected, or in error.

Possible Solution:

1. Verify that the device is powered on and that the PC is on (so that the server can connect to it).

2. Verify that all cabling is correct.

3. Verify that the device IDs are correct.

4. Correct the device failure and retry the tag generation.

Unable to generate a tag database for device '<device>':
Error Type:
Warning

Possible Cause:
The specified device is not on, not connected, or in error.

Possible Solution:
Correct the device failure and retry the tag generation.

Auto generation produced too many overwrites, stopped posting error messages.
Error Type:

www. ptc.com

237

ThingWorx Kepware Server

Warning

Possible Cause:

1. To keep from filling the error log, the server has stopped posting error messages on tags that cannot be
overwritten during automatic tag generation.

2. Reduce the scope of the automatic tag generation or eliminate problematic tags.

Failed to add tag '<tag>' because the address is too long. The maximum address
length is <number>.
Error Type:
Warning

Line '<line>' is already in use.
Error Type:
Warning

Possible Cause:
The target modem line is already open, likely because it is in use by another application.

Possible Solution:
Find the application holding the modem open and close or release it.

Hardware error on line '<line>'.
Error Type:
Warning

Possible Cause:
A hardware error was returned after a request was made for a tag in a device connected to the modem.

Possible Solution:
Disable data collection on the device. Enable it after the modem connects to the destination modem.

 Note:
The error occurs on first scan and is not repeated.

No comm handle provided on connect for line '<line>'.
Error Type:
Warning

Possible Cause:
An attempt was made to connect to the modem line with no specified COMM handle.

Possible Solution:
Verify the modem is installed and initialized correctly.

Unable to dial on line '<line>'.
Error Type:
Warning

Possible Cause:
The modem is not in a state that allows dialing.

Possible Solution:

www. ptc.com

238

ThingWorx Kepware Server

To dial a number, the line must be idle. Monitor the _Mode Modem tag and dial when it indicates an idle state.

Unable to use network adapter '<adapter>' on channel '<name>'. Using default net-
work adapter.
Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC. The server uses the default network
adapter.

Possible Solution:
Select the network adapter to use for the PC and save the project.

 See Also:
Channel Properties - Network Interface

Rejecting attempt to change model type on a referenced device '<channel
device>'.
Error Type:
Warning

TAPI line initialization failed: <code>.
Error Type:
Warning

Possible Cause:
The telephony service is not required to be running for the Runtime to start. When the service is disabled and a
serial driver is added to the project, this error message is reported.

Possible Solution:

1. If modem communication is not used, no action is required.

2. If modem communications are required, the telephony service must be started on the PC.

Validation error on '<tag>': <error>.
Error Type:
Warning

Possible Cause:
An attempt was made to set invalid parameters on the specified tag.

Unable to load driver DLL '<name>'.
Error Type:
Warning

Possible Cause:
The specified driver could not be loaded when the project started.

Possible Solution:

1. Verify the version of the installed driver. Check the website to see if the driver version is correct for the
server version installed.

www. ptc.com

239

ThingWorx Kepware Server

2. If the driver corrupted, delete it and re-run the server install.

 Note:
This problem is usually due to corrupted driver DLLs or drivers that are not compatible with the server version.

Validation error on '<tag>': Invalid scaling parameters.
Error Type:
Warning

Possible Cause:
An attempt was made to set invalid scaling parameters on the specified tag.

 See Also:
Tag Properties - Scaling

Unable to apply modem configuration on line '<line>'.
Error Type:
Warning

Possible Cause:
TAPI Manager was unable to apply configuration changes to the server.

Possible Solution:

1. Verify the cabling to the modem.

2. Verify that the modem is set to accept configuration changes.

3. Verify that the modem is not being used by another application.

Device '<device>' has been automatically demoted.
Error Type:
Warning

Possible Cause:
Communications with the specified device failed. The device has been demoted from the poll cycle.

Possible Solution:

1. If the device fails to reconnect, investigate the reason behind the communications loss and correct it.

2. To stop the device from being demoted, disable Auto-Demotion.

 See Also:
Auto-Demotion

<Source>: Invalid Ethernet encapsulation IP '<address>'.
Error Type:
Warning

Possible Cause:
The IP address specified for a device on an Ethernet encapsulated channel is not a valid IP address.

Possible Solution:
Correct the IP in the XML file and re-load the project.

www. ptc.com

240

ThingWorx Kepware Server

 Note:
This error can occur when loading XML formatted projects that were created or edited with third-party XML soft-
ware.

Unable to load plug-in DLL '<name>'.
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is compatible with
the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

 Note:
This problem is usually due to corrupted plug-in DLLs or plug-ins that are not compatible with the server version.

The time zone set for '<device>' is '<zone>'. This is not a valid time zone for the
system. Defaulting the time zone to '<zone>'.
Error Type:
Warning

Unable to load driver DLL '<name>'. Reason:
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is compatible with
the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

Unable to load plug-in DLL '<name>'. Reason:
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is compatible with
the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

www. ptc.com

241

ThingWorx Kepware Server

Channel requires at least one number in its phonebook for automatic dialing. |
Channel = '<channel>'.
Error Type:
Warning

Possible Cause:
The Auto-Dial property is set to Enable and there are no entries in the phonebook.

Possible Solution:
If auto-dialing is desired, add a phone number entry to the phonebook. If auto-dialing is not desired, disable Auto-
Dial.

Channel requires Auto-Dial enabled and at least one number in its phonebook to
use a shared modem connection. | Channel = '<channel>'.
Error Type:
Warning

Possible Cause:
Channel shares a modem with one or more existing channels and does not have Auto-Dial enabled or a phone
number for auto-dialing.

Possible Solution:

1. Enable Auto-Dial on the reported channel.

2. Add a phone number to the phonebook of the reported channel.

The specified network adapter is invalid on channel '%1' | Adapter = '%2'.
Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC.

Possible Solution:
Select the network adapter to use for the PC and save the project.

 See Also:
Channel Properties - Network Interface

No tags were created by the tag generation request. See the event log for more
information.
Error Type:
Warning

Possible Cause:
The driver produced no tag information but declined to provide a reason why.

Possible Solution:
Event log may contain information that will help troubleshoot the issue.

The tag import filename is invalid, file paths are not allowed.
Error Type:
Warning

www. ptc.com

242

ThingWorx Kepware Server

Possible Cause:
The tag import filename includes a path.

Possible Solution:
Remove the path from the filename.

TAPI configuration has changed, reinitializing...
Error Type:
Informational

<Product> device driver loaded successfully.
Error Type:
Informational

Starting <name> device driver.
Error Type:
Informational

Stopping <name> device driver.
Error Type:
Informational

Dialing '<number>' on line '<modem>'.
Error Type:
Informational

Line '<modem>' disconnected.
Error Type:
Informational

Dialing on line '<modem>' canceled by user.
Error Type:
Informational

Line '<modem>' connected at <rate> baud.
Error Type:
Informational

Remote line is busy on '<modem>'.
Error Type:
Informational

Remote line is not answering on '<modem>'.
Error Type:
Informational

No dial tone on '<modem>'.
Error Type:
Informational

www. ptc.com

243

ThingWorx Kepware Server

The phone number is invalid (<number>).
Error Type:
Informational

Dialing aborted on '<modem>'.
Error Type:
Informational

Line dropped at remote site on '<modem>'.
Error Type:
Informational

Incoming call detected on line '<modem>'.
Error Type:
Informational

Modem line opened: '<modem>'.
Error Type:
Informational

Modem line closed: '<modem>'.
Error Type:
Informational

<Product> device driver unloaded from memory.
Error Type:
Informational

Line '<modem>' connected.
Error Type:
Informational

Simulation mode is enabled on device '<device>'.
Error Type:
Informational

Simulation mode is disabled on device '<device>'.
Error Type:
Informational

Attempting to automatically generate tags for device '<device>'.
Error Type:
Informational

Completed automatic tag generation for device '<device>'.
Error Type:
Informational

www. ptc.com

244

ThingWorx Kepware Server

Initiating disconnect on modem line '<modem>'.
Error Type:
Informational

A client application has enabled auto-demotion on device '<device>'.
Error Type:
Informational

Possible Cause:
A client application connected to the server has enabled or disabled Auto Demotion on the specified device.

Possible Solution:
To restrict the client application from doing this, disable its ability to write to system-level tags through the User
Manager.

 See Also:
User Manager

Data collection is enabled on device '<device>'.
Error Type:
Informational

Data collection is disabled on device '<device>'.
Error Type:
Informational

Object type '<name>' not allowed in project.
Error Type:
Informational

Created backup of project '<name>' to '<path>'.
Error Type:
Informational

Device '<device>' has been auto-promoted to determine if communications can be
re-established.
Error Type:
Informational

Failed to load library: <name>.
Error Type:
Informational

Failed to read build manifest resource: <name>.
Error Type:
Informational

The project file was created with a more recent version of this software.
Error Type:
Informational

www. ptc.com

245

ThingWorx Kepware Server

A client application has disabled auto-demotion on device '<device>'.
Error Type:
Informational

Phone number priority has changed. | Phone Number Name = '<name>', Updated
Priority = '<priority>'.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>, Tags over-
written = <count>.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>, Tags not
overwritten = <count>.
Error Type:
Informational

Access to object denied. | User = '<account>', Object = '<object path>', Permission
=
Error Type:
Security

User moved from user group. | User = '<name>', Old group = '<name>', New group
= '<name>'.
Error Type:
Security

User group has been created. | Group = '<name>'.
Error Type:
Security

User added to user group. | User = '<name>', Group = '<name>'.
Error Type:
Security

User group has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

Permissions definition has changed on user group. | Group = '<name>'.
Error Type:
Security

www. ptc.com

246

ThingWorx Kepware Server

User has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

User has been disabled. | User = '<name>'.
Error Type:
Security

User group has been disabled. | Group = '<name>'.
Error Type:
Security

User has been enabled. | User = '<name>'.
Error Type:
Security

User group has been enabled. | Group = '<name>'.
Error Type:
Security

Password for user has been changed. | User = '<name>'.
Error Type:
Security

The endpoint '<url>' has been added to the UA Server.
Error Type:
Security

The endpoint '<url>' has been removed from the UA Server.
Error Type:
Security

The endpoint '<url>' has been disabled.
Error Type:
Security

The endpoint '<url>' has been enabled.
Error Type:
Security

User information replaced by import. | File imported = '<absolute file path>'.
Error Type:
Security

User has been deleted. | User = '<name>'.
Error Type:
Security

www. ptc.com

247

ThingWorx Kepware Server

Group has been deleted. | Group = '<name>'.
Error Type:
Security

Account '<name>' does not have permission to run this application.
Error Type:
Error

Possible Cause:
The current logged in user does not have adequate permissions.

Possible Solution:

1. Log in with an administrator account.

2. Verify or correct access rights to the application data directory for the user running this application.

3. Contact the system administrator to update permissions.

 See Also:
Application Data (in server help) and the Application Data User Permissions section of the <a href-
f="https://www.ptc.com/support/help/kepware_doc_resources">Secure Deployment Guide

Failed to import user information.
Error Type:
Error

Possible Cause:
User import file contained users and groups with slashes in the names.

Possible Solution:
Remove the slashes from user and group names in an older version of the server and export them again.

Changing runtime operating mode.
Error Type:
Informational

Runtime operating mode change completed.
Error Type:
Informational

Shutting down to perform an installation.
Error Type:
Informational

OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'.
Error Type:
Informational

OPC ProgID has been removed from the ProgID Redirect list. | ProgID = '<ID>'.
Error Type:
Informational

www. ptc.com

248

ThingWorx Kepware Server

The invalid ProgID entry has been deleted from the ProgID Redirect list. | ProgID =
'<ID>'.
Error Type:
Informational

Password for administrator was reset by the current user. | Administrator name =
'<name>', Current user = '<name>'.
Error Type:
Security

User moved from user group. | User = '<name>', Old group = '<name>', New group
'<name>'.
Error Type:
Security

User group has been created. | Group = '<name>'.
Error Type:
Security

User added to user group. | User = '<name>', Group = '<name>'.
Error Type:
Security

User information replaced by import. | File imported = '<absolute file path>'.
Error Type:
Security

User group has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

Permissions definition has changed on user group. | Group = '<name>'.
Error Type:
Security

User has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

User has been disabled. | User = '<name>'.
Error Type:
Security

User group has been disabled. | Group = '<name>'.
Error Type:
Security

User has been enabled. | User = '<name>'.
Error Type:

www. ptc.com

249

ThingWorx Kepware Server

Security

User group has been enabled. | Group = '<name>'.
Error Type:
Security

Failed to reset password for administrator. | Administrator name = '<name>'.
Error Type:
Security

Password reset for administrator failed. Current user is not a Windows admin-
istrator. | Administrator name = '<name>', Current user = '<name>'.
Error Type:
Security

Password for user has been changed. | User = '<name>'.
Error Type:
Security

General failure during CSV tag import.
Error Type:
Error

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'.
Error Type:
Error

Invalid or missing user information.
Error Type:
Error

Insufficient user permissions to replace the runtime project.
Error Type:
Error

Runtime project update failed.
Error Type:
Error

Failed to retrieve runtime project.
Error Type:
Error

Unable to replace devices on channel because it has an active reference count. |
Channel = '<name>'.
Error Type:
Error

www. ptc.com

250

ThingWorx Kepware Server

Failed to replace existing auto-generated devices on channel, deletion failed. |
Channel = '<name>'.
Error Type:
Error

Channel is no longer valid. It may have been removed externally while awaiting
user input. | Channel = '<name>'.
Error Type:
Error

No device driver DLLs were loaded.
Error Type:
Error

Device driver was not found or could not be loaded. | Driver = '<name>'.
Error Type:
Error

Error importing CSV data. \n\nField buffer overflow reading identification record.
Error Type:
Error

Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'.
Error Type:
Error

Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'.
Error Type:
Error

Error importing CSV data. \n\nMissing field identification record.
Error Type:
Error

Error importing CSV record. \n\nField buffer overflow. | Record index = '<num-
ber>'.
Error Type:
Error

Error importing CSV record. \n\nInsertion failed. | Record index = '<number>',
Record name = '<name>'.
Error Type:
Error

Unable to launch application. | Application = '<path>', OS error = '<code>'.
Error Type:
Error

www. ptc.com

251

ThingWorx Kepware Server

Error importing CSV record. \n\n'Mapped To' tag address is not valid for this pro-
ject. | Record index = '<number>', Tag address = '<address>'.
Error Type:
Error

Error importing CSV record. \n\nAlias name is invalid. Names cannot contain
double quotations or start with an underscore. | Record index = '<number>'.
Error Type:
Error

Invalid XML document:
Error Type:
Error

Rename failed. There is already an object with that name. | Proposed name =
'<name>'.
Error Type:
Error

Failed to start channel diagnostics
Error Type:
Error

Rename failed. Names can not contain periods, double quotations or start with an
underscore. | Proposed name = '<name>'.
Error Type:
Error

Synchronization with remote runtime failed.
Error Type:
Error

Account '<name>' does not have permission to run this application.
Error Type:
Error

Possible Cause:
The current logged in user does not have adequate permissions.

Possible Solution:

1. Log in with an administrator account.

2. Contact the system administrator to verify or update permissions.

3. Verify or correct access rights to the application data directory for this application.

 See Also:
Application Data (in server help) and the Application Data User Permissions section of the <a href-
f="https://www.ptc.com/support/help/kepware_doc_resources">Secure Deployment Guide

www. ptc.com

252

ThingWorx Kepware Server

Error importing CSV record. Tag name is invalid. | Record index = '<number>', Tag
name = '<name>'.
Error Type:
Warning

Error importing CSV record. Tag or group name exceeds maximum name length. |
Record index = '<number>', Max. name length (characters) = '<number>'.
Error Type:
Warning

Error importing CSV record. Missing address. | Record index = '<number>'.
Error Type:
Warning

Error importing CSV record. Tag group name is invalid. | Record index = '<index>',
Group name = '<name>'.
Error Type:
Warning

Close request ignored due to active connections. | Active connections = '<count>'.
Error Type:
Warning

Failed to save embedded dependency file. | File = '<path>'.
Error Type:
Warning

The configuration utility cannot run at the same time as third-party configuration
applications. Close both programs and open only the one you want to use. |
Product = '<name>'.
Error Type:
Warning

Opening project. | Project = '<name>'.
Error Type:
Informational

Closing project. | Project = '<name>'.
Error Type:
Informational

Virtual Network Mode changed. This affects all channels and virtual networks. See
help for more details regarding the Virtual Network Mode. | New mode = '<mode>'.
Error Type:
Informational

Beginning device discovery on channel. | Channel = '<name>'.
Error Type:
Informational

www. ptc.com

253

ThingWorx Kepware Server

Device discovery complete on channel. | Channel = '<name>', Devices found =
'<count>'.
Error Type:
Informational

Device discovery canceled on channel. | Channel = '<name>'.
Error Type:
Informational

Device discovery canceled on channel. | Channel = '<name>', Devices found =
'<count>'.
Error Type:
Informational

Unable to begin device discovery on channel. | Channel = '<name>'.
Error Type:
Informational

Shutting down for the purpose of performing an installation.
Error Type:
Informational

Runtime project has been reset.
Error Type:
Informational

Runtime project replaced. | New project = '<path>'.
Error Type:
Informational

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'.
Error Type:
Informational

Discovered device for Channel '<name>' renamed due to duplicate name. | Dis-
covered name = '<name>', New name = '<name>'.
Error Type:
Informational

Not connected to the event logger service.
Error Type:
Security

Attempt to add item '<name>' failed.
Error Type:
Error

www. ptc.com

254

ThingWorx Kepware Server

No device driver DLLs were loaded.
Error Type:
Error

Invalid project file: '<name>'.
Error Type:
Error

Could not open project file: '<name>'.
Error Type:
Error

Rejecting request to replace the project because it's the same as the one in use:
'<name>'.
Error Type:
Error

Filename must not overwrite an existing file: '<name>'.
Error Type:
Error

Filename must not be empty.
Error Type:
Error

Filename is expected to be of the form subdir/name.{json, <binary ext>, <secure
binary ext>}
Error Type:
Error

Filename contains one or more invalid characters.
Error Type:
Error

Saving project files with Project File Encryption enabled as .OPF file type is not
supported. Supported file types are .SOPF and .JSON.
Error Type:
Error

Saving project files with Project File Encryption disabled as .SOPF file type is not
supported. Supported file types are .OPF and .JSON.
Error Type:
Error

Account '<name>' does not have permission to run this application.
Error Type:
Error

Possible Cause:
The current logged in user does not have adequate permissions.

www. ptc.com

255

ThingWorx Kepware Server

Possible Solution:

1. Log in with an administrator account.

2. Contact the system administrator to verify or update permissions.

3. Verify or correct access rights to the application data directory for this application.

 See Also:
Application Data (in server help) and the Application Data User Permissions section of the <a href-
f="https://www.ptc.com/support/help/kepware_doc_resources">Secure Deployment Guide

A password is required for saving encrypted project files (.<secure binary exten-
sion>).
Error Type:
Error

Saving .<binary extension> and .JSON project files with a password is not sup-
ported. To save encrypted project files, use .<secure binary extension>.
Error Type:
Error

A password is required for saving/loading encrypted project files (.<secure binary
extension>).
Error Type:
Error

Saving/loading .<binary extension> and .JSON project files with a password is not
supported. To save encrypted project files, use .<secure binary extension>.
Error Type:
Error

File is expected to be located in the 'user_data' subdirectory of the installation dir-
ectory and of the form name.{json, <binary ext>, <secure binary ext>}
Error Type:
Error

Addition of object to '<name>' failed: <reason>.
Error Type:
Warning

Move object '<name>' failed: <reason>.
Error Type:
Warning

Update of object '<name>' failed: <reason>.
Error Type:
Warning

www. ptc.com

256

ThingWorx Kepware Server

Delete object '<name>' failed: <reason>.
Error Type:
Warning

Unable to load startup project '<name>': <reason>.
Error Type:
Warning

Failed to update startup project '<name>': <reason>.
Error Type:
Warning

Runtime project replaced with startup project defined. Runtime project will be
restored from '<name>' at next restart.
Error Type:
Warning

Ignoring user-defined startup project because a configuration session is active.
Error Type:
Warning

Write request rejected on read-only item reference '<name>'.
Error Type:
Warning

Unable to write to item '<name>'.
Error Type:
Warning

Write request failed on item '<name>'. The write data type '<type>' cannot be con-
verted to the tag data type '<type>'.
Error Type:
Warning

Write request failed on item '<name>'. Error scaling the write data.
Error Type:
Warning

Write request rejected on item reference '<name>' since the device it belongs to is
disabled.
Error Type:
Warning

One or more changes were not applied to '<name>' since it is being referenced by
a client.
Error Type:
Warning

Possible Cause:
The item is referenced by a client, so cannot be altered.

www. ptc.com

257

ThingWorx Kepware Server

Possible Solution:
Remove the referenced item from the client and re-connect or disconnect the client.

<Name> successfully configured to run as a system service.
Error Type:
Informational

<Name> successfully removed from the service control manager database.
Error Type:
Informational

Runtime re-initialization started.
Error Type:
Informational

Runtime re-initialization completed.
Error Type:
Informational

Updated startup project '<name>'.
Error Type:
Informational

Runtime service started.
Error Type:
Informational

Runtime process started.
Error Type:
Informational

Runtime performing exit processing.
Error Type:
Informational

Runtime shutdown complete.
Error Type:
Informational

Shutting down to perform an installation.
Error Type:
Informational

Runtime project replaced from '<name>'.
Error Type:
Informational

Missing application data directory.
Error Type:

www. ptc.com

258

ThingWorx Kepware Server

Informational

Runtime project saved as '<name>'.
Error Type:
Informational

Runtime project replaced.
Error Type:
Informational

Runtime service started. PID = <number>
Error Type:
Informational

Runtime process started. PID = <number>
Error Type:
Informational

Configuration session started by <name> (<name>).
Error Type:
Security

Configuration session assigned to <name> has ended.
Error Type:
Security

Configuration session assigned to <name> promoted to write access.
Error Type:
Security

Configuration session assigned to <name> demoted to read only.
Error Type:
Security

Permissions change applied on configuration session assigned to <name>.
Error Type:
Security

Failed to start Script Engine server. Socket error occurred binding to local port. |
Error = <error>, Details = '<information>'.
Error Type:
Error

Possible Cause:
The port conflicts with another application.

Possible Solution:
Use the server administration settings to update the Script Engine port.

www. ptc.com

259

ThingWorx Kepware Server

An unhandled exception was thrown from the script. | Function = '<function>', error
= '<error>'.
Error Type:
Error

Possible Cause:
An exception was thrown from the script.

Possible Solution:
Correct the condition that lead to the exception, or update the script logic.

Error executing script function. | Function = '<function>', error = '<error>'.
Error Type:
Error

Possible Cause:
An error was encountered while executing the script.

Possible Solution:
Correct the condition that lead to the error.

Script Engine service stopping.
Error Type:
Informational

Script Engine service starting.
Error Type:
Informational

Profile log message. | Message = '<log message>'.
Error Type:
Informational

Channel requires Auto-Dial enabled and at least one number in its phonebook to
use a shared modem connection. | Channel = '<channel>'.
Error Type:
Warning

Possible Cause:
Channel shares a modem with one or more existing channels and does not have Auto-Dial enabled or a phone
number for auto-dialing.

Possible Solution:

1. Enable Auto-Dial on the reported channel.

2. Add a phone number to the phonebook of the reported channel.

The Config API SSL certificate contains a bad signature.
Error Type:
Error

www. ptc.com

260

ThingWorx Kepware Server

The Config API is unable to load the SSL certificate.
Error Type:
Error

Unable to start the Config API Service. Possible problem binding to port.
Error Type:
Error

Possible Cause:
The HTTP or HTTPS port specified in the Config API settings is already bound by another application.

Possible Solution:
Change the configuration of the Config API or blocking application to use a different port, or stop the application
blocking the port.

The Config API SSL certificate has expired.
Error Type:
Warning

The Config API SSL certificate is self-signed.
Error Type:
Warning

The configured version of TLS for the Configuration API is no longer considered
secure. It is recommended that only TLS 1.2 or higher is used.
Error Type:
Warning

Configuration API started without SSL on port <port number>.
Error Type:
Informational

Configuration API started with SSL on port <port number>.
Error Type:
Informational

The OPC .NET server failed to start. Please see the windows application event log
for more details. Also make sure the .NET 3.5 Framework is installed. | OS Error =
'<error reason>'.
Error Type:
Error

The OPC .NET server failed to start because it is not installed. Please rerun the
installation.
Error Type:
Error

Timed out trying to start the OPC .NET server. Please verify that the server is run-
ning by using the OPC .NET Configuration Manager.
Error Type:

www. ptc.com

261

ThingWorx Kepware Server

Warning

Missing server instance certificate '<cert location>'. Please use the OPC UA Con-
figuration Manager to reissue the certificate.
Error Type:
Error

Failed to import server instance cert: '<cert location>'. Please use the OPC UA
Configuration Manager to reissue the certificate.
Error Type:
Error

Possible Cause:

1. The file containing the server instance certificate does not exist or is inaccessible.

2. Certificate decryption failed.

Possible Solution:

1. Verify the file references a valid instance certificate to which the user has permissions.

2. Import a new certificate.

3. Re-issue the certificate to refresh the encryption.

The UA server certificate is expired. Please use the OPC UA Configuration Man-
ager to reissue the certificate.
Error Type:
Error

Possible Cause:
The validity period of the certificate is before the current system date.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

A socket error occurred listening for client connections. | Endpoint URL = '<end-
point URL>', Error = <error code>, Details = '<description>'.
Error Type:
Error

Possible Cause:
The endpoint socket returned an error while listening for client connections.

Possible Solution:
Note the details in the error message to diagnose the problem.

The UA Server failed to register with the UA Discovery Server. | Endpoint URL:
'<endpoint url>'.
Error Type:
Error

www. ptc.com

262

ThingWorx Kepware Server

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to register the UA Server with the UA Discovery Server could not complete in the expected
manner.

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

Unable to start the UA server due to certificate load failure.
Error Type:
Error

Possible Cause:

1. The UA Server application instance certificate validity period occurs before the current system date.

2. The file containing the server instance certificate does not exist or is inaccessible.

3. Certificate decryption failed.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

3. Verify the file references a valid instance certificate to which the user has permissions.

4. Re-issue the certificate to refresh the encryption.

Failed to load the UA Server endpoint configuration.
Error Type:
Error

Possible Cause:
The endpoint configuration file is corrupt or doesn't exist.

Possible Solution:
Re-configure the UA Endpoint configuration and reinitialize the server.

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL:
'<endpoint url>'.
Error Type:
Warning

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to unregister the UA Server from the UA Discovery Server could not complete in the expected
manner.

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

www. ptc.com

263

ThingWorx Kepware Server

The UA Server failed to initialize an endpoint configuration. | Endpoint Name:
'<name>'.
Error Type:
Warning

Possible Cause:
The endpoint is configured to use a network adapter that does not have a valid ipv4 address.

Possible Solution:

1. Re-configure the network adapter property with an adapter that has a valid ipv4 address.

2. Restart the runtime to refresh the endpoint configurations.

The UA Server successfully registered with the UA Discovery Server. | Endpoint
URL: '<endpoint url>'.
Error Type:
Informational

The UA Server successfully unregistered from the UA Discovery Server. | End-
point URL: '<endpoint url>'.
Error Type:
Informational

UA Gateway Event Log Messages
The following information concerns messages posted to the Event LogConsult the help on filtering and sorting the
Event Log. Generally, the type of message (informational, warning) and troubleshooting information is provided
whenever possible.

In UA support, access to session diagnostics is only available for sessions using sign and encrypt. UA sysadmin
role can see all subscriptions (see https://github.com/OPCFoundation/UA-.NETStandard/issues/1993).

Click on any of the following messages for additional information.

"Created session with downstream server. | Endpoint URL = <Endpoint URL>." on the facing page
"Failure while establishing session with downstream server. | Endpoint URL = <Endpoint URL>,
Status code = <Status code>, Description = <Description>." on the facing page
"Reconnecting session with downstream server. | Endpoint URL = <Endpoint URL>." on the facing
page
"Closed session with downstream server. | Endpoint URL = <Endpoint URL>." on the facing page
"Cannot communicate with OPC UA gateway service. Port collision on UA gateway outbound port.
Port is already in use. | Port = <Port Number>." on the facing page
"The Application Instance Certificate is invalid and needs to be updated (UA clients must trust the
new certificate to connect). | Status code = <Status code>, Description = <Description>." on
page 266
"An invalid server endpoint has failed on server interface start. | Status code = <Status code>,
Description = <Description>." on page 266
"Startup failed. Port collision on UA Gateway inbound port : <Port number>." on page 266
"Failed to add subscription for device | Endpoint URL = <Endpoint URL>, Status Code = <Status
Code>, Description = <Description>." on page 267
"Client established a session with the server interface. | Client Application URL = <Application
URL>." on page 267
"Using .NET CLR <Version>" on page 267

www. ptc.com

264

https://github.com/OPCFoundation/UA-.NETStandard/issues/1993

ThingWorx Kepware Server

"Failed to install the UA Gateway service. System requirements are not satisfied." on page 267

Created session with downstream server. | Endpoint URL = <Endpoint URL>.
Error Type:
Information

Possible Cause:
Connection established with downstream server.

Failure while establishing session with downstream server. | Endpoint URL = <End-
point URL>, Status code = <Status code>, Description = <Description>.
Error Type:
Error

Possible Cause:
Refer to the OPC status code and description for cause.

Possible Solution:
The solution depends on the OPC UA status code.

Reconnecting session with downstream server. | Endpoint URL = <Endpoint
URL>.
Error Type:
Warning

Possible Cause:
Connection with downstream server has dropped.

Possible Solution:

1. Make sure the downstream server is reachable by UA Gateway.

2. Make sure the client interface configuration for the downstream server is correct.

Closed session with downstream server. | Endpoint URL = <Endpoint URL>.
Error Type:
Information

Possible Cause:
Connection with downstream server has been closed.

Cannot communicate with OPC UA gateway service. Port collision on UA gateway
outbound port. Port is already in use. | Port = <Port Number>.
Error Type:
Information

Possible Cause:
Port being used for ua_gateway.UA Gateway_PLUGIN_IPC_PORT property and needs to be configured to one
not in use.

www. ptc.com

265

ThingWorx Kepware Server

Possible Solution:
Performing the following PUT request with a new port number that is not in use.

Endpoint PUT
{{host}}:{{port}}/config/v1/project/_ua_gateway

Message body:
{
 "PROJECT_ID": <project-id-number>
 "ua_gateway.UAG_PLUGIN_IPC_PORT": <desired-port-value>
}
where the project ID is acquired by performing a GET on the same endpoint.

The Application Instance Certificate is invalid and needs to be updated (UA clients
must trust the new certificate to connect). | Status code = <Status code>, Descrip-
tion = <Description>.
Error Type:
Error / Warning

Possible Cause (Error):
The UA Gateway application instance certificate is invalid (but not corrupt). Potential reasons: invalid private key,
application URL is empty, key size is too small (2048 minimum), missing thumbprint, subject is missing / incorrect,
or certificate expired or not yet valid.

Possible Cause (Warning):
The self-signed or CA issued UA Gateway application instance certificate has expired or is not yet valid, certificate
host name is invalid, or unable to determine if the self-signed or CA issued certificate has been revoked.

Possible Solution:
Generate a new application instance certificate.

An invalid server endpoint has failed on server interface start. | Status code =
<Status code>, Description = <Description>.
Error Type:
Error

Possible Cause:
This can be caused by a port collision, attempting to connect to an invalid port, an invalid IP address, invalid
machine name, or unsupported / invalid protocol.

Possible Solution:
Resolve the issue and send a valid server endpoint to the UA Gateway for recovery.

Startup failed. Port collision on UA Gateway inbound port : <Port number>.
Error Type:
Error

Possible Cause:
Another application is using the same port number.

Possible Solution:

www. ptc.com

266

ThingWorx Kepware Server

Quit the application using this port number or choose a different port number for UA Gateway.

Tip:
Endpoint PUT
{{host}}:{{port}}/config/v1/project/_ua_gateway
Message body:
{
 "PROJECT_ID": <project-id-number>,
 "ua_gateway.UAG_PLUGIN_IPC_PORT": <desired-port-value>,
 "ua_gateway.UAG_SERVER_IPC_PORT": <desired-port-value>
}

Failed to add subscription for device | Endpoint URL = <Endpoint URL>, Status
Code = <Status Code>, Description = <Description>.
Error Type:
Warning

Possible Cause:
The server connected to the client interface has reached its maximum subscription count; a new subscription to this
server cannot be created on the client interface.

Possible Solution:
To establish a subscription to this server, other subscriptions must be removed on the server. This is external to the
Kepware UA Gateway.

Client established a session with the server interface. | Client Application URL =
<Application URL>.
Error Type:
Information

Possible Cause:
A client established a connection with the configured server interface.

Using .NET CLR <Version>
Error Type:
Information

Possible Cause:
Logged at initialization to report the .NET Common Language Runtime being used by the UA Gateway.

Failed to install the UA Gateway service. System requirements are not satisfied.
Error Type:
Error

Possible Cause:
The required version of .NET is not installed on the system.

Possible Solution:
Install the required version of .NET according to the UA Gateway installation requirements. A REPAIR must be per-
formed through the installer.
See Also: System Requirements for UA Gateway

www. ptc.com

267

ThingWorx Kepware Server

The ReadProcessed request timed out. | Elapsed Time = <seconds> (s).
Error Type:
Error

The ReadAtTime request timed out. | Elapsed Time = <seconds> (s).
Error Type:
Error

Attempt to add DDE item failed. | Item = '<item name>'.
Error Type:
Error

DDE client attempt to add topic failed. | Topic = '<topic>'.
Error Type:
Error

Possible Cause:
Topic name is not valid.

Possible Solution:
View the Alias map to correct the reference to a valid topic.

 See Also:
Alias Maps

Unable to write to item. | Item = '<item name>'.
Error Type:
Warning

The area specified is not valid. Failed to set the subscription filter. | Area = '<area
name>'.
Error Type:
Error

The source specified is not valid. Failed to set the subscription filter. | Source =
'<source name>'.
Error Type:
Error

Connection to ThingWorx failed. | Platform = <host:port resource>, error =
<reason>.
Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform could not be established.

Possible Solution:

www. ptc.com

268

ThingWorx Kepware Server

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryption.

Error adding item. | Item name = '<item name>'.
Error Type:
Error

Possible Cause:
The item <TagName> could not be added to the server for scanning.

Possible Solution:

1. Verify that the tag exists on a valid channel and device.

2. Verify that the tag may be read using another client, such as the QuickClient.

Failed to trigger the autobind complete event on the platform.
Error Type:
Error

Possible Cause:
The ThingWorx connection was terminated before the autobind process completed.

Possible Solution:
Wait to reinitialize or alter the ThingWorx project properties until after all autobinds have completed.

Connection to ThingWorx failed for an unknown reason. | Platform = <host:port
resource>, error = <error>.
Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform failed.

Possible Solution:

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryption.

4. Contact technical support with the error code and an application report.

One or more value change updates lost due to insufficient space in the connection
buffer. | Number of lost updates = <count>.
Error Type:
Error

Possible Cause:
Data is being dropped because the ThingWorx Platform is not available or too much data is being collected by the
instance.

www. ptc.com

269

ThingWorx Kepware Server

Possible Solution:

1. Verify that some data is updating on the ThingWorx Platform and that the platform is reachable.

2. Slow down the tag scan rate to move less data into the ThingWorx Platform.

Item failed to publish; multidimensional arrays are not supported. | Item name =
'%s'.
Error Type:
Error

Possible Cause:
The item <ItemName> references a tag whose data is a multidimensional array.

Possible Solution:
Modify the item to reference a tag with a supported datatype.

Store and Forward datastore unable to store data due to full disk.
Error Type:
Error

Possible Cause:
The disk being used to store updates has been filled to within 500 MiB.

Possible Solution:

1. Free up some space on the disk being used to store updates.

2. Delete the data stored in the datastore using the _DeleteStoredData system tag.

3. Replace the disk being used to store data with a larger disk.

Store and Forward datastore size limit reached.
Error Type:
Error

Possible Cause:
The ThingWorx Interface is not able to send updates to the platform as fast as the updates are being generated.

Possible Solution:

1. Verify that the ThingWorx Interface can connect to the ThingWorx Platform.

2. Reduce the rate of updates being collected by the ThingWorx Interface.

Connection to ThingWorx was closed. | Platform = <host:port resource>.
Error Type:
Warning

Possible Cause:
The connection was closed. The service was stopped or the interface is no longer able to reach the platform.

Possible Solution:

1. Verify that the native interface is enabled in the project properties.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

www. ptc.com

270

ThingWorx Kepware Server

Failed to autobind property. | Name = '<property name>'.
Error Type:
Warning

Possible Cause:
A property with this name already exists under this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

Failed to restart Thing. | Name = '<thing name>'.
Error Type:
Warning

Possible Cause:
When the AddItem service is complete, a restart service is called on the Thing. This allows the Composer to visu-
alize the changes. Data changes are sent to the platform even when this error has been presented.

Possible Solution:
Relaunch the Composer to restart the Thing.

Write to property failed. | Property name = '<name>', reason = <reason>.
Error Type:
Warning

Possible Cause:
Unable to write to a tag due to a conversion issue.

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and con-
sistent.

2. Verify that the value to be written is within the appropriate range for the data type.

ThingWorx request to add item failed. The item was already added. | Item name =
'<name>'.
Error Type:
Warning

Possible Cause:
The tag had already been added to this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

www. ptc.com

271

ThingWorx Kepware Server

ThingWorx request to remove item failed. The item doesn't exist. | Item name =
'<name>'.
Error Type:
Warning

Possible Cause:
The tag was already removed from the Thing or no such tag exists.

Possible Solution:
If the tag still shows under the properties of the Thing, delete that property in the ThingWorx Composer.

The server is configured to send an update for every scan, but the push type of
one or more properties are set to push on value change only. | Count = <count>.
Error Type:
Warning

Possible Cause:
The push type in the ThingWorx Platform is set to change only for some items. This push type only updates data on
the platform when the data value changes.

Possible Solution:
To use the Send Every Scan option, set this value to Always.

The push type of one or more properties are set to never push an update to the
platform. | Count = <count>.
Error Type:
Warning

Possible Cause:
The push type in the ThingWorx Platform is set to Never for some items, which prevents any data changes from
being automatically updated on the platform.

Possible Solution:
If this is not the desired behavior, change the push type in the ThingWorx Platform.

ThingWorx request to remove an item failed. The item is bound and the force flag
is false. | Item name = '<name>'.
Error Type:
Warning

Possible Cause:
The RemoveItems service could not remove the item because it is bound to a property and the Force Flag is not set
to True.

Possible Solution:
Re-run the service, explicitly calling the ForceRemove flag as True.

Write to property failed. | Thing name = '<name>', property name = '<name>',
reason = <reason>.
Error Type:
Warning

Possible Cause:
Unable to write to a tag due to a conversion issue.

www. ptc.com

272

ThingWorx Kepware Server

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and con-
sistent.

2. Verify that the value to be written is within the appropriate range for the data type.

Error pushing property updates to thing. | Thing name = '<name>'.
Error Type:
Warning

Possible Cause:
Property updates for the named thing were not successfully published to the platform.

Possible Solution:
Check the platform's log for an indication of why property updates are failing, such as a permissions issue.

Unable to connect or attach to Store and Forward datastore. Using in-memory
store. | In-memory store size (updates) = <count>.
Error Type:
Warning

Possible Cause:

1. The Store and Forward service is not running.

2. The service does not have access to the specified storage directory.

3. There is a port conflict that prevents the Store and Forward service from accepting connections.

Possible Solution:

1. Restart the server runtime.

2. Verify the specified storage location is accessible by the Store and Forward service.

3. Resolve the port conflict by configuring a new port for Store and Forward in the server administration.

Store and Forward datastore reset due to file IO error or datastore corruption.
Error Type:
Warning

Possible Cause:

1. The datastore was corrupted by a user or another program.

2. The datastore was corrupted by a hardware error.

3. An error occurred while attempting to read data from disk, possibly due to a hardware issue.

Possible Solution:

1. Use User Access Controls to limit the which users have access to the datastore location.

2. Move the datastore to another disk.

www. ptc.com

273

ThingWorx Kepware Server

Unable to apply settings change initiated by the Platform. Permission Denied. |
User = '<user name>'.
Error Type:
Warning

Possible Cause:
The user group "ThingWorx Interface Users" has the permissions "Project Modification:Servermain.Project" set to
"Deny".

Possible Solution:
Set the permission "Project Modification:Servermain.Project" on the user group "ThingWorx Interface Users" to
"Allow".

Configuration Transfer to ThingWorx Platform failed.
Error Type:
Warning

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>'
Error Type:
Warning

Possible Cause:

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

Failed to delete stored updates in the Store and Forward datastore.
Error Type:
Warning

Possible Cause:
A hardware or operating system error prevented the operation from completing.

Possible Solution:
Restart the machine and try again.

Configuration Transfer from ThingWorx Platform failed.
Error Type:
Warning

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>'
Error Type:
Warning

Possible Cause:

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

www. ptc.com

274

ThingWorx Kepware Server

Check that your Application Key is properly formatted and valid.
Error Type:
Warning

Possible Cause:
The connection to the ThingWorx Platform failed due to bad authorization.

Possible Solution:

1. Verify that application key has not expired.

2. Verify that application key is properly formatted.

3. Verify that application key was inputted correctly.

The maximum number of configured Industrial Things has been reached, count =
<number>. Consider increasing the value of the Max Thing Count.
Error Type:
Warning

Possible Cause:
Max Thing Count is configured too low.

Possible Solution:
Verify that the Max Thing Count property is greater than the configured number of bound things.

The maximum number of updates has been reached, count = <count>.
Error Type:
Warning

Possible Cause:

1. Max Updates Per Publish is too high.

2. Too many updates are being sent at once to the platform.

Possible Solution:

1. Reduce Max Updates Per Publish to a value below the count displayed in the message.

2. Reduce the scan rate of properties being sent to Thingworx.

A publish to Thingworx has timed out.
Error Type:
Warning

Possible Cause:

1. Too many updates are being sent at once to the platform.

2. Network congestion has caused a timeout.

Possible Solution:

1. Reduce the scan rate of properties being sent to Thingworx.

2. Reduce Max Updates Per Publish.

www. ptc.com

275

ThingWorx Kepware Server

Connected to ThingWorx. | Platform = <host:port resource>, Thing name =
'<name>'.
Error Type:
Informational

Possible Cause:
A connection was made to the ThingWorx Platform.

Reinitializing ThingWorx connection due to a project settings change initiated from
the platform.
Error Type:
Informational

Possible Cause:
When using the SetConfiguration service, this message informs an operator viewing the server event log that a
change was made.

Dropping pending autobinds due to interface shutdown or reinitialize. | Count =
<count>.
Error Type:
Informational

Possible Cause:
A server shutdown or initialization was called while auto-binding was in process from an AddItems service call.

Possible Solution:
Any Items not auto bound need to be manually created and bound in the ThingWorx Composer.

Serviced one or more autobind requests. | Count = <count>.
Error Type:
Informational

Possible Cause:
Part of the AddItems service is the autobind action. This action may take more time than the actual adding of the
item. This message alerts the operator to how many items have been autobound.

Reinitializing ThingWorx connection due to a project settings change initiated from
the Configuration API.
Error Type:
Informational

Possible Cause:
When using the Configuration API, this message informs an operator viewing the server event log that a change
was made.

Resumed pushing property updates to thing: the error condition was resolved. |
Thing name = '<name>'.
Error Type:
Informational

www. ptc.com

276

ThingWorx Kepware Server

Configuration transfer from ThingWorx initiated.
Error Type:
Informational

Configuration transfer from ThingWorx aborted.
Error Type:
Informational

Initialized Store and Forward datastore. | Datastore location: '<location>'.
Error Type:
Informational

Possible Cause:
ThingWorx Native Interface is configured to use Store and Forward.

Successfully deleted stored data from the Store and Forward datastore.
Error Type:
Informational

Possible Cause:
A client used the _DeleteStoredData system tag to delete data cached for ThingWorx Interface in the Store and For-
ward datastore.

Store and Forward mode changed. | Forward Mode = '<mode>'.
Error Type:
Informational

Possible Cause:
The _ForwardMode system tag was written to by a connected client and the value of the write caused a settings
change.

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore
location = '<location>'.
Error Type:
Informational

Possible Cause:
ThingWorx Native Interface is configured to use Store and Forward.

Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'.
Error Type:
Error

FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic name>'.
Error Type:
Error

Possible Cause:
Topic names may not be valid.

Possible Solution:
View the Alias map for valid topics.

www. ptc.com

277

ThingWorx Kepware Server

Error attaching to datastore due to an invalid datastore path. | Path = '<path>'
Error Type:
Error

Possible Cause:
The path specified by the component using Store and Forward is invalid. Refer to that component's documentation
and the validation error contained in the message's body for more information.

Possible Solution:
Correct the error noted in the message.

Failed to start Store and Forward server. Socket error occurred binding to local
port. | Error = <error>, Details = '<information>'.
Error Type:
Error

Possible Cause:
The port conflicts with another application.

Possible Solution:
Use the server administration settings to update the Store and Forward port.

Store and Forward service stopping.
Error Type:
Informational

Store and Forward service starting.
Error Type:
Informational

File corruption encountered when attaching to datastore; datastore recreated. |
Datastore path = '<path>'.
Error Type:
Informational

Possible Cause:
A file used by the datastore was corrupted by the system, another application, or a user.

Possible Solution:

1. The old datastore is automatically replaced, no user action is needed.

2. If this problem occurs repeatedly, consider changing the datastore directory to a location that cannot be
accessed by other applications or users.

Datastore overwritten due to a configuration change. | Datastore path = '<path>'.
Error Type:
Informational

Possible Cause:
The datastore size parameter was changed.

 Note:

www. ptc.com

278

ThingWorx Kepware Server

Changing the datastore size results in all of the datastore's files being recreated. Unless data was actively being
stored in the datastore due to a disconnect from the ThingWorx Platform, it is unlikely that data was lost.

Unable to attach to existing datastore because that datastore was created with an
older version of the server. Datastore recreated. | Datastore path = '<path>'.
Error Type:
Informational

Possible Cause:
The server was upgraded to a version which uses a newer datastore format.

Possible Solution:
The old datastore was replaced with a new version datastore; no user action is needed.

Com port is in use by another application. | Port = '<port>'.
Error Type:
Error

Possible Cause:
The serial port assigned to a device is being used by another application.

Possible Solution:

1. Verify that the correct port has been assigned to the channel.

2. Verify that only one copy of the current project is running.

Unable to configure com port with specified parameters. | Port = COM<number>,
OS error = <error>.
Error Type:
Error

Possible Cause:
The serial parameters for the specified COM port are not valid.

Possible Solution:
Verify the serial parameters and make any necessary changes.

Driver failed to initialize.
Error Type:
Error

Unable to allocate thread resource. Please check the memory usage of the applic-
ation.
Error Type:
Error

Possible Cause:
The server process has no resources available to create new threads.

Possible Solution:
Each tag group consumes a thread. The typical limit for a single process is about 2000 threads. Reduce the num-
ber of tag groups in the project.

www. ptc.com

279

ThingWorx Kepware Server

Com port does not exist. | Port = '<port>'.
Error Type:
Error

Possible Cause:
The specified COM port is not present on the target computer.

Possible Solution:
Verify that the proper COM port is selected.

Error opening com port. | Port = '<port>', OS error = <error>.
Error Type:
Error

Possible Cause:
The specified COM port could not be opened due an internal hardware or software problem on the target computer.

Possible Solution:
Verify that the COM port is functional and may be accessed by other applications.

Connection failed. Unable to bind to adapter. | Adapter = '<name>'.
Error Type:
Error

Possible Cause:
Since the specified network adapter cannot be located in the system device list, it cannot be bound to for com-
munications. This can occur when a project is moved from one PC to another (and when the project specifies a net-
work adapter rather than using the default). The server reverts to the default adapter.

Possible Solution:
Change the Network Adapter property to Default (or select a new adapter), save the project, and retry.

Winsock shut down failed. | OS error = <error>.
Error Type:
Error

Winsock initialization failed. | OS error = <error>.
Error Type:
Error

Possible Solution:

1. The underlying network subsystem is not ready for network communication. Wait a few seconds and restart
the driver.

2. The limit on the number of tasks supported by the Windows Sockets implementation has been reached.
Close one or more applications that may be using Winsock and restart the driver.

Winsock V1.1 or higher must be installed to use this driver.
Error Type:
Error

Possible Cause:
The version number of the Winsock DLL found on the system is older than 1.1.

www. ptc.com

280

ThingWorx Kepware Server

Possible Solution:
Upgrade Winsock to version 1.1 or higher.

Socket error occurred binding to local port. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Error

Device is not responding.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communication parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

4. The response from the device took longer to receive than allowed by the Request Timeout device setting.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

3. Verify that the device ID for the named device matches that of the actual device.

4. Increase the Request Timeout setting to allow the entire response to be handled.

Device is not responding. | ID = '<device>'.
Error Type:
Warning

Possible Cause:

1. The network connection between the device and the host PC is broken.

2. The communication parameters configured for the device and driver do not match.

3. The response from the device took longer to receive than allowed by the Request Timeout device setting.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

3. Increase the Request Timeout setting to allow the entire response to be handled.

Serial communications error on channel. | Error mask = <mask>.
Error Type:
Warning

Possible Cause:

www. ptc.com

281

ThingWorx Kepware Server

1. The serial connection between the device and the host PC is broken.

2. The communications parameters for the serial connection are incorrect.

Possible Solution:

1. Investigate the error mask code and the related information.

2. Verify the cabling between the PC and the PLC device.

3. Verify that the specified communication parameters match those of the device.

 See Also:
Error Mask Codes

Invalid array size detected writing to tag <device name>.<address>.
Error Type:
Warning

Possible Cause:
Client trying to write before being updated.

Possible Solution:
Perform a read on the array before attempting a write.

Unable to write to address on device. | Address = '<address>'.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Items on this page may not be changed while the driver is processing tags.
Error Type:
Warning

Possible Cause:
An attempt was made to change a channel or device configuration while data clients were connected to the server
and receiving data from the channel/device.

Possible Solution:
Disconnect all data clients from the server before making changes.

www. ptc.com

282

ThingWorx Kepware Server

Specified address is not valid on device. | Invalid address = '<address>'.
Error Type:
Warning

Possible Cause:
A tag address has been assigned an invalid address.

Possible Solution:
Modify the requested address in the client application.

Address '<address>' is not valid on device '<name>'.
Error Type:
Warning

This property may not be changed while the driver is processing tags.
Error Type:
Warning

Unable to write to address '<address>' on device '<name>'.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Socket error occurred connecting. | Error = <error>, Details = '<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred receiving data. | Error = <error>, Details = '<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

www. ptc.com

283

ThingWorx Kepware Server

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred sending data. | Error = <error>, Details = '<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred checking for readability. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred checking for writability. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

%s |
Error Type:
Informational

<Name> Device Driver '<name>'
Error Type:
Informational

www. ptc.com

284

ThingWorx Kepware Server

Index

%

%s | 284

.

.NET 19

”

”CN= “ field) 69

<

<feature name> is required to load this project. 236

<feature name> was not found or could not be loaded. 236

<Name> Device Driver '<name>' 284

<Name> successfully configured to run as a system service. 258

<Name> successfully removed from the service control manager database. 258

<Product> device driver loaded successfully. 243

<Product> device driver unloaded from memory. 244

<Source>
Invalid Ethernet encapsulation IP '<address>'. 240

A

A client application has disabled auto-demotion on device '<device>'. 246

A client application has enabled auto-demotion on device '<device>'. 245

A password is required for saving encrypted project files (.<secure binary extension>). 256

A password is required for saving/loading encrypted project files (.<secure binary extension>). 256

A publish to Thingworx has timed out. 275

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>', Error = <error
code>, Details = '<description>'. 262

About Endpoint 156

About Endpoints 155

Absolute 86

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 246

Account '<name>' does not have permission to run this application. 248, 252, 255

ActiveTagCount 103

Add Numeric Range 92

www. ptc.com

285

ThingWorx Kepware Server

Add Static Text 91

Add Text Sequence 92

Adding and Configuring a Channel 126

Adding and Configuring a Device 128

Adding Tag Scaling 135

Adding User-Defined Tags 130

Addition of object to '<name>' failed
<reason>. 256

Address 101

Address '<address>' is not valid on device '<name>'. 283

Administration 49

Alias 143

Alias Name 98

Alias Properties 98

Allow Desktop Interactions 143

Allow Sub Groups 86

An unhandled exception was thrown from the script. | Function = '<function>', error = '<error>'. 260

Anonymous 36, 56, 63

API Command 206

Application Data 20

Application Instance Certificate 203

Apply 30

Architecture 154, 191

ASCII 231

ASP.NET 19

Attempt to add DDE item failed. | Item = '<item name>'. 268

Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'. 277

Attempt to add item '<name>' failed. 254

Attempting to automatically generate tags for device '<device>'. 244

Attempts Before Timeout 87

AttributeServiceSet 227

Audit Log 53

Audit Logs 158

Authenticated User Permissions 69

authentication 153

Auto-Demotion 83, 121

Auto-Dial 76, 124

Auto-generated tag '<tag>' already exists and will not be overwritten. 237

Auto generation produced too many overwrites, stopped posting error messages. 237

Automatic Tag Generation 192

Autoscroll 231

B

Backup 52

www. ptc.com

286

ThingWorx Kepware Server

Baud Rate 75

BCD 95

Beginning device discovery on channel. | Channel = '<name>'. 253

Boolean 95

Browse Project Namespace 64

Browsing for Tags 131

Built-In Diagnostics 217

Button Bar 27

Byte 95

C

Cannot add device. A duplicate device may already exist in this channel. 237

Certificate 67-68

Certificate Management 202

certificate store 70

Changing runtime operating mode. 248

Channel-Level Settings 77

Channel Assignment 81

Channel Creation Wizard 126

Channel is no longer valid. It may have been removed externally while awaiting user input. | Channel =
'<name>'. 251

Channel Properties — Advanced 73

Channel Properties — Communication Serialization 77

Channel Properties — Ethernet Communications 74

Channel Properties — Ethernet Encapsulation 77

Channel Properties — General 73

Channel Properties — Network Interface 78

Channel Properties — Serial Communications 74

Channel Properties — Write Optimizations 79

Channel requires at least one number in its phonebook for automatic dialing. | Channel = '<channel>'. 242

Channel requires Auto-Dial enabled and at least one number in its phonebook to use a shared modem con-
nection. | Channel = '<channel>'. 242, 260

Char 95

Check that your Application Key is properly formatted and valid. 275

Child Endpoints 169, 188

Clamp 95

Clamp High 101

Clamp Low 101

Client Access 101

Client Connections Properties 200

Client Interface 199

ClientCount 103

Close Idle Connection 76

Close request ignored due to active connections. | Active connections = '<count>'. 253

www. ptc.com

287

ThingWorx Kepware Server

Closing project. | Project = '<name>'. 253

COM ID 75

COM Port 75

Com port does not exist. | Port = '<port>'. 280

Com port is in use by another application. | Port = '<port>'. 279

Comma-Separated Variable 101

Communication Diagnostics 229

Communication Parameters 83

Communication Serialization Tags 120

Communications Diagnostics 53

Communications Management 121

Communications Timeouts 87

Completed automatic tag generation for device '<device>'. 244

Components 21

Components and Concepts 72

Concurrent Clients 157

Configuration API Service 153

Configuration API Service — Bearer Authentication Settings 190

Configuration API Service — Configuration API Settings 190

Configuration API Service — Enabling and Disabling UA Gateway Connections 201

Configuration API started with SSL on port <port number>. 261

Configuration API started without SSL on port <port number>. 261

Configuration session assigned to <name> demoted to read only. 259

Configuration session assigned to <name> has ended. 259

Configuration session assigned to <name> promoted to write access. 259

Configuration session started by <name> (<name>). 259

Configuration transfer from ThingWorx aborted. 277

Configuration transfer from ThingWorx initiated. 277

Configuration Transfer from ThingWorx Platform failed. 274

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 274

Configuration Transfer to ThingWorx Platform failed. 274

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 274

Configuring from iFIX Applications 208

Configuring User Group Project Permissions 189

Connect Timeout 76-77, 87

Connected to ThingWorx. | Platform = <host
port resource>, Thing name = '<name>'. 276

Connection 53

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'. 250, 254

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 280

Connection to ThingWorx failed for an unknown reason. | Platform = <host
port resource>, error = <error>. 269

Connection to ThingWorx failed. | Platform = <host
port resource>, error = <reason>. 268

Connection to ThingWorx was closed. | Platform = <host
port resource>. 270

www. ptc.com

288

ThingWorx Kepware Server

Connection Type 75

Connectivity 22, 155

Content Retrieval 161

Context 230

CORS 66

Could not open project file
'<name>'. 255

Create 86

Create and Use an Alias 143

Created backup of project '<name>' to '<path>'. 245

Creating a Channel 175

Creating a Device 177

Creating a Tag 179

Creating a User 184

Creating a User Group 184

credentials 32

Credentials 36, 137

CSV 21, 101

Curl 175

D

Data 101, 170

Data Bits 75

Data Collection 82

Data collection is disabled on device '<device>'. 245

Data collection is enabled on device '<device>'. 245

Data Encipherment 69

Datastore 54

Datastore overwritten due to a configuration change. | Datastore path = '<path>'. 278

datastore recreated. | Datastore path = '<path>'. 278

Date 103

DateTime 103

DateTimeLocal 103

Daylight Saving Time 86

DCOM 53

DDE 25, 37

DDE client attempt to add topic failed. | Topic = '<topic>'. 268

Decrypt 138

Default 20, 137-138

Defaults 29

Delete 85

DELETE 176, 179, 181, 183, 185

Delete object '<name>' failed
<reason>. 257

www. ptc.com

289

ThingWorx Kepware Server

Delimiter 102

Demote on Failure 83

Demotion Period 83

Description 101

Designing a Project 125

Detail View 29

Device '<device>' has been auto-promoted to determine if communications can be re-established. 245

Device '<device>' has been automatically demoted. 240

Device Address 77

Device Creation Wizard 129

Device Demand Poll 207

Device Discovery 79

Device discovery canceled on channel. | Channel = '<name>', Devices found = '<count>'. 254

Device discovery canceled on channel. | Channel = '<name>'. 254

Device discovery complete on channel. | Channel = '<name>', Devices found = '<count>'. 254

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range and try
again. 236

Device driver was not found or could not be loaded. | Driver = '<name>'. 251

Device is not responding. 281

Device is not responding. | ID = '<device>'. 281

Device Properties — Auto-Demotion 83

Device Properties — Communication Parameters 83

Device Properties — Ethernet Encapsulation 84

Device Properties — General 81

Device Properties — Redundancy 87

Device Properties — Tag Generation 84

Device Properties — Time Synchronization 86

Device Properties — Timing 87

Diagnostics 73, 229

Dialing '<number>' on line '<modem>'. 243

Dialing aborted on '<modem>'. 244

Dialing on line '<modem>' canceled by user. 243

Directory 20, 137-138

Disaster recovery 53

Discard Requests when Demoted 83

Discovered device for Channel '<name>' renamed due to duplicate name. | Discovered name = '<name>', New
name = '<name>'. 254

DiscoveryServiceSet 227

Do Not Scan, Demand Poll Only 83

Documentation Endpoint 154

Documentation Endpoints 154

Double 95

downstream server 265

Driver 81

Driver failed to initialize. 279

www. ptc.com

290

ThingWorx Kepware Server

Drop 76

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 276

DTR 75

Duty Cycle 79

DWord 95

Dynamic Tags 95

E

encrypt 264

Encrypt 42, 66, 125, 136, 138

Encryption 138

Endpoint Mapping 154

Eng. Units 101

Enumeration 197

Enumeration Values 200

Error adding item. | Item name = '<item name>'. 269

Error attaching to datastore due to an invalid datastore path. | Path = '<path>' 278

Error executing script function. | Function = '<function>', error = '<error>'. 260

Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'. 251

Error importing CSV data. \n\nField buffer overflow reading identification record. 251

Error importing CSV data. \n\nMissing field identification record. 251

Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'. 251

Error importing CSV record. \n\n'Mapped To' tag address is not valid for this project. | Record index = '<num-
ber>', Tag address = '<address>'. 252

Error importing CSV record. \n\nAlias name is invalid. Names cannot contain double quotations or start with an
underscore. | Record index = '<number>'. 252

Error importing CSV record. \n\nField buffer overflow. | Record index = '<number>'. 251

Error importing CSV record. \n\nInsertion failed. | Record index = '<number>', Record name = '<name>'. 251

Error importing CSV record. Missing address. | Record index = '<number>'. 253

Error importing CSV record. Tag group name is invalid. | Record index = '<index>', Group name =
'<name>'. 253

Error importing CSV record. Tag name is invalid. | Record index = '<number>', Tag name = '<name>'. 253

Error importing CSV record. Tag or group name exceeds maximum name length. | Record index = '<number>',
Max. name length (characters) = '<number>'. 253

Error opening com port. | Port = '<port>', OS error = <error>. 280

Error pushing property updates to thing. | Thing name = '<name>'. 273

Ethernet Encap. 75

Ethernet Encapsulation 77, 84, 121

Ethernet Settings 74, 76

Event 30

Event Log 53, 264

Event Log Display 99

Event Log Messages 231

Event Logs 160

www. ptc.com

291

ThingWorx Kepware Server

Export 101

Extended Datastore 54

F

Failed to add tag '<tag>' because the address is too long. The maximum address length is <number>. 238

Failed to autobind property. | Name = '<property name>'. 271

Failed to delete stored updates in the Store and Forward datastore. 274

Failed to import server instance cert
'<cert location>'. Please use the OPC UA Configuration Manager to reissue the certificate. 262

Failed to import user information. 248

Failed to load library
<name>. 245

Failed to load the UA Server endpoint configuration. 263

Failed to open modem line '<line>' [TAPI error = <code>]. 234

Failed to read build manifest resource
<name>. 245

Failed to replace existing auto-generated devices on channel, deletion failed. | Channel = '<name>'. 251

Failed to reset password for administrator. | Administrator name = '<name>'. 250

Failed to restart Thing. | Name = '<thing name>'. 271

Failed to retrieve runtime project. 250

Failed to save embedded dependency file. | File = '<path>'. 253

Failed to start channel diagnostics 252

Failed to start Script Engine server. Socket error occurred binding to local port. | Error = <error>, Details =
'<information>'. 259

Failed to start Store and Forward server. Socket error occurred binding to local port. | Error = <error>, Details =
'<information>'. 278

Failed to trigger the autobind complete event on the platform. 269

Failed to update startup project '<name>'
<reason>. 257

FastDDE/SuiteLink 26

FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic name>'. 277

File corruption encountered when attaching to datastore 278

File is expected to be located in the 'user_data' subdirectory of the installation directory and of the form name.
{json, <binary ext>, <secure binary ext>} 256

Filename contains one or more invalid characters. 255

Filename is expected to be of the form subdir/name.{json, <binary ext>, <secure binary ext>} 255

Filename must not be empty. 255

Filename must not overwrite an existing file
'<name>'. 255

Filtering 160, 166

Find 231

Float 95

Flow Control 75

Formats 37

www. ptc.com

292

ThingWorx Kepware Server

G

General 81

General failure during CSV tag import. 250

Generate 85

Generating Multiple Tags 132

GET Request URI 161

Global Settings 78

Group has been deleted. | Group = '<name>'. 248

H

Hardware error on line '<line>'. 238

Health Status Endpoint 156

Health Status Endpoints 155

Hex 231

Hierarchy 172

How Do I... 143

HTTP 153

HTTP Port 66

HTTPS 153

HTTPS Port 66

Human Machine Interface (HMI) 22

I

I/O Tag Access 64

Icons 30

ID 81

Identification 73, 81

Idle Time to Close 76

iFIX Database Manager 208

iFIX Native Interfaces 26

iFIX Signal Conditioning Options 211

Ignoring user-defined startup project because a configuration session is active. 257

Import 101

Inbound 196

Incoming call detected on line '<modem>'. 244

Initial Updates from Cache 83

Initialization 153

Initialized Store and Forward datastore. | Datastore location
'<location>'. 277

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location = '<location>'. 277

Initiating disconnect on modem line '<modem>'. 245

www. ptc.com

293

ThingWorx Kepware Server

Insomnia 175

Insufficient user permissions to replace the runtime project. 250

Inter-Device Delay 74

Interface 22

Interfaces and Connectivity 22

Interval 86

Introduction 17

Invalid array size detected writing to tag <device name>.<address>. 282

Invalid Model encountered while trying to load the project. | Device = '<device>'. 236

Invalid or missing user information. 250

Invalid project file
'<name>'. 255

Invalid project file. 234

Invalid XML document 235, 252

IP Address 83-84

Item failed to publish 270

Items on this page may not be changed while the driver is processing tags. 282

J

Job 191

Job Cleanup 191

JSON Response Structure 161

K

Key Usage 69

L

Language 166

LBCD 95

Line '<line>' is already in use. 238

Line '<modem>' connected at <rate> baud. 243

Line '<modem>' connected. 244

Line '<modem>' disconnected. 243

Line dropped at remote site on '<modem>'. 244

Linear 94

LLong 95

Load Balanced 78

Location 20, 137-138

Log Endpoints 155

Log file path 54

www. ptc.com

294

ThingWorx Kepware Server

Log Retrieval 157

Logging 67

Logs 53

Long 95

M

Man Machine Interface (MMI) 22

Mapped to 99

Member 162

Memory 54

Menu Bar 27

Method 86

Missing application data directory. 258

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Manager to reissue
the certificate. 262

Model 81

Modem 75-76, 121

Modem line closed
'<modem>'. 244

Modem line opened
'<modem>'. 244

Modem Settings 76

Modem Tags 117

MonitoredItemServiceSet 228

Move object '<name>' failed
<reason>. 256

multidimensional arrays are not supported. | Item name = '%s'. 270

Multiple Objects 171

Multiple Tag Generation 90

N

Name 81

Navigating the User Interface 27

Negate 95

Negate Value 101

Network 1 - Network 500 77

Network Adapter 74, 76-77

Network Interface 78

Network Interface Selection 121

Network Mode 78

No comm handle provided on connect for line '<line>'. 238

No device driver DLLs were loaded. 251, 255

No dial tone on '<modem>'. 243

www. ptc.com

295

ThingWorx Kepware Server

no persistence 54

No tags were created by the tag generation request. See the event log for more information. 242

Non-Normalized Float Handling 74

None 75

Not connected to the event logger service. 254

O

Object 171

Object type '<name>' not allowed in project. 245

On Device Startup 85

On Duplicate Tag 85

On Property Change 85

One or more changes were not applied to '<name>' since it is being referenced by a client. 257

One or more value change updates lost due to insufficient space in the connection buffer. | Number of lost
updates = <count>. 269

OnPoll 86

OPC-compliant 208

OPC .NET 25

OPC AE 23

OPC DA 22

OPC Diagnostic Events 221

OPC Diagnostics 53

OPC Diagnostics Viewer 218

OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'. 248

OPC ProgID has been removed from the ProgID Redirect list. | ProgID = '<ID>'. 248

OPC UA 23

OPC UA Certificate Management 24

OPC UA Services 227

Opening an Encrypted Project 137

Opening project. | Project = '<name>'. 253

Operating Mode 81

Operation 153

Operation with no Communications 76

Operational Behavior 76

Optimization Method 79

Optimize a Server Project 145

Options — General 30

Options — Runtime Connection 32

OtherServices 228

Outbound 196

Overview: Creating Datablocks Inside iFIX Applications 208

Overwrite 85

www. ptc.com

296

ThingWorx Kepware Server

P

Parent Group 85

Parity 75

Password 32, 36, 57, 61, 125, 137, 165

Password for administrator was reset by the current user. | Administrator name = '<name>', Current user =
'<name>'. 249

Password for user has been changed. | User = '<name>'. 247, 250

Password reset for administrator failed. Current user is not a Windows administrator. | Administrator name =
'<name>', Current user = '<name>'. 250

Permissions 20, 60

Permissions change applied on configuration session assigned to <name>. 259

Permissions definition has changed on user group. | Group = '<name>'. 246, 249

Persisted Datastores 54

Persistence Mode 54

Phone number priority has changed. | Phone Number Name = '<name>', Updated Priority = '<priority>'. 246

Phonebook 123

Physical Medium 75

Plug-in Endpoints 155

Poll Delay 76

port 196

Port 53, 77, 83-84

Port is already in use 265

Postman 175

Prerequisites 19

Preserve 67

Preview 93

Priority 78

Process Array Data 145

Process Modes 21

Profile log message. | Message = '<log message>'. 260

Project Import Export 194

Project Load 192

Project Permissions 187

Project Properties 32

Project Properties — DDE 37

Project Properties — FastDDE/Suitelink 39

Project Properties — Identification 33

Project Properties — iFIX PDB Settings 40

Project Properties — OPC .NET 38

Project Properties — OPC AE 38

Project Properties — OPC DA 33

Project Properties — OPC HDA 41

Project Properties — OPC UA 35

Project Properties — ThingWorx Native Interface 42

www. ptc.com

297

ThingWorx Kepware Server

Project Save 193-194

Project Startup for iFIX Applications 217

Project Tree View 28

Properly Name a Channel, Device, Tag, and Tag Group 146

Property Definitions 163

Property Editor 29

Property Tags 114

Property Types 165

Property Validation Error Object 183

Protocol 77, 84

Proxy 46

Q

Quick Client 50

QWord 95

R

Raise 76

Raw 94

Raw High 101

Raw Low 101

Read Processing 76

Redundancy 87

Reinitialize Runtime Service 206

Reinitializing ThingWorx connection due to a project settings change initiated from the Configuration API. 276

Reinitializing ThingWorx connection due to a project settings change initiated from the platform. 276

Rejecting attempt to change model type on a referenced device '<channel device>'. 239

Rejecting request to replace the project because it's the same as the one in use
'<name>'. 255

Remote line is busy on '<modem>'. 243

Remote line is not answering on '<modem>'. 243

Removing a Device 179

Removing a Tag 181

Removing a Tag Group 183

Removing a User or Group 185

Removing Channel 176

Rename failed. Names can not contain periods, double quotations or start with an underscore. | Proposed
name = '<name>'. 252

Rename failed. There is already an object with that name. | Proposed name = '<name>'. 252

Replace with Zero 74

Report Communication Errors 76

Request Timeout 87

www. ptc.com

298

ThingWorx Kepware Server

Resolve Comm Issues when a Connected Device is Power Cycled 146

Respect Data Type 101

Respect Tag-Specified Scan Rate 83

Response Codes 207

REST 153, 175, 177, 179

Restart 206

Resumed pushing property updates to thing
the error condition was resolved. | Thing name = '<name>'. 276

RS-485 76

RTS 75

Running the Server 125

Runtime 21

Runtime operating mode change completed. 248

Runtime performing exit processing. 258

Runtime process started. 258

Runtime process started. PID = <number> 259

Runtime project has been reset. 254

Runtime project replaced from '<name>'. 258

Runtime project replaced with startup project defined. Runtime project will be restored from '<name>' at next
restart. 257

Runtime project replaced. 259

Runtime project replaced. | New project = '<path>'. 254

Runtime project saved as '<name>'. 259

Runtime project update failed. 250

Runtime re-initialization completed. 258

Runtime re-initialization started. 258

Runtime service started. 258

Runtime service started. PID = <number> 259

Runtime shutdown complete. 258

S

Save 20, 137-138

Saving .<binary extension> and .JSON project files with a password is not supported. To save encrypted pro-
ject files, use .<secure binary extension>. 256

Saving project files with Project File Encryption disabled as .SOPF file type is not supported. Supported file
types are .OPF and .JSON. 255

Saving project files with Project File Encryption enabled as .OPF file type is not supported. Supported file types
are .SOPF and .JSON. 255

Saving the Project 135

Saving/loading .<binary extension> and .JSON project files with a password is not supported. To save encryp-
ted project files, use .<secure binary extension>. 256

SCADA 208

Scaled 94

Scaled Data Type 101

Scaled High 101

www. ptc.com

299

ThingWorx Kepware Server

Scaled Low 101

Scaling 101

Scan Mode 82

Scan Rate 101

Scan rate override 99

Script Engine service starting. 260

Script Engine service stopping. 260

Search 231

secure 32

Secure 20, 136

SecureChannelServiceSet 228

security 26, 32, 39

Security 20, 32-33, 36, 42, 53, 56, 66, 68, 125, 136-137, 153, 161, 189, 191

Select the Correct Network Cable 147

Serial Communications 74

Serial communications error on channel. | Error mask = <mask>. 281

Serial Port Settings 75

Server Administration Endpoints 155

Server Endpoint 198

Server Endpoint Properties 198

Server Interface 196

Server Interface Properties 197

Server Interface Settings 196

Server Summary Information 232

Service 191

Service Port Assignments 71

Service Ports 70

Serviced one or more autobind requests. | Count = <count>. 276

session 267

SessionServiceSet 228

Settings - Certificate Store 68

Settings — Administration 50

Settings — Configuration 51

Settings — Configuration API Service Configuration 65

Settings — ProgID Redirect 55

Settings — Runtime Options 52

Settings — Runtime Process 51

Settings — User Manager 56

Settings — User Manager ThingWorx Interface Users 61, 63

Shared 75

Short 95

Shutdown 153

Shutting down for the purpose of performing an installation. 254

Shutting down to perform an installation. 248, 258

Simulated 82

www. ptc.com

300

ThingWorx Kepware Server

Simulation mode is disabled on device '<device>'. 244

Simulation mode is enabled on device '<device>'. 244

Single File 54

Single Sign On (SSO) 66

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 281

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 284

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 284

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 283

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 283

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 284

Sorting 166

Specified address is not valid on device. | Invalid address = '<address>'. 283

Specifying I/O Addresses in iFIX Database Manager 210

Specifying Signal Conditioning in iFIX Database Manager 211

Specifying the I/O Driver in iFIX Database Manager 209

Square Root 94

SSL 66, 68

Starting <name> device driver. 243

Starting a New Project 125

Startup failed 266

Static Tags (User-Defined) 96

Statistics 230

Statistics Tags 115

Status Bar 30

Status code 266

Stop Bits 75

Stopping <name> device driver. 243

Store and Forward — Fill Rate Example 46

Store and Forward — System Tags 47

Store and Forward datastore reset due to file IO error or datastore corruption. 273

Store and Forward datastore size limit reached. 270

Store and Forward datastore unable to store data due to full disk. 270

Store and Forward mode changed. | Forward Mode = '<mode>'. 277

Store and Forward Service 217

Store and Forward service starting. 278

Store and Forward service stopping. 278

String 95

SubscriptionServiceSet 228

Successfully deleted stored data from the Store and Forward datastore. 277

Synchronization with remote runtime failed. 252

sysadmin 264

System requirements 267

System Requirements 18

System Services 191

System Tags 102

www. ptc.com

301

ThingWorx Kepware Server

T

Tag Counts 73, 82

Tag Generation 84

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten = <count>. 246

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten = <count>. 246

Tag generation results for device '<device>'. | Tags created = <count>. 246

Tag Group Properties 96

Tag Management 100

Tag Name 101

Tag Properties — General 89

Tag Properties — Scaling 94

TAPI configuration has changed, reinitializing... 243

TAPI line initialization failed
<code>. 239

Template 101

Testing the Project 138

The <name> device driver was not found or could not be loaded. 233

The area specified is not valid. Failed to set the subscription filter. | Area = '<area name>'. 268

The Config API is unable to load the SSL certificate. 261

The Config API SSL certificate contains a bad signature. 260

The Config API SSL certificate has expired. 261

The Config API SSL certificate is self-signed. 261

The configuration utility cannot run at the same time as third-party configuration applications. Close both pro-
grams and open only the one you want to use. | Product = '<name>'. 253

The configured version of TLS for the Configuration API is no longer considered secure. It is recommended that
only TLS 1.2 or higher is used. 261

The current language does not support loading XML projects. To load XML projects, change the product lan-
guage selection to English in Server Administration. 236

The endpoint '<url>' has been added to the UA Server. 247

The endpoint '<url>' has been disabled. 247

The endpoint '<url>' has been enabled. 247

The endpoint '<url>' has been removed from the UA Server. 247

The invalid ProgID entry has been deleted from the ProgID Redirect list. | ProgID = '<ID>'. 249

The maximum number of configured Industrial Things has been reached, count = <number>. Consider increas-
ing the value of the Max Thing Count. 275

The maximum number of updates has been reached, count = <count>. 275

The OPC .NET server failed to start because it is not installed. Please rerun the installation. 261

The OPC .NET server failed to start. Please see the windows application event log for more details. Also make
sure the .NET 3.5 Framework is installed. | OS Error = '<error reason>'. 261

The phone number is invalid (<number>). 244

The project file was created with a more recent version of this software. 245

The push type of one or more properties are set to never push an update to the platform. | Count =
<count>. 272

The ReadAtTime request timed out. | Elapsed Time = <seconds> (s). 268

The ReadProcessed request timed out. | Elapsed Time = <seconds> (s). 268

www. ptc.com

302

ThingWorx Kepware Server

The server is configured to send an update for every scan, but the push type of one or more properties are set to
push on value change only. | Count = <count>. 272

The source specified is not valid. Failed to set the subscription filter. | Source = '<source name>'. 268

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 242

The tag import filename is invalid, file paths are not allowed. 242

The time zone set for '<device>' is '<zone>'. This is not a valid time zone for the system. Defaulting the time
zone to '<zone>'. 241

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue the
certificate. 262

The UA Server failed to initialize an endpoint configuration. | Endpoint Name
'<name>'. 264

The UA Server failed to register with the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 262

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 263

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 264

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 264

ThingWorx 42

ThingWorx Diagnostics Log 53

ThingWorx Native Interface 26

ThingWorx Native Interface Certificate Management 27

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 271

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item name =
'<name>'. 272

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 272

This property may not be changed while the driver is processing tags. 283

Time Sync Threshold 86

Time Synchronization 86

Time Zone 86

Timed out trying to start the OPC .NET server. Please verify that the server is running by using the OPC .NET
Configuration Manager. 261

Timeouts to Demote 83

Timing 38, 87

Title Bar 27

Transaction Log 64

Transactions per Cycle 78

troubleshooting 264

Type Definitions 162

U

UA Gateway 196

UA Gateway Certificate Management 69

UA Gateway Requirements 19

UA Gateway Status 196

www. ptc.com

303

ThingWorx Kepware Server

UA Gateway User Management 63

UA support 264

Unable to add channel due to driver-level failure. 234

Unable to add device due to driver-level failure. 234

Unable to allocate thread resource. Please check the memory usage of the application. 279

Unable to apply modem configuration on line '<line>'. 240

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user name>'. 274

Unable to attach to existing datastore because that datastore was created with an older version of the server.
Datastore recreated. | Datastore path = '<path>'. 279

Unable to backup project file to '<path>' [<reason>]. The save operation has been aborted. Verify the des-
tination file is not locked and has read/write access. To continue to save this project without a backup,
deselect the backup option under Tools | Options | General and re-save the project. 235

Unable to begin device discovery on channel. | Channel = '<name>'. 254

Unable to configure com port with specified parameters. | Port = COM<number>, OS error = <error>. 279

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-memory store size
(updates) = <count>. 273

Unable to dial on line '<line>'. 238

Unable to generate a tag database for device '<device>' 237

Unable to generate a tag database for device '<device>'. The device is not responding. 237

Unable to launch application. | Application = '<path>', OS error = '<code>'. 251

Unable to load driver DLL '<name>'. 239

Unable to load driver DLL '<name>'. Reason 241

Unable to load plug-in DLL '<name>'. 241

Unable to load plug-in DLL '<name>'. Reason 241

Unable to load project <name> 235

Unable to load startup project '<name>'
<reason>. 257

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>'). Remove the
conflicting driver and restart the application. 234

Unable to load the project due to a missing object. | Object = '<object>'. 236

Unable to replace devices on channel because it has an active reference count. | Channel = '<name>'. 250

Unable to save project file <name> 236

Unable to start the Config API Service. Possible problem binding to port. 261

Unable to start the UA server due to certificate load failure. 263

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network adapter. 239

Unable to write to address '<address>' on device '<name>'. 283

Unable to write to address on device. | Address = '<address>'. 282

Unable to write to item '<name>'. 257

Unable to write to item. | Item = '<item name>'. 268

Unified Architecture Gateway 196

Unmodified 74

Update of object '<name>' failed
<reason>. 256

Updated startup project '<name>'. 258

Updating a Channel 175

Updating a Device 178

Updating a Tag 180

www. ptc.com

304

ThingWorx Kepware Server

Updating a Tag Group 182

Updating a User 184

Updating a User Group 185

Use an Alias to Optimize a Project 147

Use DDE with the Server 148

Use Dynamic Tag Addressing 149

Use Ethernet Encapsulation 149

User added to user group. | User = '<name>', Group = '<name>'. 246, 249

User group has been created. | Group = '<name>'. 246, 249

User group has been disabled. | Group = '<name>'. 247, 249

User group has been enabled. | Group = '<name>'. 247, 250

User group has been renamed. | Old name = '<name>', New name = '<name>'. 246, 249

User Groups 186

User has been deleted. | User = '<name>'. 247

User has been disabled. | User = '<name>'. 247, 249

User has been enabled. | User = '<name>'. 247, 249

User has been renamed. | Old name = '<name>', New name = '<name>'. 247, 249

User information replaced by import. | File imported = '<absolute file path>'. 247, 249

User Management 185

User Manager 70

User moved from user group. | User = '<name>', Old group = '<name>', New group '<name>'. 249

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 246

user\certs folder 70

Username / Password 63

Username / Password User Authentication 63

Users 189

Using a Modem in the Server Project 122

V

Validation error on '<tag>'
<error>. 239
Invalid scaling parameters. 240

Verbose 67

Version mismatch. 235

ViewServiceSet 229

Virtual Network 77

Virtual Network Mode changed. This affects all channels and virtual networks. See help for more details regard-
ing the Virtual Network Mode. | New mode = '<mode>'. 253

W

What is a Channel? 72

What is a Device? 80

What is a Tag Group? 96

www. ptc.com

305

ThingWorx Kepware Server

What is a Tag? 88

What is the Alias Map? 97

What is the Event Log? 99

Winsock initialization failed. | OS error = <error>. 280

Winsock shut down failed. | OS error = <error>. 280

Winsock V1.1 or higher must be installed to use this driver. 280

Word 95

Work with Non-Normalized Floating-Point Values 151

Write All Values for All Tags 79

Write Only Latest Value for All Tags 79

Write Only Latest Value for Non-Boolean Tags 79

Write request failed on item '<name>'. Error scaling the write data. 257

Write request failed on item '<name>'. The write data type '<type>' cannot be converted to the tag data type
'<type>'. 257

Write request rejected on item reference '<name>' since the device it belongs to is disabled. 257

Write request rejected on read-only item reference '<name>'. 257

Write to property failed. | Property name = '<name>', reason = <reason>. 271

Write to property failed. | Thing name = '<name>', property name = '<name>', reason = <reason>. 272

X

X.509 69

X.509 Certificates 63

X.509 User Authentication 63, 206

www. ptc.com

306

	Table of Contents
	Introduction
	System Requirements
	Application Data
	Components
	Process Modes

	Interfaces and Connectivity
	OPC DA
	OPC AE
	OPC UA Interface
	OPC UA Certificate Management

	OPC .NET
	DDE
	FastDDE / SuiteLink
	iFIX Native Interfaces
	ThingWorx Native Interface
	ThingWorx Native Interface Certificate Management

	Navigating the User Interface
	Options — General
	Options — Runtime Connection

	Project Properties
	Project Properties — General
	Project Properties — OPC DA
	Project Properties — OPC UA
	Project Properties — DDE
	Project Properties — OPC .NET
	Project Properties — OPC AE
	Project Properties — FastDDE / SuiteLink
	Project Properties — iFIX PDB Settings
	Project Properties — OPC HDA
	Project Properties — ThingWorx
	Store and Forward — Fill Rate Example
	Store and Forward — System Tags

	Accessing the Administration Menu
	Settings
	Settings — Administration
	Settings — Configuration
	Settings — Runtime Process
	Settings — Runtime Options
	Settings — Logs
	Settings — ProgID Redirect
	Settings — User Manager
	Settings — User Manager — ThingWorx Interface Users
	Settings — User Manager — UA Gateway User
	UA Gateway User Management

	Settings — Configuration API Service Transaction Log
	Settings — Configuration API Service Configuration
	Settings — Certificate Store
	UA Gateway Certificate Management

	Settings — Service Ports
	Service Port Assignments

	Components and Concepts
	What is a Channel?
	Channel Properties — General
	Tag Counts

	Channel Properties — Advanced
	Channel Properties — Ethernet Communications
	Channel Properties — Serial Communications
	Channel Properties — Ethernet Encapsulation
	Channel Properties — Communication Serialization
	Channel Properties — Network Interface
	Channel Properties — Write Optimizations
	Device Discovery Procedure

	What is a Device?
	Device Properties — General
	Operating Mode
	Tag Counts

	Device Properties — Scan Mode
	Device Properties — Auto-Demotion
	Device Properties — Communication Parameters
	Device Properties — Ethernet Encapsulation
	Device Properties — Tag Generation
	Device Properties — Time Synchronization
	Device Properties — Timing
	Device Properties — Redundancy

	What is a Tag?
	Tag Properties — General
	Multiple Tag Generation
	Tag Properties — Scaling
	Dynamic Tags
	Static Tags (User-Defined)

	What is a Tag Group?
	Tag Group Properties

	What is the Alias Map?
	Alias Properties

	What is the Event Log?
	Event Log

	Tag Management
	CSV Import and Export
	System Tags
	Property Tags
	Statistics Tags
	Modem Tags
	Communication Serialization Tags

	Communications Management
	Using a Modem in the Server Project
	Phonebook
	Auto-Dial

	Designing a Project
	Running the Server
	Starting a New Project
	Adding and Configuring a Channel
	Channel Creation Wizard
	Adding and Configuring a Device
	Device Creation Wizard
	Adding User-Defined Tags (Example)
	Browsing for Tags
	Generating Multiple Tags
	Adding Tag Scaling
	Saving the Project
	Opening an Encrypted Project
	Testing the Project

	How Do I...
	Allow Desktop Interactions
	Create and Use an Alias
	Optimize a Server Project
	Properly Name a Channel, Device, Tag, and Tag Group
	Resolve Comm Issues when Server is Power Cycled
	Use an Alias to Optimize a Project
	Use DDE with the Server
	Use Dynamic Tag Addressing
	Use Ethernet Encapsulation
	Work with Non-Normalized Floating-Point Values

	Configuration API Service
	Security
	Documentation
	Configuration API Service — Architecture
	Configuration API Service — Documentation Endpoint
	Configuration API Service — Endpoint Mapping
	Configuration API Service — Health Status Endpoint
	Configuration API Service — About Endpoint
	Configuration API Service — Concurrent Clients
	Configuration API Service — Log Retrieval
	Configuration API Service — Audit Logs
	Configuration API Service — Event Logs

	Configuration API Service — Content Retrieval
	Configuration API Service — Server Administration
	Configuration API Service — Data
	Configuration API Service — Channel Properties
	Configuration API Service — Creating a Channel
	Configuration API Service — Updating a Channel
	Configuration API Service — Removing Channel
	Configuration API Service — Device Properties
	Configuration API Service — Creating a Device
	Configuration API Service — Updating a Device
	Configuration API Service — Removing a Device
	Configuration API Service — Creating a Tag
	Configuration API Service — Updating a Tag
	Configuration API Service — Removing a Tag
	Configuration API Service — Creating a Tag Group
	Configuration API Service — Updating a Tag Group
	Configuration API Service — Removing a Tag Group
	Configuration API Service — Property Validation Error Object
	Configuration API Service — Creating a User
	Configuration API Service — Updating a User
	Configuration API Service — Creating a User Group
	Configuration API Service — Updating a User Group
	Configuration API Service — Removing a User or Group
	Configuration API Service — User Management
	Configuration API Service — Configuring User Group Project Permissions
	Configuration API Service — Configuration API Settings
	Configuration API Service — Bearer Authentication Settings
	Configuration API Service — Invoking Services
	Configuration API Service — Automatic Tag Generation
	Configuration API Service — Project Load
	Configuration API Service — Project Save
	Configuration API Service — Project Import / Export

	Configuration API Service — UA Gateway
	Default Connection to the OPC UA Server

	Configuration API Service — Enabling and Disabling UA Gateway Connections
	Configuration API Service — UA Gateway Certificate Management
	Configuration API Service — Reinitialize Runtime Service
	Configuration API Service — Response Codes
	Device Demand Poll

	Configuring from iFIX Applications
	Overview: Creating Datablocks Inside iFIX Applications
	Entering Driver Information in iFIX Database Manager
	iFIX Signal Conditioning Options
	Project Startup for iFIX Applications
	Store and Forward Service

	Built-In Diagnostics
	OPC Diagnostics Viewer
	OPC DA Events
	OPC UA Services
	Communication Diagnostics

	Event Log Messages
	Server Summary Information
	The <name> device driver was not found or could not be loaded.
	Unable to load the '<name>' driver because more than one copy exists ('<name>...
	Invalid project file.
	Failed to open modem line '<line>' [TAPI error = <code>].
	Unable to add channel due to driver-level failure.
	Unable to add device due to driver-level failure.
	Version mismatch.
	Invalid XML document:
	Unable to load project <name>:
	Unable to backup project file to '<path>' [<reason>]. The save operation has ...
	<feature name> was not found or could not be loaded.
	Unable to save project file <name>:
	Device discovery has exceeded <count> maximum allowed devices. Limit the disc...
	<feature name> is required to load this project.
	The current language does not support loading XML projects. To load XML proje...
	Unable to load the project due to a missing object. | Object = '<object>'.
	Invalid Model encountered while trying to load the project. | Device = '<devi...
	Cannot add device. A duplicate device may already exist in this channel.
	Auto-generated tag '<tag>' already exists and will not be overwritten.
	Unable to generate a tag database for device '<device>'. The device is not re...
	Unable to generate a tag database for device '<device>':
	Auto generation produced too many overwrites, stopped posting error messages.
	Failed to add tag '<tag>' because the address is too long. The maximum addres...
	Line '<line>' is already in use.
	Hardware error on line '<line>'.
	No comm handle provided on connect for line '<line>'.
	Unable to dial on line '<line>'.
	Unable to use network adapter '<adapter>' on channel '<name>'. Using default ...
	Rejecting attempt to change model type on a referenced device '<channel devic...
	TAPI line initialization failed: <code>.
	Validation error on '<tag>': <error>.
	Unable to load driver DLL '<name>'.
	Validation error on '<tag>': Invalid scaling parameters.
	Unable to apply modem configuration on line '<line>'.
	Device '<device>' has been automatically demoted.
	<Source>: Invalid Ethernet encapsulation IP '<address>'.
	Unable to load plug-in DLL '<name>'.
	The time zone set for '<device>' is '<zone>'. This is not a valid time zone f...
	Unable to load driver DLL '<name>'. Reason:
	Unable to load plug-in DLL '<name>'. Reason:
	Channel requires at least one number in its phonebook for automatic dialing. ...
	Channel requires Auto-Dial enabled and at least one number in its phonebook t...
	The specified network adapter is invalid on channel '%1' | Adapter = '%2'.
	No tags were created by the tag generation request. See the event log for mor...
	The tag import filename is invalid, file paths are not allowed.
	TAPI configuration has changed, reinitializing...
	<Product> device driver loaded successfully.
	Starting <name> device driver.
	Stopping <name> device driver.
	Dialing '<number>' on line '<modem>'.
	Line '<modem>' disconnected.
	Dialing on line '<modem>' canceled by user.
	Line '<modem>' connected at <rate> baud.
	Remote line is busy on '<modem>'.
	Remote line is not answering on '<modem>'.
	No dial tone on '<modem>'.
	The phone number is invalid (<number>).
	Dialing aborted on '<modem>'.
	Line dropped at remote site on '<modem>'.
	Incoming call detected on line '<modem>'.
	Modem line opened: '<modem>'.
	Modem line closed: '<modem>'.
	<Product> device driver unloaded from memory.
	Line '<modem>' connected.
	Simulation mode is enabled on device '<device>'.
	Simulation mode is disabled on device '<device>'.
	Attempting to automatically generate tags for device '<device>'.
	Completed automatic tag generation for device '<device>'.
	Initiating disconnect on modem line '<modem>'.
	A client application has enabled auto-demotion on device '<device>'.
	Data collection is enabled on device '<device>'.
	Data collection is disabled on device '<device>'.
	Object type '<name>' not allowed in project.
	Created backup of project '<name>' to '<path>'.
	Device '<device>' has been auto-promoted to determine if communications can b...
	Failed to load library: <name>.
	Failed to read build manifest resource: <name>.
	The project file was created with a more recent version of this software.
	A client application has disabled auto-demotion on device '<device>'.
	Phone number priority has changed. | Phone Number Name = '<name>', Updated Pr...
	Tag generation results for device '<device>'. | Tags created = <count>.
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Access to object denied. | User = '<account>', Object = '<object path>', Perm...
	User moved from user group. | User = '<name>', Old group = '<name>', New grou...
	User group has been created. | Group = '<name>'.
	User added to user group. | User = '<name>', Group = '<name>'.
	User group has been renamed. | Old name = '<name>', New name = '<name>'.
	Permissions definition has changed on user group. | Group = '<name>'.
	User has been renamed. | Old name = '<name>', New name = '<name>'.
	User has been disabled. | User = '<name>'.
	User group has been disabled. | Group = '<name>'.
	User has been enabled. | User = '<name>'.
	User group has been enabled. | Group = '<name>'.
	Password for user has been changed. | User = '<name>'.
	The endpoint '<url>' has been added to the UA Server.
	The endpoint '<url>' has been removed from the UA Server.
	The endpoint '<url>' has been disabled.
	The endpoint '<url>' has been enabled.
	User information replaced by import. | File imported = '<absolute file path>'.
	User has been deleted. | User = '<name>'.
	Group has been deleted. | Group = '<name>'.
	Account '<name>' does not have permission to run this application.
	Failed to import user information.
	Changing runtime operating mode.
	Runtime operating mode change completed.
	Shutting down to perform an installation.
	OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'.
	OPC ProgID has been removed from the ProgID Redirect list. | ProgID = '<ID>'.
	The invalid ProgID entry has been deleted from the ProgID Redirect list. | Pr...
	Password for administrator was reset by the current user. | Administrator nam...
	User moved from user group. | User = '<name>', Old group = '<name>', New grou...
	User group has been created. | Group = '<name>'.
	User added to user group. | User = '<name>', Group = '<name>'.
	User information replaced by import. | File imported = '<absolute file path>'.
	User group has been renamed. | Old name = '<name>', New name = '<name>'.
	Permissions definition has changed on user group. | Group = '<name>'.
	User has been renamed. | Old name = '<name>', New name = '<name>'.
	User has been disabled. | User = '<name>'.
	User group has been disabled. | Group = '<name>'.
	User has been enabled. | User = '<name>'.
	User group has been enabled. | Group = '<name>'.
	Failed to reset password for administrator. | Administrator name = '<name>'.
	Password reset for administrator failed. Current user is not a Windows admini...
	Password for user has been changed. | User = '<name>'.
	General failure during CSV tag import.
	Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'.
	Invalid or missing user information.
	Insufficient user permissions to replace the runtime project.
	Runtime project update failed.
	Failed to retrieve runtime project.
	Unable to replace devices on channel because it has an active reference count...
	Failed to replace existing auto-generated devices on channel, deletion failed...
	Channel is no longer valid. It may have been removed externally while awaitin...
	No device driver DLLs were loaded.
	Device driver was not found or could not be loaded. | Driver = '<name>'.
	Error importing CSV data. \n\nField buffer overflow reading identification re...
	Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'.
	Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'.
	Error importing CSV data. \n\nMissing field identification record.
	Error importing CSV record. \n\nField buffer overflow. | Record index = '<num...
	Error importing CSV record. \n\nInsertion failed. | Record index = '<number>'...
	Unable to launch application. | Application = '<path>', OS error = '<code>'.
	Error importing CSV record. \n\n'Mapped To' tag address is not valid for this...
	Error importing CSV record. \n\nAlias name is invalid. Names cannot contain d...
	Invalid XML document:
	Rename failed. There is already an object with that name. | Proposed name = '...
	Failed to start channel diagnostics
	Rename failed. Names can not contain periods, double quotations or start with...
	Synchronization with remote runtime failed.
	Account '<name>' does not have permission to run this application.
	Error importing CSV record. Tag name is invalid. | Record index = '<number>',...
	Error importing CSV record. Tag or group name exceeds maximum name length. | ...
	Error importing CSV record. Missing address. | Record index = '<number>'.
	Error importing CSV record. Tag group name is invalid. | Record index = '<ind...
	Close request ignored due to active connections. | Active connections = '<cou...
	Failed to save embedded dependency file. | File = '<path>'.
	The configuration utility cannot run at the same time as third-party configur...
	Opening project. | Project = '<name>'.
	Closing project. | Project = '<name>'.
	Virtual Network Mode changed. This affects all channels and virtual networks....
	Beginning device discovery on channel. | Channel = '<name>'.
	Device discovery complete on channel. | Channel = '<name>', Devices found = '...
	Device discovery canceled on channel. | Channel = '<name>'.
	Device discovery canceled on channel. | Channel = '<name>', Devices found = '...
	Unable to begin device discovery on channel. | Channel = '<name>'.
	Shutting down for the purpose of performing an installation.
	Runtime project has been reset.
	Runtime project replaced. | New project = '<path>'.
	Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'.
	Discovered device for Channel '<name>' renamed due to duplicate name. | Disco...
	Not connected to the event logger service.
	Attempt to add item '<name>' failed.
	No device driver DLLs were loaded.
	Invalid project file: '<name>'.
	Could not open project file: '<name>'.
	Rejecting request to replace the project because it's the same as the one in ...
	Filename must not overwrite an existing file: '<name>'.
	Filename must not be empty.
	Filename is expected to be of the form subdir/name.{json, <binary ext>, <secu...
	Filename contains one or more invalid characters.
	Saving project files with Project File Encryption enabled as .OPF file type i...
	Saving project files with Project File Encryption disabled as .SOPF file type...
	Account '<name>' does not have permission to run this application.
	A password is required for saving encrypted project files (.<secure binary ex...
	Saving .<binary extension> and .JSON project files with a password is not sup...
	A password is required for saving/loading encrypted project files (.<secure b...
	Saving/loading .<binary extension> and .JSON project files with a password is...
	File is expected to be located in the 'user_data' subdirectory of the install...
	Addition of object to '<name>' failed: <reason>.
	Move object '<name>' failed: <reason>.
	Update of object '<name>' failed: <reason>.
	Delete object '<name>' failed: <reason>.
	Unable to load startup project '<name>': <reason>.
	Failed to update startup project '<name>': <reason>.
	Runtime project replaced with startup project defined. Runtime project will b...
	Ignoring user-defined startup project because a configuration session is active.
	Write request rejected on read-only item reference '<name>'.
	Unable to write to item '<name>'.
	Write request failed on item '<name>'. The write data type '<type>' cannot be...
	Write request failed on item '<name>'. Error scaling the write data.
	Write request rejected on item reference '<name>' since the device it belongs...
	One or more changes were not applied to '<name>' since it is being referenced...
	<Name> successfully configured to run as a system service.
	<Name> successfully removed from the service control manager database.
	Runtime re-initialization started.
	Runtime re-initialization completed.
	Updated startup project '<name>'.
	Runtime service started.
	Runtime process started.
	Runtime performing exit processing.
	Runtime shutdown complete.
	Shutting down to perform an installation.
	Runtime project replaced from '<name>'.
	Missing application data directory.
	Runtime project saved as '<name>'.
	Runtime project replaced.
	Runtime service started. PID = <number>
	Runtime process started. PID = <number>
	Configuration session started by <name> (<name>).
	Configuration session assigned to <name> has ended.
	Configuration session assigned to <name> promoted to write access.
	Configuration session assigned to <name> demoted to read only.
	Permissions change applied on configuration session assigned to <name>.
	Failed to start Script Engine server. Socket error occurred binding to local ...
	An unhandled exception was thrown from the script. | Function = '<function>',...
	Error executing script function. | Function = '<function>', error = '<error>'.
	Script Engine service stopping.
	Script Engine service starting.
	Profile log message. | Message = '<log message>'.
	Channel requires Auto-Dial enabled and at least one number in its phonebook t...
	The Config API SSL certificate contains a bad signature.
	The Config API is unable to load the SSL certificate.
	Unable to start the Config API Service. Possible problem binding to port.
	The Config API SSL certificate has expired.
	The Config API SSL certificate is self-signed.
	The configured version of TLS for the Configuration API is no longer consider...
	Configuration API started without SSL on port <port number>.
	Configuration API started with SSL on port <port number>.
	The OPC .NET server failed to start. Please see the windows application event...
	The OPC .NET server failed to start because it is not installed. Please rerun...
	Timed out trying to start the OPC .NET server. Please verify that the server ...
	Missing server instance certificate '<cert location>'. Please use the OPC UA ...
	Failed to import server instance cert: '<cert location>'. Please use the OPC ...
	The UA server certificate is expired. Please use the OPC UA Configuration Man...
	A socket error occurred listening for client connections. | Endpoint URL = '<...
	The UA Server failed to register with the UA Discovery Server. | Endpoint URL...
	Unable to start the UA server due to certificate load failure.
	Failed to load the UA Server endpoint configuration.
	The UA Server failed to unregister from the UA Discovery Server. | Endpoint U...
	The UA Server failed to initialize an endpoint configuration. | Endpoint Name...
	The UA Server successfully registered with the UA Discovery Server. | Endpoin...
	The UA Server successfully unregistered from the UA Discovery Server. | Endpo...
	UA Gateway Event Log Messages
	Created session with downstream server. | Endpoint URL = <Endpoint URL>.
	Failure while establishing session with downstream server. | Endpoint URL = <...
	Reconnecting session with downstream server. | Endpoint URL = <Endpoint URL>.
	Closed session with downstream server. | Endpoint URL = <Endpoint URL>.
	Cannot communicate with OPC UA gateway service. Port collision on UA gateway ...
	The Application Instance Certificate is invalid and needs to be updated (UA c...
	An invalid server endpoint has failed on server interface start. | Status cod...
	Startup failed. Port collision on UA Gateway inbound port : <Port number>.
	Failed to add subscription for device | Endpoint URL = <Endpoint URL>, Status...
	Client established a session with the server interface. | Client Application ...
	Using .NET CLR <Version>
	The ReadProcessed request timed out. | Elapsed Time = <seconds> (s).
	The ReadAtTime request timed out. | Elapsed Time = <seconds> (s).
	Attempt to add DDE item failed. | Item = '<item name>'.
	DDE client attempt to add topic failed. | Topic = '<topic>'.
	Unable to write to item. | Item = '<item name>'.
	The area specified is not valid. Failed to set the subscription filter. | Are...
	The source specified is not valid. Failed to set the subscription filter. | S...
	Connection to ThingWorx failed. | Platform = <host:port resource>, error = <r...
	Error adding item. | Item name = '<item name>'.
	Failed to trigger the autobind complete event on the platform.
	Connection to ThingWorx failed for an unknown reason. | Platform = <host:port...
	One or more value change updates lost due to insufficient space in the connec...
	Item failed to publish; multidimensional arrays are not supported. | Item nam...
	Store and Forward datastore unable to store data due to full disk.
	Store and Forward datastore size limit reached.
	Connection to ThingWorx was closed. | Platform = <host:port resource>.
	Failed to autobind property. | Name = '<property name>'.
	Failed to restart Thing. | Name = '<thing name>'.
	Write to property failed. | Property name = '<name>', reason = <reason>.
	ThingWorx request to add item failed. The item was already added. | Item name...
	ThingWorx request to remove item failed. The item doesn't exist. | Item name ...
	The server is configured to send an update for every scan, but the push type ...
	The push type of one or more properties are set to never push an update to th...
	ThingWorx request to remove an item failed. The item is bound and the force f...
	Write to property failed. | Thing name = '<name>', property name = '<name>', ...
	Error pushing property updates to thing. | Thing name = '<name>'.
	Unable to connect or attach to Store and Forward datastore. Using in-memory s...
	Store and Forward datastore reset due to file IO error or datastore corruption.
	Unable to apply settings change initiated by the Platform. Permission Denied....
	Configuration Transfer to ThingWorx Platform failed.
	Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>'
	Failed to delete stored updates in the Store and Forward datastore.
	Configuration Transfer from ThingWorx Platform failed.
	Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>'
	Check that your Application Key is properly formatted and valid.
	The maximum number of configured Industrial Things has been reached, count = ...
	The maximum number of updates has been reached, count = <count>.
	A publish to Thingworx has timed out.
	Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<nam...
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Dropping pending autobinds due to interface shutdown or reinitialize. | Count...
	Serviced one or more autobind requests. | Count = <count>.
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Resumed pushing property updates to thing: the error condition was resolved. ...
	Configuration transfer from ThingWorx initiated.
	Configuration transfer from ThingWorx aborted.
	Initialized Store and Forward datastore. | Datastore location: '<location>'.
	Successfully deleted stored data from the Store and Forward datastore.
	Store and Forward mode changed. | Forward Mode = '<mode>'.
	Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastor...
	Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'.
	FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic name>'.
	Error attaching to datastore due to an invalid datastore path. | Path = '<path>'
	Failed to start Store and Forward server. Socket error occurred binding to lo...
	Store and Forward service stopping.
	Store and Forward service starting.
	File corruption encountered when attaching to datastore; datastore recreated....
	Datastore overwritten due to a configuration change. | Datastore path = '<pat...
	Unable to attach to existing datastore because that datastore was created wit...
	Com port is in use by another application. | Port = '<port>'.
	Unable to configure com port with specified parameters. | Port = COM<number>,...
	Driver failed to initialize.
	Unable to allocate thread resource. Please check the memory usage of the appl...
	Com port does not exist. | Port = '<port>'.
	Error opening com port. | Port = '<port>', OS error = <error>.
	Connection failed. Unable to bind to adapter. | Adapter = '<name>'.
	Winsock shut down failed. | OS error = <error>.
	Winsock initialization failed. | OS error = <error>.
	Winsock V1.1 or higher must be installed to use this driver.
	Socket error occurred binding to local port. | Error = <error>, Details = '<i...
	Device is not responding.
	Device is not responding. | ID = '<device>'.
	Serial communications error on channel. | Error mask = <mask>.
	Invalid array size detected writing to tag <device name>.<address>.
	Unable to write to address on device. | Address = '<address>'.
	Items on this page may not be changed while the driver is processing tags.
	Specified address is not valid on device. | Invalid address = '<address>'.
	Address '<address>' is not valid on device '<name>'.
	This property may not be changed while the driver is processing tags.
	Unable to write to address '<address>' on device '<name>'.
	Socket error occurred connecting. | Error = <error>, Details = '<information>'.
	Socket error occurred receiving data. | Error = <error>, Details = '<informat...
	Socket error occurred sending data. | Error = <error>, Details = '<informatio...
	Socket error occurred checking for readability. | Error = <error>, Details = ...
	Socket error occurred checking for writability. | Error = <error>, Details = ...
	%s |
	<Name> Device Driver '<name>'

	Index

