
Modbus Plus Driver

© 2024 PTC Inc. All Rights Reserved.

Modbus Plus Driver

Table of Contents

Modbus Plus Driver 1

Table of Contents 2

Modbus Plus Driver 4

Overview 4

External Dependencies 4

Setup 4

Channel Properties — General 6

Tag Counts 6

Channel Properties — Write Optimizations 7

Channel Properties — Advanced 8

Channel Properties — Adapter 8

Device Properties — General 9

Device ID 10

Device Properties — ScanMode 14

Device Properties — Timing 14

Device Properties — Auto-Demotion 15

Device Properties — Tag Generation 16

Device Properties — Block Sizes 18

Device Properties — Variable Import Settings 19

Device Properties — Settings 20

Device Properties — Redundancy 22

Automatic Tag Database Generation 23

Optimizing Communications 23

Data Types Description 25

Address Descriptions 26

Modbus Addressing 26

Function Codes Description 29

Configuring theDevice for Global Data Communications 29

TIOModule Addressing 31

Event Log Messages 33

Bad address in block. | Block range = <start> to <end>. 33

Bad address in block. | Block Range = H<start> to H<end>. 33

Unable to start MBPLUS.SYS device. 33

Unable to detect card or start Modbus Plus Services. Verify the card andMBP *.sys drivers are
installed properly. 33

Unable to create system resources required to run this driver. 34

www.ptc.com

2

Modbus Plus Driver

Unable to initialize channel. 34

Bad array. | Array Range = <start> to <end>. 34

Unable to load channel. Only one channel is allowed per Hilscher adapter. Modify the project so
each channel has a unique adapter and reload. 34

Error opening file for tag database import. | OS error = '<error>'. 34

Error opening MBPLUS path. | Path = '<path>'. 34

Received block length does not match expected length. | Received length = <number> (bytes),
Expected length = <number> (bytes). 35

Global data not available from device. 35

Error reading global data from device. 35

Block request on device responded with exception. | Block Range = <start> to <end>, Exception =
<code>. 35

Unable to write to address on device. Device responded with exception. | Address = '<address>',
Exception = <code>. 35

Unable to read from address on device. Device responded with exception. | Address =
'<address>', Exception = <code>. 35

Block address request responded with exception. | Block range = H<start> to H<end>, Exception
= <code>. 36

Warning: Global Data Disabled, access requires Modicon's 4.0 low-level system drivers. 36

Unable to open adapter. | Adapter = <name>. 36

Tag import failed due to lowmemory resources. 36

File exception encountered during tag import. 36

Error parsing record in import file. | Record number = <number>, Field = <number>. 37

Description truncated for record in import file. | Record number = <number>. 37

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name =
'<tag>'. 37

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsup-
ported data type = '<type>'. 38

Unable to write to address on device. Board responded with exception. | Address = '<address>',
Exception = <code>. 38

Unable to read from address on device. Board responded with exception. | Address =
'<address>', Exception = <code>. 38

Started MBPLUS.SYS device 39

Importing tag database. | Source file = '<filename>' 39

Modbus Exception Codes 39

Index 41

www.ptc.com

3

Modbus Plus Driver

Modbus Plus Driver
Help version 1.063

CONTENTS

Overview
What is the Modbus Plus Driver?

Setup
How do I configure a device for use with this driver?

Automatic Tag Database Generation
How can I configure tags for the Modbus Plus Driver?

Optimizing Communications
How do I get the best performance from the driver?

Data Types Description
What data types does the Modbus Plus Driver support?

Address Descriptions
How do I address a data location on a Modbus Plus device?

Event Log Messages
What error messages does the Modbus Plus Driver produce?

Overview
The Modbus Plus Driver provides a reliable way to connect Modbus Plus devices to OPC client applications;
including HMI, SCADA, Historian, MES, ERP, and countless custom applications. It is intended for use with a
Modicon SA85, or Schneider PCI-85 interface card. This driver does not support configurations where
SA85/PCI-85 cards exist in the same computer.

External Dependencies
This driver has external dependencies.

An SA85 or PCI-85 interface adapter and its device driver software (MBPLUS or MBX drivers) are required to
communicate to the Modbus Plus network. The interface adapter and device drivers can be purchased from
Modicon/Schneider. The server can support up to eight (8) channels per SA85 or PCI-85 card.

Setup
For this driver, the terms Modbus server and unsolicited are used interchangeably.

Channel and Device Limits
The maximum number of channels supported by this driver is 32. The maximum number of devices sup-
ported by this driver is 8192 per channel.
The Modbus Plus Driver supports a maximum of eight channels per SA85 card adapter.

www.ptc.com

4

Modbus Plus Driver

Supported Interface Cards
SA85 Card

Note: Users may also connect to a Modbus Plus network from a Modbus RTU Serial machine via a USB
adapter.

For more information on the SA85 card requirements, refer to External Dependencies.

Supported Communication Modes
The Modbus Plus Driver supports three communicationmodes, which are used to obtain data from the
device. The mode is specified through the device ID format. Options include Solicited, Unsolicited, and
Mailbox. Descriptions of the modes are as follows:

l Solicited: In this mode, the driver generates read and/or write requests to the device for data. Avail-
able addresses include output coils, input coils, internal registers, and holding registers. Output coils
and holding register addresses have read / write access, whereas input coils and internal registers
have read only access. The device ID format for Solicited Mode is DM.r1.r2.r3.r4.r5 or S.r1.r2.r3.r4.r5.

l Unsolicited: In this mode, the driver acts as a virtual PLC on the network. Reads and writes do not ori-
ginate from the driver. Any client application that reads or writes from an unsolicited device passes
data to a local cache that is allocated for the device, not to the physical device. This local cache is loc-
ated in the PC that is running the driver. Devices on the network read and write to the same cache
through unsolicited commands. The device ID format for Unsolicited Mode is DS.r1.r2.r3.r4.r5.

l Mailbox: In this mode, the driver acts as a storage area for every definedmailbox device. When an
unsolicited command is received, the driver detects the routing path from which the message came,
and then place the data in the storage area allocated for that device. If the message comes from a
device with a routing path that has not been defined as a mailbox device, the message is not pro-
cessed. Any client application that reads from a mailbox device reads from the storage area con-
tained in the driver instead of the physical device; however, writes are sent to the physical device as
well as the local cache. Only holding registers are supported in this mode. The Double data type is
not supported. The device ID format for Mailbox Mode is U.r1.r2.r3.r4.r5.
Note:Unsolicited mailbox commands are made possible by the MSTR instruction available in cer-

tain Modicon devices. For more information, refer to "Example 2 - Mailbox Mode Single Network" and
"Example 3 - Mailbox Mode Bridged Network" in device ID.

For information on the communication modes that are supported by the SA85 interface card, refer to the table
below.

Mode SA85 Card

Solicited x

Unsolicited x

Mailbox x

For more information, refer to device ID.

Polling Multiple Devices
The Modbus Plus Driver can poll multiple devices on a Modbus Plus network and can also act as a single
Modbus server device on the Modbus Plus network for other devices to poll. The driver is limited to 8192
devices and supports up to 4 adapters.

www.ptc.com

5

Modbus Plus Driver

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same com-
munications driver or with unique communications drivers. A channel acts as the basic building block of an
OPC link. This group is used to specify general channel properties, such as the identification attributes and
operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window
when browsing the OPC server's tag space. The channel name is part of the OPC browser information. The
property is required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during chan-
nel creation. It is a disabled setting in the channel properties. The property is required for creating a chan-
nel.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. Changes to the properties should not be made
once a large client application has been developed. Utilize proper user role and privilege management to
prevent operators from changing properties or accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this optionmakes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead pro-
cessing, it is recommended that they be utilized when needed and disabled when not. The default is dis-
abled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

www.ptc.com

6

Modbus Plus Driver

Static Tags: Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties to meet specific needs or improve application respons-
iveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client applic-
ations is sent to the target device. This mode should be selected if the write operation order or the
write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize

the operation of HMI data without causing problems with Boolean operations, such as a momentary
push button.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows optim-
ization for applications with continuous writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

www.ptc.com

7

Modbus Plus Driver

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as
a Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may
default to Unmodified. Non-normalized float handling allows users to specify how a driver handles non-nor-
malized IEEE-754 floating point data. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point val-
ues with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-num-
ber, and infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the
option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-
Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Adapter

Adapter Number: Specify the number of the adapter to be used by the Modbus Plus card. Valid adapter
numbers are 0 to 3. For card-specific information, refer to Setup.

www.ptc.com

8

Modbus Plus Driver

Device Properties — General

Identification

Name: User-defined identity of this device.

Description: User-defined information about this device.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: The specific version of the device.

ID: Specify the path to a node on the network. The device ID specifies the path to a node on the network. It
consists of five consecutive routing bytes in addition to a mode designator.
For more information, refer to Device ID.

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not attemp-
ted when a device is disabled. From a client standpoint, the data is marked as invalid and write operations
are not accepted. This property can be changed at any time through this property or the device System Tags
in server help.

Simulated: This option places the device into Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The item's memory map is based on the group
Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).
The default is No.

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The Sys-
tem tag allows this property to be monitored from the client.

www.ptc.com

9

Modbus Plus Driver

2. In Simulationmode, the item's memory map is based on client update rate(s) (Group Update Rate for
OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference
the same item with different update rates return different data.

Simulation Mode is for test and simulation purposes only. It should never be used in a production envir-
onment.

Device ID
The device ID specifies the path to a node on the network. It consists of a mode designator and five con-
secutive routing bytes. The mode may be Data Client (DM), Data Server (DS), or Mailbox. For this driver, the
terms Modbus server and unsolicited are used interchangeably.

Solicited Mode (Data Client)
Data client paths start with the prefix DM or S and are used to communicate with another node on the net-
work. The host system acts as the Modbus client in conversations of this type. A DM path can identify a PLC
or any other devices that can respond to Modbus Read andWrite commands, including another host running
the Modbus Plus Driver. The format of a DM path is DM.r1.r2.r3.r4.r5 or S.r1.r2.r3.r4.r5.

Unsolicited Mode (Data Server)
A single data server path can be configured per SA85 card and has the format DS.1.0.0.0.0. By defining a
server path, users enable the host running the Modbus Plus Driver to simulate a device on the network cap-
able of responding to Read/Write requests from other devices. Other devices can communicate with this sim-
ulated device by opening a Data Client path to it.

The simulated device uses Modbus byte ordering: first word is low word of DWord for 32-bit and 64-bit val-
ues and first DWord is low DWord for 64-bit values for data encoding. Therefore, the Data Encoding options
for the unsolicited device must be set to the following:

l Modbus Byte Order

l First Word Low

l First DWord Low

For more information, refer to Settings.

Addresses 1 to 65536 are implemented for output coils, input coils, internal registers and holding registers.
The driver responds to any valid request to read or write these values from external devices (Function Codes
[decimal] 01, 02, 03, 04, 05, 06, 15, 16). These locations can also be accessed locally by the host PC as tags
assigned to the Modbus server device. Write Only access is not allowed for an unsolicited device.

When a Modbus server path is enabled, the Modbus Plus Driver enables eight Modbus server paths on each
SA85 card. This allows the remote PLCs and other Modbus Plus devices to access the Modbus server
memory of this driver using any of the eight Modbus server paths. The memory accessed is the same in all
cases. In terms of an MSTR instruction, users can specify a path of 1 through 8 when defining what path to
connect with on the SA85 card serviced by this driver. This can be useful if the application has a large num-
ber of remote devices sending data to the PC. If this is the case, users can utilize the eight Modbus server
paths to distribute the load from remote nodes. Each Modbus server path in this driver has its own thread of
execution to ensure the highest level of performance.

If no Modbus server device is defined in the project, the driver ignores any unsolicited read or write requests
it receives.

www.ptc.com

10

Modbus Plus Driver

Mailbox Mode
A Mailbox path starts with the prefix U and provides a path to a physical device. A storage area is provided
for this physical device in the Modbus server device defined in the project. Although the physical device
sends unsolicited writes to this storage area, they can also be accessed locally by the host PC as tags
assigned to the Modbus server device. The format of a mailbox path is U.r1.r2.r3.r4.r5.

The driver always opens a Modbus server path when receiving unsolicited mailbox data. The path the driver
opens is DS.1.0.0.0.0. Devices on the same Modbus Plus network communicate with the driver by opening
the Data Client path DM.<local node> .1.0.0.0, where the local node is the address set on the SA85 card of
the Host Computer. For a description of the path devices on a bridged network use, refer to Example 3.

Devices use the Modbus Plus MSTR instruction to provide data to the driver. For the driver to be able to asso-
ciate the data with a particular device, the device ID path must be embedded in the first five registers of the
received data. If the first five registers of data do not match the device ID path of the device in the project,
the received data is discarded. Only the Write command is supported for the MSTR instruction.

Notes:

1. The device ID path is embedded in the path from the host PC to the device, not the device path to the
host PC.

2. A TIOModule device does not support a Modbus server network address.

3. The device ID should not be changed while OPC clients are connected. If it is, the change does not
take effect until all OPC clients are disconnected and then reconnected.

Example 1 - Solicited Mode
A single network consists of four nodes, such that nodes 1 and 4 are host PCs running software that uses the
Modbus Plus Driver. Nodes 2 and 3 are PLCs. The following table displays the addressing for the network as
from each node.

From To Node 1 To Node 2 To Node 3 To Node 4

Node 1 --------------- DM.2.0.0.0.0 DM.3.0.0.0.0 DM.4.1.0.0.0

Node 2 DM.1.1.0.0.0 --------------- DM.3.0.0.0.0 DM.4.1.0.0.0

Node 3 DM.1.1.0.0.0 DM.2.0.0.0.0 --------------- DM.4.1.0.0.0

Node 4 DM.1.1.0.0.0 DM.2.0.0.0.0 DM.3.0.0.0.0 ---------------

Note: To access the simulated device on a host PC, the last non-zero number in the path is always one.
This indicates the Modbus server path used by the driver.

Example 2 - Mailbox Mode Single Network
Transferring registers 40020 to 40029 from the device to locations 40001 to 40010 of the host PC. The loc-
ation of the control block can be different. The host PC address is 7.0.0.0.0. The device address is 3.0.0.0.0.

MSTR Instruction

Control block 40001 -

Data area 40015 Start five registers early

Length 15 Five more than the actual data

www.ptc.com

11

Modbus Plus Driver

Control Block

Register Contents Description

40001 1 Write operation

40002 0 Holds error code

40003 15 Number of registers to transfer

40004 1 Starting location in the host PC (Register 40001)

40005 7 Path to host PC

40006 1 Path to host PC

40007 0 Path to host PC

40008 0 Path to host PC

40009 0 Path to host PC

Data Area

Register Contents Description

40015 3 Path back to device from host PC, the device ID

40016 0 Path back to device from host PC

40017 0 Path back to device from host PC

40018 0 Path back to device from host PC

40019 0 Path back to device from host PC

40020 - Actual data start

40029 - Actual data end

Upon receiving an unsolicited message, the driver does the following:

1. If the message is understood, the driver sends an acknowledgment to the sending device. If mes-
sages are received for functions other than Preset Multiple Registers, code 0x10, the driver returns
a Function Not Implemented response. Preset Multiple Registers is the function code used by devices
on the receiving end of an MSTR instruction. The driver returns an exception response if the message
is not understood or incomplete.

2. The driver attempts to match the first five registers of data received to the device ID path of a device
in the project. If none is found, the data is discarded. If the data is less than six registers, it is dis-
carded immediately.

3. The driver copies n - 5 registers of data starting at the sixth register of the received data to the image
mapmaintained internally for the device (starting at the location indicated in the message). The
driver may need to allocate storage for the image map if this is the first data received for these loc-
ations.

4. The data is made available to the driver's clients. The data in this example would be referenced as
tags with addresses 40001 to 40009 of the device with device ID U.3.0.0.0.0. The client would refer to
the device using a logical name assigned when the device was created in the project. The data could
also be referenced as an array, such as 40001[10] or 40001[2][5].

Example 3 - Mailbox Mode Bridged Network

www.ptc.com

12

Modbus Plus Driver

The host PC's address from the PLC's perspective is 4.2.9.7.1. The PLC's address from the host PC's per-
spective is 15.23.10.18.0. This is the device ID path. If the same registers were transferred from the PLC to
the same locations in the host PC, the control block and data area would be used in the MSTR instruction
according to the tables below. The message would be processed the same.

Note: When using this driver, the host PC can be three networks apart from a device at the most.

MSTR Instruction

Control block 40001

Data area 40015 Start five registers early.

Length 15 Five more than the actual data.

Control Block

Register Contents Description

40001 1 Write operation

40002 0 Holds error code

40003 15 Number of registers to transfer

40004 1 Starting location in the host PC (Register 40001)

40005 4 Path to host PC

40006 2 Path to host PC

40007 9 Path to host PC

40008 7 Path to host PC

40009 1 Path to host PC

Data Area

Register Contents Description

40015 15 Path back to device from host PC, the device ID

40016 23 Path back to device from host PC

40017 10 Path back to device from host PC

www.ptc.com

13

Modbus Plus Driver

Register Contents Description

40018 18 Path back to device from host PC

40019 0 Path back to device from host PC

40020 - Actual data start

40029 - Actual data end

Device Properties — Scan Mode
The ScanMode specifies the subscribed-client requested scan rate for tags that require device com-
munications. Synchronous and asynchronous device reads and writes are processed as soon as possible;
unaffected by the ScanMode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions
of the options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan

rate. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for sub-
scribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the OPC client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the applic-
ation's needs. In many cases, the environment requires changes to these properties for optimum per-
formance. Factors such as electrically generated noise, modem delays, and poor physical connections can
influence howmany errors or timeouts a communications driver encounters. Timing properties are specific
to each configured device.

www.ptc.com

14

Modbus Plus Driver

Communications Timeouts

Connect Timeout: This property (which is used primarily by Ethernet based drivers) controls the amount of
time required to establish a socket connection to a remote device. The device's connection time often takes
longer than normal communications requests to that same device. The valid range is 1 to 30 seconds. The
default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not sup-
ported by the driver, it is disabled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout: Specify an interval used by all drivers to determine how long the driver waits for a
response from the target device to complete. The valid range is 50 to 9999999 milliseconds (167 minutes).
The default is usually 1000 milliseconds, but can vary depending on the driver. The default timeout for most
serial drivers is based on a baud rate of 9600 baud or better. When using a driver at lower baud rates,
increase the timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout: Specify howmany times the driver issues a communications request before con-
sidering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is typ-
ically 3, but can vary depending on the driver's specific nature. The number of attempts configured for an
application depends largely on the communications environment. This property applies to both connection
attempts and request attempts.

Timing

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target
device. It overrides the normal polling frequency of tags associated with the device, as well as one-time
reads and writes. This delay can be useful when dealing with devices with slow turnaround times and in
cases where network load is a concern. Configuring a delay for a device affects communications with all
other devices on the channel. It is recommended that users separate any device that requires an inter-
request delay to a separate channel if possible. Other communications properties (such as communication
serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may
limit the maximum value due to a function of their particular design. The default is 0, which indicates no
delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline for a specific time period, the driver can continue to

www.ptc.com

15

Modbus Plus Driver

optimize its communications with other devices on the same channel. After the time period has been
reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,
the device is placed on-scan; otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted sys-

tem tag.

Timeouts to Demote: Specify howmany successive cycles of request timeouts and retries occur before the
device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is
reached. During this period, no read requests are sent to the device and all data associated with the read
requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for
another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000
milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the
off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard
writes; the server automatically fails any write request received from a client and does not post a message
to the Event Log.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation.
Select communications drivers can be configured to automatically build a list of tags that correspond to
device-specific data. These automatically generated tags (which depend on the nature of the supporting
driver) can be browsed from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and
uses the data to generate tags within the server. If the device does not natively support named tags, the
driver creates a list of tags based on driver-specific information. An example of these two conditions is as fol-
lows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the
tag names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/Omodule types, the com-
munications driver automatically generates tags in the server that are based on the types of I/Omod-
ules plugged into the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more inform-
ation, refer to the property descriptions below.

www.ptc.com

16

Modbus Plus Driver

On Property Change: If the device supports automatic tag generation when certain properties change, the
On Property Change option is shown. It is set to Yes by default, but it can be set toNo to control over when
tag generation is performed. In this case, the Create tags actionmust be manually invoked to perform tag
generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as
follows:

l Do Not Generate on Startup: This option prevents the driver from adding any OPC tags to the tag
space of the server. This is the default setting.

l Always Generate on Startup: This option causes the driver to evaluate the device for tag inform-
ation. It also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup: This option causes the driver to evaluate the target device for tag
information the first time the project is run. It also adds any OPC tags to the server tag space as
needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save
from the Tools | Optionsmenu.

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to
do with the tags that it may have previously added or with tags that have been added or modified after the
communications driver since their original creation. This setting controls how the server handles OPC tags
that were automatically generated and currently exist in the project. It also prevents automatically gen-
erated tags from accumulating in the server.

For example, if a user changes the I/Omodules in the rack with the server configured to Always Generate
on Startup, new tags would be added to the server every time the communications driver detected a new
I/Omodule. If the old tags were not removed, many unused tags could accumulate in the server's tag space.
The options are:

l Delete on Create: This option deletes any tags that were previously added to the tag space before
any new tags are added. This is the default setting.

l Overwrite as Necessary: This option instructs the server to only remove the tags that the com-
munications driver is replacing with new tags. Any tags that are not being overwritten remain in the
server's tag space.

l Do not Overwrite: This option prevents the server from removing any tags that were previously gen-
erated or already existed in the server. The communications driver can only add tags that are com-
pletely new.

l Do not Overwrite, Log Error: This option has the same effect as the prior option, and also posts an
error message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the com-
munications driver as well as any tags that have been added using names that match generated tags.

www.ptc.com

17

Modbus Plus Driver

Users should avoid adding tags to the server using names that may match tags that are automatically
generated by the driver.

Parent Group: This property keeps automatically generated tags frommixing with tags that have been
enteredmanually by specifying a group to be used for automatically generated tags. The name of the group
can be up to 256 characters. This parent group provides a root branch to which all automatically generated
tags are added.

Allow Automatically Generated Subgroups: This property controls whether the server automatically cre-
ates subgroups for the automatically generated tags. This is the default setting. If disabled, the server gen-
erates the device's tags in a flat list without any grouping. In the server project, the resulting tags are named
with the address value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system

automatically increments to the next highest number so that the tag name is not duplicated. For example, if
the generation process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been
modified, Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be
accessed from the System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Device Properties — Block Sizes

Coils

Output Coils: Specifies the output block size in bits. Coils can be read from 8 to 2000 points (bits) at a time.

Input Coils: Specifies the input block size in bits. Coils can be read from 8 to 2000 points (bits) at a time.

Notes:

1. Coil size must be a multiple of 8.

2. For MBX, NETLIB, or NONE; the default is 512 and the maximum is 2000.

3. This property is disabled when an OPC client is connected.

Registers

Internal Registers: Specifies the internal register block size in bits. From 1 to 125 standard 16-bit Modbus
registers can be read at a time.

www.ptc.com

18

Modbus Plus Driver

Holding Registers: Specifies the holding register block size in bits. From 1 to 125 standard 16-bit Modbus
registers can be read at a time.

Notes:

1. For MBX, NETLIB, or NONE; the default is 120 and the maximum is 125.

2. This property is disabled when an OPC client is connected.

3. For a TIOModule, use this setting to inform the driver howmany bytes are returned when reading
data location 400001. For modules that return 2 bytes, set this to 1. For modules that return 3 bytes,
set this to 2. The driver uses fixed block lengths (independent from this setting) for all other data loc-
ations.

4. The device may not support block read / write operations of the default size. Smaller Modicon PLCs
and non-Modicon devices may not support the maximum data transfer lengths supported by the
MBPlus network.

5. The device may contain non-contiguous addresses. If this is the case and the driver attempts to read
a block of data that encompasses undefinedmemory, the device probably reject the request.

Caution: If the block sizes value is set above 120 and a 32 or 64-bit data type is used for any tag, a "Bad
address in block" error can occur. Decrease block size value to 120 to prevent the error from occurring.

Block Sizes

Block Read Strings: Enables group reads of string tags, which are normally read individually. String tags
are grouped together depending on the block size. Block reads can only be performed for Modbus model
string tags.

Device Properties — Variable Import Settings
For more information on CSV files for Modbus Drivers, refer to Creating CSV Files for Modbus Drivers.

Variable Import File: Specifies the exact location of the variable import file the driver should use when auto-
matic tag database generation is enabled for this device.

Include Descriptions: Enable to use imported tag descriptions (if present in file).

For more information on how to configure automatic tag database generation and how to create a variable
import file, refer to Automatic Tag Database Generation.

For specific information on creating the variable import file from Concept and ProWORX, consult Technical
Note "Creating CSV Files for Modbus Drivers."

www.ptc.com

19

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/creating_csv_files_for_kepware_modbus_drivers.pdf

Modbus Plus Driver

Device Properties — Settings

Data Access

Zero-Based Addressing: If the address numbering convention for the device starts at one instead of zero,
disable. By default, user-entered addresses have one subtracted when frames are constructed to com-
municate with a Modbus device. If the device doesn't follow this convention, disable zero-based addressing.
The default behavior follows the convention of the Modicon PLCs.

Zero-Based Bit Addressing: Memory types that allow bits within Words can be referenced as a Boolean.
The addressing notation is: <address> .<bit> where <bit> represents the bit number within the Word. Zero-
Based Bit Addressing within registers provides two ways of addressing a bit within a givenWord; zero based
and one based. Zero-based bit addressing within registers means the first bit begins at 0. With one based,
the first bit begins at 1.

Holding Register Bit Writes: When writing to a bit location within a holding register, the driver should only
modify the bit of interest. Some devices support a command to manipulate a single bit within a register (func-
tion code hex 0x16 or decimal 22). If the device does not support this feature, the driver must perform a
Read / Modify / Write operation to ensure that only the single bit is changed. The default setting is disabled.
Enable if the device supports holding register bit access and the driver uses function code 0x16, regardless
of the setting for Modbus Function 06. If this setting is disabled, the driver uses either function code 0x06 or
0x10, depending on the Modbus Function 06 property for single register writes.

Notes:

1. WhenModbus Byte Order is disabled, the byte order of the masks sent in the command is Intel byte
order.

Modbus Function 06: The Modbus Plus Driver has the option of using two Modbus protocol functions to
write Holding register data to the target device. In most cases, the driver switches between these two func-
tions based on the number of registers being written. When writing a single 16-bit register, the driver uses
the Modbus function 06. When writing a 32-bit value into two registers, the driver uses Modbus function 16.
For the standard Modicon PLC, the use of either of these functions is not a problem. There are, however, a
large number of third party devices that have implemented the Modbus protocol. Many of these devices sup-
port only the use of Modbus function 16 to write to Holding registers regardless of the number of registers
to be written.

Modbus Function 06 is used to force the driver to use only Modbus function 16 (if needed). This selection is
enabled by default, allowing the driver to switch between 06 and 16 as needed. If a device requires all writes
to be done using only Modbus function 16, disable this option.

www.ptc.com

20

Modbus Plus Driver

Note: For bit within word writes, the Holding Register Bit Writes property takes precedence overMod-
bus Function 06. If Holding Register Bit Writes is enabled, then function code 0x16 is used no matter what
the selection for this property. If it is disabled, this property determines whether function code 0x06 or 0x10
is used for bit within word writes.

Modbus Function 05: The Modbus Plus Driver can use two Modbus protocol functions to write output coil
data to the target device. In most cases, the driver switches between these two functions based on the num-
ber of coils being written. When writing a single coil, the driver uses the Modbus function 05. When writing
an array of coils, the driver uses Modbus function 15. For the standard Modicon PLC, the use of either of
these functions is not a problem. There are, however, a large number of third-party devices that have imple-
mented the Modbus protocol. Many of these devices support only the use of Modbus function 15 to write to
output coils regardless of the number of coils to be written.

The Modbus Function 05 selection is used to force the driver to use only Modbus function 15 if needed. This
property is enabled by default, allowing the driver to switch between 05 and 15 as needed. If a device
requires all writes to be done using only Modbus function 15, disable this selection.

Data Encoding

Modbus Byte Order: The byte order used by the Modbus Plus Driver can be changed from the default Mod-
bus byte ordering to Intel byte ordering by using this selection. This selection is enabled by default and is the
normal setting for Modbus compatible devices. If the device uses Intel byte ordering, disabling this option
allows the driver to properly read Intel formatted data.

First Word Low: Two consecutive registers' addresses in a Modbus device are used for 32-bit data types.
Users can specify whether the driver should assume the first word is the low or the high word of the 32-bit
value. The default (First Word Low) follows the convention of the ModiconModsoft programming software.

First DWord Low: Four consecutive registers' addresses in a Modbus device are used for 64-bit data types.
Users can specify whether the driver should assume the first DWord is the low or the high DWord of the 64-
bit value. The default (First DWord Low) follows the default convention of 32-bit data types.

Modicon Bit Order: When enabled, the driver reversed the bit order on reads and writes to registers to fol-
low the convention of the ModiconModsoft programming software. For example, a write to address
40001.0/1 affects bit 15/16 in the device when this option is enabled. This option is disabled by default.

Note: For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits depending
on if the driver is set at Zero-Based Bit Addressing within registers.

MSB = Most Significant Bit
LSB = Least Significant Bit

Modicon Bit Order Enabled

MSB LSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Modicon Bit Order Disabled

MSB LSB

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

www.ptc.com

21

Modbus Plus Driver

Data Encoding Options Details

l Modbus Byte Order option sets the data encoding of each register / 16-bit value.

l First Word Low sets the data encoding of each 32-bit value and each double word of a 64-bit value.

l First DWord Low sets the data encoding of each 64-bit value.

Data Types Modbus Byte Order First Word Low First DWord Low

Word, Short, BCD Applicable N/A N/A

Float, DWord, Long, LBCD Applicable Applicable N/A

Double Applicable Applicable Applicable

If needed, use the following information and the particular device's documentation to determine the correct
settings of the Data Encoding options. The default settings are acceptable for most Modbus devices.

Modbus Byte Order
Enabled

High Byte (15..8) Low Byte (7..0)

Modbus Byte Order
Disabled

Low Byte (7..0) High Byte (15..8)

First Word Low Dis-
abled

HighWord (31..16)
HighWord(63..48) of Double Word in
64-bit data types

LowWord (15..0)
LowWord (47..32) of Double Word in 64-
bit data types

First Word Low
Enabled

LowWord (15..0)
LowWord (47..32) of Double Word in
64-bit data types

HighWord (31..16)
HighWord (63..48) of Double Word in
64-bit data types

First DWord Low Dis-
abled

High Double Word (63..32) Low Double Word (31..0)

Device Properties — Redundancy

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

www.ptc.com

22

https://ptc-p-001.sitecorecontenthub.cloud/api/public/content/e96f85a9eef84807b06504cdd95b1084?v=3b0e1d04

Modbus Plus Driver

Automatic Tag Database Generation
The Modbus Plus Driver utilizes the Automatic Tag Database Generation, which automatically creates tags
that access data points used by the device's ladder program. Although it is sometimes possible to query a
device for the information needed to build a tag database, this driver must use a Variable Import File
instead. Variable import files can be generated using the Concept and ProWORX device programming applic-
ations.

Creating the Variable Import File
The import file must be in semicolon-delimited .TXT format, which is the default export file format of the
Concept device programming application. The ProWORX programming application can export variable data
in this format.

For specific information on creating the variable import file from Concept and ProWORX, consult Technical
Note "Creating CSV Files for Modbus Drivers."

Server Configuration
Automatic Tag Database Generation can be customized to fit the application's needs. The primary control
options can be set either during the database creation through the wizard or the device properties.

For more information, refer to the server help documentation.

Modbus Plus Driver requires other settings in addition to the basic settings common to all drivers that sup-
port automatic tag database generation. Such specialized settings include the requiring the name and loc-
ation of the variable import file. This information can be specified either under Variable Import Settings in
device properties.

For more information, refer to Variable Import Settings.

Operation
Depending on the specific configuration, tag generationmay start automatically when the server project
opens or be initiated manually at some other time. The Event Log shows when the tag generation process
started, any errors that occurred while processing the variable import file, and when the process completed.

Optimizing Communications
The Modbus Plus Driver has been designed to provide better throughput and take full advantage of the SA85
card. Previously, the Modbus Plus Driver restricted users to configuring a single channel in the server pro-
ject and required that all Modbus Plus devices that would be accessed be defined under this channel. This
meant that the driver had to move between devices one at a time to make requests. Since the OPC Server
was already designed to be efficient, the single channel scheme provided enough performance for most
application. With the advent of OPC as an enabling technology, however, the size of projects has increased
dramatically. To maintain a high level of performance, the Modbus Plus Driver is designed to operate at a
high level of efficiency and performance.

Note: Before beginning these changes, back up the server project directory to return to previous settings
if needed.

www.ptc.com

23

Modbus Plus Driver

In this project, there is only one channel defined. All devices that need to be
accessed are defined under that one channel. The Modbus Plus Driver must move
from one device to the next as quickly as possible to gather information at an
effective rate. As more devices are added or more information is requested from a
single device, the update rate begins to suffer.

The latest version of the Modbus Plus Driver uses multiple channel definitions to boost the application's per-
formance. In this configuration, each channel in the server represents a separate path of execution. By
adding additional channels, the application's work load is spread across the new channels. This creates mul-
tiple paths of execution that run independently, and results in a significant increase in performance. The
image below shows the same application reconfigured to use multiple channels.

Each device can be defined under its own channel. In this configuration, the server
can dedicate a single path of execution to the task of gathering data from a single
device because each has its own dedicated channel. If the application has fewer
devices it can be optimized as displayed.

Even if the application has more devices, there is a gain. While fewer devices may
be ideal, the application still benefits from additional channels. Although this
means that within a given channel the server must move from device to device, it
can now do so with less devices to process on a single path.

Note: The channel limits match the multi-path limitations of the SA85 card as
set by the manufacturer.

The application can be redesigned to support multiple channels even if there are a large number of tags
defined under each device. For more information, follow the instructions below.

1. In the existing project that is single channel-based, click Connectivity| New Channel and then
name it as desired.

2. Cut PLC2 from theModbusPlus channel.

3. Paste it under the new channel. The cut and paste functions quickly modify the application to take
advantage of the newModbus Plus Driver.

These examples highlight the most obvious optimizations that are possible with the Modbus Plus Driver.
Other possible optimizations include dedicating a single channel to just Global data. To do so, define a new
set of device names for each device with global data to be accessed under that new channel. Remember to
only access Global data from these newly defined device names.

www.ptc.com

24

Modbus Plus Driver

Data Types Description

Data Type Description

Boolean Single bit

Word
Unsigned 16-bit value
bit 0 is the low bit
bit 15 is the high bit

Short

Signed 16-bit value
bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord
Unsigned 32-bit value
bit 0 is the low bit
bit 31 is the high bit

Long

Signed 32-bit value
bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD
Two byte packed BCD
Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD
Four byte packed BCD
Value range is 0-99999999. Behavior is undefined for values beyond this range.

String
Null terminated ASCII string
Supported onModbus Model, includes Hi-Lo Lo-Hi byte order selection.

Double*
64-bit floating point value
The driver interprets four consecutive registers as a double precision value by making
the last two registers the high DWord and the first two registers the low DWord.

Double
example

If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the 64-
bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

Float*
32-bit floating point value
The driver interprets two consecutive registers as a single precision value by making the
last register the high word and the first register the low word.

Float example
If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-bit
data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

*The descriptions assume the default first DWord low data handling of 64-bit data types, and first word low
data handling of 32-bit data types.

www.ptc.com

25

Modbus Plus Driver

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain spe-
cific address information for the model of interest.

Modbus Addressing
TIO Module Addressing

Modbus Addressing
For this driver, the terms server and unsolicited are used interchangeably.

5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits rep-
resent the device's data item. The maximum value is a two-byte unsigned integer (65,535). Six digits are
required to represent the entire address table and item. As such, addresses that are specified in the
device's manual as 0xxxx, 1xxxx, 3xxxx, or 4xxxx are padded with an extra zero once applied to the Address
field of a Modbus tag.

Primary Table Description

0 Output Coils

1 Input Coils

3 Internal Registers

4 Holding Registers

Modbus Addressing in Decimal Format
The Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Address Type Range Data Type Access Function Codes

Output Coils 000001-065536 Boolean Read/Write 01, 05, 15

Input Coils 100001-165536 Boolean Read Only 02

Internal
Registers

300001-365536
300001-365535
300001-365533

3xxxxx.0/1-3xxxxx.15/16**

300001.2H-
365536.240H***

300001.2L-
365536.240L***

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Boolean

String

String

Read Only*
Read Only*
Read Only*

Read Only*

Read Only

Read Only

04
04
04

04

04

04

Holding
Registers

400001-465536
400001-465535
400001-465533

4xxxxx.0/1-4xxxxx.15/16**

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Boolean

Read/Write
Read/Write
Read/Write

Read/Write

03, 06, 16
03, 06, 16
03, 06, 16

03, 06, 16, 22

www.ptc.com

26

Modbus Plus Driver

Address Type Range Data Type Access Function Codes

400001.2H-
465536.240H***

400001.2L-
465536.240L***

String

String

Read/Write

Read/Write

03, 16

03, 16

Global Data

G01-G32
G01-G31
G01-G29

Gxx.0/1-Gxx.15/16**

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Boolean

Read/Write
Read/Write
Read/Write

Read Only

N/A
N/A
N/A

N/A

*For Modbus server devices, these locations are Read/Write.
**For more information, refer to "Zero vs. One Based Addressing" in Settings.
***.Bit is string length, range 2 to 240 bytes.

Modbus Addressing in Hexadecimal Format
Address Type Decimal Range Data Type Access

Output Coils H000001-H010000 Boolean Read/Write

Input Coils H100001-H110000 Boolean Read Only

Internal Registers

H300001-H310000
H300001-H30FFFF
H300001-H30FFFD

H3yyyyy.0/1-H3yyyyy.F/10

H300001.2H-H3FFFF.240H

H300001.2L-H3FFFF.240L

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read Only*
Read Only*
Read Only*

Read Only*

Read Only

Read Only

Holding Registers

H400001-H410000
H400001-H40FFFF
H400001-H40FFFD

H4yyyyy.0/1-H4yyyyy.F/10

H400001.2H-H4FFFF.240H

H400001.2L-H4FFFF.240L

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read/Write
Read/Write
Read/Write

Read/Write

Read/Write

Read/Write

Global Data

HG01-HG20
HG01-HG1F
HG01-HG1D

HGyy.0/1-HGyy.F/10

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read/Write
Read/Write
Read/Write

Read Only

*For Modbus server devices, these locations are Read/Write.
**.Bit is string length, range 2 to 240 bytes.

www.ptc.com

27

Modbus Plus Driver

Packed Coils
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is
only available when the Modbus model is in Modbus Client Mode. The syntax is as follows:

Output Coils: 0xxxxx#nn
Input Coils: 1xxxxx#nn

where

l xxxxx is the address of the first coil. Both decimal and hexadecimal values are allowed.

l nn is the number of coils packed into an analog value. The valid range is 1-16, and only decimal val-
ues are allowed.

Note: The only valid data type is Word. Output Coils have Read/Write access, whereas Input Coils have
Read Only access. The bit order is such that the start address is the Least Significant Bit (LSB) of analog
value.

Write Only Access
All Read/Write addresses may be set as Write Only by prefixing a "W" to the address (such as "W40001"),
which prevents the driver from reading the register at the specified address. Any attempts by the client to
read a Write Only tag will result in obtaining the last successful write value to the specified address. If no suc-
cessful writes have occurred, then the client will receive 0/NULL for numeric/string values for an initial value.

Caution: Setting the client access privileges of Write Only tags to Read Only will cause writes to these tags to
fail and the client to always receive 0/NULL for numeric / string values.

Mailbox Mode
Only Holding Registers are supported in Mailbox Mode. When read from a client, the data is read locally
from a cache, not from a physical device. When written to from a client, the data is written to both the local
cache and also the physical device as determined by the device ID routing path. For more information, refer
toMailbox Mode.

Note: The Double data type is not supported.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data
within a given register can be selected when the string is defined. The length of the string can be from 2 to
240 bytes and is entered in place of a bit number. The length must be entered as an even number. Append-
ing either an "H" or "L" to the address specifies the byte order.

Examples

l To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter
"40200.100H".

l To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter
"40500.78L".

Note: The string length may be limited by the maximum size of the write request that the device will
allow. If the error message "Unable to write to address <address> on device<device>: Device responded
with exception code 3" is received in the server's event window while utilizing a string tag, the device did not
like the string's length. Users should shorten the string if possible.

www.ptc.com

28

Modbus Plus Driver

Array Support
Arrays are supported both for internal and holding register locations (including all data types except
Boolean and strings) and for input and output coils (Boolean data types). There are two ways to address an
array. The following examples apply to holding registers:

4xxxx [rows] [cols]
4xxxx [cols] with assumed row count equal to one.

For Word, Short and BCD arrays, the base address + (rows * cols) cannot exceed 65536. For Float, DWord,
Long and Long BCD arrays, the base address + (rows * cols * 2) cannot exceed 65535. For all arrays, the
total number of registers being requested cannot exceed the holding register block size that was specified
for this device.

Note: The base address for Global Data cannot exceed 32.

Function Codes Description

Decimal Hexadecimal Description

01 0x01 Read Coil Status

02 0x02 Read Input Status

03 0x03 Read Holding Registers

04 0x04 Read Internal Registers

05 0x05 Force Single Coil

06 0x06 Preset Single Register

15 0x0F Force Multiple Coils

16 0x10 Preset Multiple Registers

22 0x16 MaskedWrite Register

Configuring the Device for Global Data Communications
Global Data is supported by the SA85 interface card. It is only accessible from a single network. For example,
"7.0.0.0.0" can access global data, but "7.1.0.0.0" cannot.

Note:Unsolicited mode does not support Global Data.

Writing Global Data to a Device
The host PC's address from the PLC's perspective is 2.0.0.0.0. The PLC's address from the host PC's per-
spective is 9.0.0.0.0. This is the device ID path. Users must configure the addresses that the device can read
to and write from in the programming software.

Control Block

Register Contents Description

Control
[1]

5 Function Code for writing Global Data

Control
[2]

-
0 = No

The error code. This may not be changed

www.ptc.com

29

Modbus Plus Driver

Register Contents Description

Error

Control
[3]

32
The number of words to write from state RAM to global memory; the maximum
is 32 bits

Control
[4]

- Reserved*

Control
[5]

2 The Modbus Plus node address to which data is being sent

Control
[6]

0 Path to host PC

Control
[7]

0 Path to host PC

Control
[8]

0 Path to host PC

Control
[9]

0 Path to host PC

*This register is application-specific.

Data Area

Register Contents Description

DataField [1]-DataField [32] Data N/A

Reading Global Data from the Device
The host PC's address from the PLC's perspective is 2.0.0.0.0. The PLC's address from the host PC's per-
spective is 9.0.0.0.0. This is the device ID path.

Control Block

Register Contents Description

Control
[1]

6 Function Code for reading Global Data

Control
[2]

-
0 = No
Error

The error code. This may not be changed

Control
[3]

32
The number of words to write from state RAM to global memory; the maximum
is 32 bits

Control
[4]

- Reserved*

Control
[5]

2 The Modbus Plus node address from which data is read

Control
[6]

0 Path to host PC

Control
[7]

0 Path to host PC

Control 0 Path to host PC

www.ptc.com

30

Modbus Plus Driver

Register Contents Description

[8]

Control
[9]

0 Path to host PC

*This register is application-specific.

Data Area

Register Contents Description

DataField [1]-DataField [32] Data N/A

TIO Module Addressing
Mailbox Mode is not supported for this model.

TIO Module Addressing in Decimal
Address Type Range Data Type Access

Data I/O*
400001
400001.0/1-400001.15/16**

Word, Short
Boolean

Read/Write
Read/Write

Data Input - Latched
400257
400257.0/1-400257.15/16**

Word, Short
Boolean

Read Only
Read Only

Module Timeout
461441
461441.0/1-461441.15/16**

Word, Short
Boolean

Read/Write
Read/Write

Module Status
463489-463497
4xxxxx.0/1-4xxxxx.15/16**

Word, Short
Boolean

Read Only
Read Only

Module ASCII Header 464513 String Read Only

*The value read from a Data I/O location comes from the module's input register. When writing to this loc-
ation, the value that is sent modifies the module's output register. Therefore, the value read at this location
does not correspond to the value previously written to this location.
**For more information, refer to "Zero vs. One Based Addressing" in Settings.

TIO Module Addressing in Hexadecimal
Address Type Range Data Type Access

Data I/O*
H40001
H40001.0/1-H40001.F/10

Word, Short
Boolean

Read/Write
Read/Write

Data Input - Latched
H40101
H40101.0/1-40101.F/10

Word, Short
Boolean

Read Only
Read Only

Module Timeout
H4F001
H4F001.0/1-H4F001.F/10

Word, Short
Boolean

Read/Write
Read/Write

Module Status
H4F801-H4F809
H4yyyy.0/1-H4yyyy.F/10

Word, Short
Boolean

Read Only
Read Only

Module ASCII Header H4FC01 String Read Only

www.ptc.com

31

Modbus Plus Driver

*The value read from a Data I/O location comes from the module's input register. When writing to this loc-
ation, the value that is sent modifies the module's output register. Therefore, the value read at this location
does not correspond to the value previously written to this location.

www.ptc.com

32

Modbus Plus Driver

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Con-
sult the OPC server help on filtering and sorting the Event Log detail view. Server help contains many com-
monmessages, so should also be searched. Generally, the type of message (informational, warning) and
troubleshooting information is provided whenever possible.

Bad address in block. | Block range = <start> to <end>.
Error Type:
Error

Possible Cause:
An attempt has beenmade to reference a nonexistent location in the specified device.

Possible Solution:
Verify the addresses of all tags assigned to the device and eliminate ones that reference invalid locations.

Bad address in block. | Block Range = H<start> to H<end>.
Error Type:
Error

Possible Cause:
An attempt has beenmade to reference a nonexistent location in the specified device.

Possible Solution:
Verify the addresses of all tags assigned to the device and eliminate ones that reference invalid locations.

Unable to start MBPLUS.SYS device.
Error Type:
Error

Possible Cause:
The MBPLUS.SYS driver is not properly configured.

Possible Solution:
Verify that the MBPLUS device can be started and stoppedmanually using the Control Panel | Devices
applet. When the MBPLUS.SYS driver is startedmanually, the modbus_unsolicited.dll driver can start the
driver.

Unable to detect card or start Modbus Plus Services. Verify the card and
MBP *.sys drivers are installed properly.
Error Type:
Error

www.ptc.com

33

Modbus Plus Driver

Unable to create system resources required to run this driver.
Error Type:
Error

Unable to initialize channel.
Error Type:
Error

Bad array. | Array Range = <start> to <end>.
Error Type:
Error

Possible Cause:
An array of addresses spans past the end of the address space.

Possible Solution:
Verify the size of the device's memory space and redefine the array length accordingly.

Unable to load channel. Only one channel is allowed per Hilscher adapter.
Modify the project so each channel has a unique adapter and reload.
Error Type:
Error

Error opening file for tag database import. | OS error = '<error>'.
Error Type:
Error

Error opening MBPLUS path. | Path = '<path>'.
Error Type:
Warning

Possible Cause:

1. The MBPLUS.SYS driver is not properly configured.

2. The driver cannot open a path on the specified adapter.

Possible Solution:

1. Follow the instructions for installing and configuring the MBPLUS driver.

2. Verify that no more than eight channels are assigned the same adapter number.

www.ptc.com

34

Modbus Plus Driver

Received block length does not match expected length. | Received length
= <number> (bytes), Expected length = <number> (bytes).
Error Type:
Warning

Global data not available from device.
Error Type:
Warning

Error reading global data from device.
Error Type:
Warning

Block request on device responded with exception. | Block Range =
<start> to <end>, Exception = <code>.
Error Type:
Warning

Possible Cause:
The requested node did not respond.

Possible Solution:
Check the cabling, wiring, and pinning.

 See Also:
Hilscher CIF Exception Codes

Unable to write to address on device. Device responded with exception. |
Address = '<address>', Exception = <code>.
Error Type:
Warning

Possible Cause:
See Modbus Exception Codes for a description of the exception code.

Possible Solution:
See Modbus Exception Codes.

 See Also:
Modbus Exception Codes

Unable to read from address on device. Device responded with exception.
| Address = '<address>', Exception = <code>.
Error Type:

www.ptc.com

35

Modbus Plus Driver

Warning

Possible Cause:
See Modbus Exception Codes for a description of the exception code.

Possible Solution:
See Modbus Exception Codes.

 See Also:
Modbus Exception Codes

Block address request responded with exception. | Block range = H<start>
to H<end>, Exception = <code>.
Error Type:
Warning

Possible Cause:
The requested node did not respond.

Possible Solution:
Check the cabling, wiring, and pinning.

 See Also:
Hilscher CIF Exception Codes

Warning: Global Data Disabled, access requires Modicon's 4.0 low-level sys-
tem drivers.
Error Type:
Warning

Unable to open adapter. | Adapter = <name>.
Error Type:
Warning

Tag import failed due to low memory resources.
Error Type:
Warning

Possible Cause:
The driver cannot allocate memory required to process variable import file.

Possible Solution:
Shut down all unnecessary applications and try again.

File exception encountered during tag import.
Error Type:

www.ptc.com

36

Modbus Plus Driver

Warning

Possible Cause:
The variable import file could not be read.

Possible Solution:
Regenerate the variable import file.

Error parsing record in import file. | Record number = <number>, Field =
<number>.
Error Type:
Warning

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or
invalid.

Possible Solution:
Edit the variable import file to change the offending field.

Description truncated for record in import file. | Record number = <num-
ber>.
Error Type:
Warning

Possible Cause:
The tag description in specified record is too long.

Possible Solution:
The driver truncates descriptions as needed. To prevent this error, edit the variable import file to shorten
the description.

Imported tag name is invalid and has been changed. | Tag name = '<tag>',
Changed tag name = '<tag>'.
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Possible Solution:
The driver constructs valid names based on the variable import file. To prevent this error andmaintain
name consistency, change the name of the exported variable.

www.ptc.com

37

Modbus Plus Driver

A tag could not be imported because the data type is not supported. | Tag
name = '<tag>', Unsupported data type = '<type>'.
Error Type:
Warning

Possible Cause:
The data type specified in the variable import file is not one of the types supported by this driver.

Possible Solution:
Change the data type in variable import file to one of the supported types. If the variable is for a structure,
manually edit the file to define each tag required for the structure or manually configure the required tags in
the server.

 See Also:
Exporting Variables from Concept

Unable to write to address on device. Board responded with exception. |
Address = '<address>', Exception = <code>.
Error Type:
Warning

Possible Cause:

1. The adapter may not exist.

2. Depends on the error code provided.

Possible Solution:
Verify that the proper adapter number has been chosen in channel properties. Use SyCon to determine
adapter ordering.

 Note:
Does not apply to the SA85 card. Code -1, -33 for the Hilscher CIF card.

 See Also:
SyCon User Manual

Unable to read from address on device. Board responded with exception.
| Address = '<address>', Exception = <code>.
Error Type:
Warning

Possible Cause:

1. The adapter may not exist.

2. Depends on the error code provided.

www.ptc.com

38

Modbus Plus Driver

Possible Solution:
Verify that the proper adapter number has been chosen in channel properties. Use SyCon to determine
adapter ordering.

 Note:
Does not apply to the SA85 card. Code -1, -33 for the Hilscher CIF card.

 See Also:
SyCon User Manual

Started MBPLUS.SYS device
Error Type:
Informational

Importing tag database. | Source file = '<filename>'
Error Type:
Informational

Modbus Exception Codes
The following data is fromModbus Application Protocol Specifications documentation.

Code
Dec/Hex

Name Meaning

01/0x01
ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the
server. This may be because the function code is only applicable to newer
devices, and was not implemented in the unit selected. It could also indic-
ate that the server is in the wrong state to process a request of this type,
for example, because it is unconfigured and is being asked to return
register values.

02/0x02
ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the
server. More specifically, the combination of reference number and trans-
fer length is invalid. For a controller with 100 registers, a request with off-
set 96 and length 4 would succeed. A request with offset 96 and length 5
generates exception 02.

03/0x03
ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for
server. This indicates a fault in the structure of the remainder of a complex
request, such as that the implied length is incorrect. It specifically does not
mean that a data item submitted for storage in a register has a value out-
side the expectation of the application program, since the Modbus protocol
is unaware of the significance of any particular value of any particular
register.

04/0x04
SERVER DEVICE
FAILURE

An unrecoverable error occurred while the server was attempting to per-
form the requested action.

05/0x05 ACKNOWLEDGE

The server has accepted the request and is processing it, but a long dur-
ation of time is required to do so. This response is returned to prevent a
timeout error from occurring in the client. The client can next issue a Poll
Program Complete message to determine if processing is completed.

www.ptc.com

39

Modbus Plus Driver

Code
Dec/Hex

Name Meaning

06/0x06
SERVER DEVICE
BUSY

The server is engaged in processing a long-duration program command.
The client should retransmit the message later when the server is free.

07/0x07
NEGATIVE
ACKNOWLEDGE

The server cannot perform the program function received in the query.
This code is returned for an unsuccessful programming request using func-
tion code 13 or 14 decimal. The client should request diagnostic or error
information from the server.

08/0x08
MEMORY
PARITY ERROR

The server attempted to read extendedmemory, but detected a parity
error in the memory. The client can retry the request, but service may be
required on the server device.

10/0x0A
GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways indicates that the gateway
was unable to allocate an internal communication path from the input port
to the output port for processing the request. This usually means that the
gateway is misconfigured or overloaded.

11/0x0B

GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways indicates that no response
was obtained from the target device. This usually means that the device is
not present on the network.

Note: For this driver, the terms server and unsolicited are used interchangeably.

www.ptc.com

40

Modbus Plus Driver

Index

A

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsupported
data type = '<type>'. 38

Adapter 8

Adapter Number 8

Address Descriptions 26

Addressing, 5-Digit 26

Addressing, 6-Digit 26

Allow Sub Groups 18

Array Support 29

Attempts Before Timeout 15

Auto-Demotion 15

Automatic Tag Database Generation 23

B

Bad address in block. | Block range = <start> to <end>. 33

Bad address in block. | Block Range = H<start> to H<end>. 33

Bad array. | Array Range = <start> to <end>. 34

BCD 25

Block address request responded with exception. | Block range = H<start> to H<end>, Exception =
<code>. 36

Block Read Strings 19

Block request on device responded with exception. | Block Range = <start> to <end>, Exception =
<code>. 35

Block Sizes 18

Boolean 25

Bridged Network 12

Byte Order 21

C

Channel Assignment 9

Channel Properties — Advanced 8

Channel Properties — General 6

Channel Properties — Write Optimizations 7

www.ptc.com

41

Modbus Plus Driver

Client 10

Communications Timeouts 14

Concept 23

Configuring the Device for Global Data Communications 29

Connect Timeout 15

Control Block 13

Create 18

D

Data Client 10

Data Collection 9

Data Encoding 22

Data Types Description 25

Database Creation 23

Decimal 26, 29, 31

Delete 17

Demote on Failure 16

Demotion Period 16

Description 9

Description truncated for record in import file. | Record number = <number>. 37

Device ID(PLC Network Address) 10

Device Properties — Auto-Demotion 15

Device Properties — Redundancy 22

Device Properties — Tag Generation 16

Device Properties — Timing 14

Diagnostics 6

Discard Requests when Demoted 16

Do Not Scan, Demand Poll Only 14

Double 25

Driver 9

Duty Cycle 7

DWord 25

E

Error opening file for tag database import. | OS error = '<error>'. 34

Error opening MBPLUS path. | Path = '<path>'. 34

www.ptc.com

42

Modbus Plus Driver

Error parsing record in import file. | Record number = <number>, Field = <number>. 37

Error reading global data from device. 35

Event Log Messages 33

External Dependencies 4

F

File exception encountered during tag import. 36

First DWord Low 21

First Word Low 21

Float 25

Force Multiple Coils 29

Force Single Coil 29

Function 05 21

Function 06 20

Function Codes 26

Function Codes Description 29

G

Generate 17

Global Data 29

Global data not available from device. 35

H

Hexadecimal 27, 29, 31

Holding Register 20, 26

Holding Registers 19

I

ID 9

Identification 6, 9

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name =
'<tag>'. 37

Importing tag database. | Source file = '<filename>' 39

Include Descriptions 19

www.ptc.com

43

Modbus Plus Driver

Initial Updates from Cache 14

Input Coils 18, 26

Inter-Device Delay 8

Interface Cards 5

Internal Registers 18, 26

L

Latched 31

LBCD 25

Long 25

M

Mailbox 5, 10

Mailbox Mode 11, 28

MaskedWrite Register 29

MBPLUS 4

MBX 4

Modbus Addressing 26

Modbus Byte Order 20

Modbus Exception Codes 39

Model 9

Modicon 4

Modicon PLC 20

Modicon SA85 Network Card 4

MSTR 10

MSTR Instruction 13

Multiple channels 24

N

Name 9

Non-Normalized Float Handling 8

O

On Device Startup 17

www.ptc.com

44

Modbus Plus Driver

On Duplicate Tag 17

On Property Change 17

Optimization Method 7

Optimizing Communications 23

Output Coils 18, 26

Overview 4

Overwrite 17

P

Packed Coils 28

Parent Group 18

PCI-85 4

Performance 24

Polling 5

Preset Multiple Registers 29

Preset Single Register 29

Project 24

ProWORX 23

ProWORX programming application 23

R

Read Coil Status 29

Read Holding Registers 29

Read Input Status 29

Read Internal Registers 29

Received block length does not match expected length. | Received length = <number> (bytes), Expected
length = <number> (bytes). 35

Redundancy 22

Replace with Zero 8

Request Timeout 15

Respect Tag-Specified Scan Rate 14

S

SA8 4

SA85 Card 5

www.ptc.com

45

Modbus Plus Driver

ScanMode 14

Schneider 4

Server 10

Settings 20

Setup 4

Short 25

Signed 25

Simulated 9

Single channel 24

Single Network 11

Solicited 5, 10

Started MBPLUS.SYS device 39

String 25

String Support 28

Supported 5

T

Tag Counts 6

Tag Generation 16

Tag import failed due to lowmemory resources. 36

Timeouts to Demote 16

Timing 14

TIOModule 19

TIOModule Addressing 31

U

Unable to create system resources required to run this driver. 34

Unable to detect card or start Modbus Plus Services. Verify the card andMBP *.sys drivers are installed
properly. 33

Unable to initialize channel. 34

Unable to load channel. Only one channel is allowed per Hilscher adapter. Modify the project so each
channel has a unique adapter and reload. 34

Unable to open adapter. | Adapter = <name>. 36

Unable to read from address on device. Board responded with exception. | Address = '<address>', Excep-
tion = <code>. 38

Unable to read from address on device. Device responded with exception. | Address = '<address>',
Exception = <code>. 35

www.ptc.com

46

Modbus Plus Driver

Unable to start MBPLUS.SYS device. 33

Unable to write to address on device. Board responded with exception. | Address = '<address>', Excep-
tion = <code>. 38

Unable to write to address on device. Device responded with exception. | Address = '<address>', Excep-
tion = <code>. 35

Unmodified 8

Unsigned 25

Unsolicited 5

Unsolicited Mode 10

Use Modicon Bit Ordering 21

V

Variable Import File 19, 23

Variable Import Settings 19

W

Warning
Global Data Disabled, access requires Modicon's 4.0 low-level system drivers. 36

Word 25

Write All Values for All Tags 7

Write Only Access 28

Write Only Latest Value for All Tags 7

Write Only Latest Value for Non-Boolean Tags 7

Z

Zero-Based Addressing 20

Zero-Based Bit Addressing 20

www.ptc.com

47

	Modbus Plus Driver
	Table of Contents
	Modbus Plus Driver

	Overview
	External Dependencies

	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Adapter
	Device Properties — General
	Device ID

	Device Properties — Scan Mode
	Device Properties — Timing
	Device Properties — Auto-Demotion
	Device Properties — Tag Generation
	Device Properties — Block Sizes
	Device Properties — Variable Import Settings
	Device Properties — Settings
	Device Properties — Redundancy

	Automatic Tag Database Generation
	Optimizing Communications
	Data Types Description
	Address Descriptions
	Modbus Addressing
	Function Codes Description

	Configuring the Device for Global Data Communications
	TIO Module Addressing

	Event Log Messages
	Bad address in block. | Block range = <start> to <end>.
	Bad address in block. | Block Range = H<start> to H<end>.
	Unable to start MBPLUS.SYS device.
	Unable to detect card or start Modbus Plus Services. Verify the card and MBP ...
	Unable to create system resources required to run this driver.
	Unable to initialize channel.
	Bad array. | Array Range = <start> to <end>.
	Unable to load channel. Only one channel is allowed per Hilscher adapter. Mod...
	Error opening file for tag database import. | OS error = '<error>'.
	Error opening MBPLUS path. | Path = '<path>'.
	Received block length does not match expected length. | Received length = <nu...
	Global data not available from device.
	Error reading global data from device.
	Block request on device responded with exception. | Block Range = <start> to ...
	Unable to write to address on device. Device responded with exception. | Addr...
	Unable to read from address on device. Device responded with exception. | Add...
	Block address request responded with exception. | Block range = H<start> to H...
	Warning: Global Data Disabled, access requires Modicon's 4.0 low-level system...
	Unable to open adapter. | Adapter = <name>.
	Tag import failed due to low memory resources.
	File exception encountered during tag import.
	Error parsing record in import file. | Record number = <number>, Field = <num...
	Description truncated for record in import file. | Record number = <number>.
	Imported tag name is invalid and has been changed. | Tag name = '<tag>', Chan...
	A tag could not be imported because the data type is not supported. | Tag nam...
	Unable to write to address on device. Board responded with exception. | Addre...
	Unable to read from address on device. Board responded with exception. | Addr...
	Started MBPLUS.SYS device
	Importing tag database. | Source file = '<filename>'
	Modbus Exception Codes

	Index

