
Modbus RTU Server Serial Driver

© 2025 PTC Inc. All Rights Reserved.

Modbus RTU Server Serial Driver

Table of Contents

Modbus RTU Server Serial Driver 1

Table of Contents 2

Modbus RTU Server Serial Driver 3

Overview 3

Setup 3

Channel Properties — General 4

Tag Counts 5

Channel Properties — Serial Communications 5

Channel Properties — Write Optimizations 7

Channel Properties — Advanced 8

Channel Properties — Timing 8

Device Properties — General 9

Device Properties — Scan Mode 10

Device Properties — Memory 10

Memory Addressing 12

Data Types Description 14

Address Descriptions 15

Modbus Addressing 15

Daniels / Enron Addressing 16

Event Log Messages 18

Address size changed. | Previous Size = <number>, Current Size = <number>. 18

Error Mask Definitions 18

Modbus Exception Codes 19

Index 20

www. ptc.com

2

Modbus RTU Server Serial Driver

Modbus RTU Server Serial Driver
Help version 1.054

CONTENTS

Overview
What is the Modbus RTU Server Serial Driver?

Setup
How do I configure a device for use with this driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location in an server device?

Event Log Messages
What messages does the Modbus RTU Server Serial Driver produce?

Overview
The Modbus RTU Server Serial Driver provides a reliable way to connect Modbus serial devices to client applic-
ations; including HMI, SCADA, Historian, MES, ERP, and countless custom applications. It simulates up to 255
Modbus server devices on a serial communications network. Other devices or PCs can communicate with each
simulated Modbus server device using the Modbus protocol.

Note: For this driver, the terms server and unsolicited are used interchangeably.

Setup
Supported Devices
Modbus compatible devices

Communication Protocol
Modbus RTU Protocol

Serial Communication / Port Settings
Baud Rate: 1200, 2400, 9600, 19200
Parity: Odd, Even, None
Data Bits: 8
Stop Bits: 1, 2
Flow Control: When using an RS232 / RS485 converter, the type of flow control that is required depends upon the
needs of the converter. Some converters do not require any flow control and others require RTS flow. Consult the
converter's documentation to determine its flow requirements. We recommend using an RS485 converted that
provides automatic flow control.

Notes:

1. When using the manufacturer's supplied communications cable, it may be necessary to choose a flow con-
trol setting of RTS or RTS Always.

2. Not all devices support the listed configurations.

Supported Function Codes

l Read Coil Status-code 01H
l Read Input Status-code 02H
l Read Holding Registers-code 03H
l Read Internal Registers-code 04H

www. ptc.com

3

Modbus RTU Server Serial Driver

l Force Single Coil-code 05H
l Preset Single Register-code 06H
l Diagnostic Loopback-code 08H
l Force Multiple Coils-code 0FH
l Preset Multiple Registers-code 10H

Note: For all other function codes, the driver returns an exception code 01H (function not implemented) to the
requesting device.

Broadcast Commands
The Modbus RTU Server Serial Driver has the ability to receive broadcast write messages. Broadcast messages
are defined by using a station ID of 0. When the driver receives a write message (Function 05H, 06H, 0FH, or 10H),
with a station ID of 0 the value to be written is placed in all devices defined under the channel on which the com-
mand was received. Essentially the broadcast command can be used to send a single piece of data to every device
that has been configured in the driver at the same time.

Note: For this driver, the terms server and unsolicited are used interchangeably.

Channel and Device Limits
The maximum number of channels supported by this driver is 100. The maximum number of devices supported by
this driver is 255 per channel. This driver simulates up to 255 Modbus server devices on a serial communications
network.

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used in a
server project is called a channel. A server project may consist of many channels with the same communications
driver or with unique communications drivers. A channel acts as the basic building block of an OPC link. This group
is used to specify general channel properties, such as the identification attributes and operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information. The property is
required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during channel cre-
ation. It is a disabled setting in the channel properties. The property is required for creating a channel.

Note: With the server's online full-time operation, these properties can be changed at any time. This includes
changing the channel name to prevent clients from registering data with the server. If a client has already acquired
an item from the server before the channel name is changed, the items are unaffected. If, after the channel name
has been changed, the client application releases the item and attempts to re-acquire using the old channel name,
the item is not accepted. Changes to the properties should not be made once a large client application has been

www. ptc.com

4

Modbus RTU Server Serial Driver

developed. Utilize proper user role and privilege management to prevent operators from changing properties or
accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to OPC
applications. Because the server's diagnostic features require a minimal amount of overhead processing, it is
recommended that they be utilized when needed and disabled when not. The default is disabled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

Channel Properties — Serial Communications
Serial communication properties are available to serial drivers and vary depending on the driver, connection type,
and options selected. Below is a superset of the possible properties.
Click to jump to one of the sections: Connection Type, Serial Port Settings, and Operational Behavior.

Notes:

l With the server's online full-time operation, these properties can be changed at any time. Utilize proper user
role and privilege management to prevent operators from changing properties or accessing server features.

l Users must define the specific communication parameters to be used. Depending on the driver, channels
may or may not be able to share identical communication parameters. Only one shared serial connection
can be configured for a Virtual Network (see Channel Properties — Serial Communications).

Connection Type

Physical Medium: Choose the type of hardware device for data communications. Options include Modem,
COM Port, and None. The default is COM Port.

1. None: Select None to indicate there is no physical connection, which displays the Operation with no Com-
munications section.

2. COM Port: Select Com Port to display and configure the Serial Port Settings section.

3. Modem: Select Modem if phone lines are used for communications, which are configured in the Modem
Settings section.

4. Shared: Verify the connection is correctly identified as sharing the current configuration with another chan-
nel. This is a read-only property.

www. ptc.com

5

Channel_Properties_Communication_Serialization.htm

Modbus RTU Server Serial Driver

Serial Port Settings

COM ID: Specify the Communications ID to be used when communicating with devices assigned to the channel.
The valid range is 1 to 9991 to 16. The default is 1.

Baud Rate: Specify the baud rate to be used to configure the selected communications port.

Data Bits: Specify the number of data bits per data word. Options include 5, 6, 7, or 8.

Parity: Specify the type of parity for the data. Options include Odd, Even, or None.

Stop Bits: Specify the number of stop bits per data word. Options include 1 or 2.

Flow Control: Select how the RTS and DTR control lines are utilized. Flow control is required to communicate with
some serial devices. Options are:

l None: This option does not toggle or assert control lines.
l DTR: This option asserts the DTR line when the communications port is opened and remains on.
l RTS: This option specifies that the RTS line is high if bytes are available for transmission. After all buffered

bytes have been sent, the RTS line is low. This is normally used with RS232/RS485 converter hardware.
l RTS, DTR: This option is a combination of DTR and RTS.
l RTS Always: This option asserts the RTS line when the communication port is opened and remains on.
l RTS Manual: This option asserts the RTS line based on the timing properties entered for RTS Line Con-

trol. It is only available when the driver supports manual RTS line control (or when the properties are shared
and at least one of the channels belongs to a driver that provides this support). RTS Manual adds an
RTS Line Control property with options as follows:

l Raise: Specify the amount of time that the RTS line is raised prior to data transmission. The valid
range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Drop: Specify the amount of time that the RTS line remains high after data transmission. The valid
range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Poll Delay: Specify the amount of time that polling for communications is delayed. The valid range
is 0 to 9999. The default is 10 milliseconds.

Tip: When using two-wire RS-485, "echoes" may occur on the communication lines. Since this communication
does not support echo suppression, it is recommended that echoes be disabled or a RS-485 converter be used.

Operational Behavior

l Report Communication Errors: Enable or disable reporting of low-level communications errors. When
enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same errors are
not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the connection when there are no longer any tags being ref-
erenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been removed
before closing the COM port. The default is 15 seconds.

Modem Settings

l Modem: Specify the installed modem to be used for communications.
l Connect Timeout: Specify the amount of time to wait for connections to be established before failing a read

or write. The default is 60 seconds.
l Modem Properties: Configure the modem hardware. When clicked, it opens vendor-specific modem prop-

erties.
l Auto-Dial: Enables the automatic dialing of entries in the Phonebook. The default is Disable. For more

information, refer to "Modem Auto-Dial" in the server help.
l Report Communication Errors: Enable or disable reporting of low-level communications errors. When

enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same errors are
not posted even though normal request failures are. The default is Enable.

www. ptc.com

6

Modbus RTU Server Serial Driver

l Close Idle Connection: Choose to close the modem connection when there are no longer any tags being
referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been removed
before closing the modem connection. The default is 15 seconds.

Operation with no Communications

l Read Processing: Select the action to be taken when an explicit device read is requested. Options include
Ignore and Fail. Ignore does nothing; Fail provides the client with an update that indicates failure. The
default setting is Ignore.

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given this goal,
the server provides optimization properties to meet specific needs or improve application responsiveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the controller.
In this mode, the server continues to gather write requests and add them to the server's internal write
queue. The server processes the write queue and attempts to empty it by writing data to the device as
quickly as possible. This mode ensures that everything written from the client applications is sent to the tar-
get device. This mode should be selected if the write operation order or the write item's content must
uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can accu-
mulate in the write queue due to the time required to actually send the data to the device. If the server
updates a write value that has already been placed in the write queue, far fewer writes are needed to reach
the same final output value. In this way, no extra writes accumulate in the server's queue. When the user
stops moving the slide switch, the value in the device is at the correct value at virtually the same time. As
the mode states, any value that is not a Boolean value is updated in the server's internal write queue and
sent to the device at the next possible opportunity. This can greatly improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize the

operation of HMI data without causing problems with Boolean operations, such as a momentary push but-
ton.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization mode
and applies it to all tags. It is especially useful if the application only needs to send the latest value to the
device. This mode optimizes all writes by updating the tags currently in the write queue before they are
sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for every
one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read operation.
Although the application is performing a large number of continuous writes, it must be ensured that read data is still
given time to process. A setting of one results in one read operation for every write operation. If there are no write
operations to perform, reads are processed continuously. This allows optimization for applications with continuous
writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

www. ptc.com

7

Modbus RTU Server Serial Driver

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the Advanced
group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as a
Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may default to
Unmodified. Non-normalized float handling allows users to specify how a driver handles non-normalized IEEE-754
floating point data. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point values
with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-number, and
infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the option
that is displayed. According to the channel's float normalization setting, only real-time driver tags (such as values
and arrays) are subject to float normalization. For example, EFM data is not affected by this setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-Point
Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to the
next device after data is received from the current device on the same channel. Zero (0) disables the delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Timing

Communications Timeout: Specify the amount of time that the driver waits for an incoming request before setting
all server device tags on the channel to a Bad quality. After the Communications Timeout passes, the only way to
reset the timeout and allow all tags be processed normally is to reestablish communications with the device or dis-
able the timeout by setting Communications Timeout to 0 (zero) in the Timing group of channel properties. Dis-
abled: 0; Enabled: 1-->64,800 seconds (18 hours).

Request Timeout: Specify the amount of time that the driver waits for a complete request frame to be received.
The elapsed time is calculated starting from the instant the first byte of a new request is received. If a complete
request frame is not received during this time, the driver flushes received data buffers and assume the next
received byte is the start of a new request.

Tips:

This setting should be chosen carefully. Values for the Request Timeout setting may range from 0 to 30,000
ms, with a default of 0. When 0 is entered, the driver computes a reasonable timeout through the use of the
following formula:

Tdefault = 1000*(Bits per Byte)*512*3 / Baud

www. ptc.com

8

Modbus RTU Server Serial Driver

This is three times the amount of time required to transmit a frame of 512 bytes. The number of bits per byte
includes the start bit and the number of data and stop bits specified. For example, a baud rate of 9600 and 8
data bits, and 1 stop bit, results in a default timeout of 1600 ms. If the hardware sends relatively short
request frames and would retry a failed request in less than the default calculation (1600 ms in this
example), try configuring a shorter Request Timeout.

The Request Timeout should never be shorter than the amount of time it takes to receive the longest request
frame sent by any device on the channel. This can be computed using the following formula:

Tmin = 1000*(Bits per Byte)*(max frame length) / Baud.

Device Properties — General

Identification

Name: User-defined identity of this device.

Description: User-defined information about this device.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.
For more information on a specific device model, see Supported Devices.

Model: The specific version of the device.

ID Format: Select how the device identity is formatted. Options include Decimal, Octal, and Hex.

ID: Modbus serial devices are assigned device IDs in the range 0 to 255.

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are enabled by
default, this property can be used to disable a physical device. Communications are not attempted when a device is
disabled. From a client standpoint, the data is marked as invalid and write operations are not accepted. This prop-
erty can be changed at any time through this property or the device system tags.

Simulated: This option places the device into Simulation Mode. In this mode, the driver does not attempt to com-
municate with the physical device, but the server continues to return valid OPC data. Simulated stops physical com-
munications with the device, but allows OPC data to be returned to the OPC client as valid data. While in
Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated device is read
back and each OPC item is treated individually. The item's memory map is based on the group Update Rate. The
data is not saved if the server removes the item (such as when the server is reinitialized). The default is No.

Notes:

www. ptc.com

9

Modbus RTU Server Serial Driver

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System tag
allows this property to be monitored from the client.

2. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for OPC
clients or Scan Rate for native and DDE interfaces). This means that two clients that reference the same
item with different update rates return different data.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production environment.

Device Properties — Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device communications.
Synchronous and asynchronous device reads and writes are processed as soon as possible; unaffected by the
Scan Mode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions of the
options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan rate.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is increased,

the changes take effect immediately. When the scan rate value is decreased, the changes do not take
effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for subscribed
clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the device nor
perform a read to get an item's initial value once it becomes active. It is the OPC client's responsibility to
poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device reads for individual
items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified in
their static configuration tag properties. Dynamic tags are scanned at the client-specified scan rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for newly activ-
ated tag references from stored (cached) data. Cache updates can only be provided when the new item reference
shares the same address, scan rate, data type, client access, and scaling properties. A device read is used for the
initial update for the first client reference only. The default is disabled; any time a client activates a tag reference the
server attempts to read the initial value from the device.

Device Properties — Memory

Memory

Address Limit: The address range of coils and registers can be configured with any value between 9999 and
65536. The tags can be addressed up to and including the specified limit.

Notes:

www. ptc.com

10

Modbus RTU Server Serial Driver

1. The address range cannot be changed when the tags are being processed.

2. When the address range is changed, it is possible that a remote request (from a Modbus client) may get
rejected because the requested memory address is outside the new address range.

3. When the address range is changed and the new upper limit is greater than the old one, all old data is pre-
served and the remaining memory is initialized to '0'. If the new upper limit is smaller than the old one, how-
ever, only the data equal to the new memory size is preserved and the remaining data is lost. There may be
an exception to this when dealing with Boolean memory type.

See Memory Addressing for details, examples, and diagrams.

Zero-Based Addressing: By default, addresses have one subtracted when frames are constructed to com-
municate with a Modbus device. If the device doesn't follow this convention, disable Zero-Based Addressing. The
default (enabled) behavior follows the convention of the Modicon PLCs.

Note: Zero-Based Addressing must be disabled when using a Daniels/Enron device.

First Word Low: Two consecutive register addresses in a Modbus device are used for 32-bit data types. Enable if
the driver should assume the first word is the low word of the 32-bit value. If First Word Low is enabled (the default),
first word low is assumed, which follows the convention of the Modicon Modsoft programming software.

Note: First Word Low must be disabled when using a Daniels/Enron device.

First DWord Low: Four consecutive register addresses (in two groups of two each) are used for 64-bit data types.
Users can specify whether the driver should assume the first pair (i.e., first DWord) is the low or the high DWord of
the 64-bit value. If First DWord Low is enabled, the first DWord low is assumed; if disabled, the second DWord low
is assumed.

Note: First DWord Low must be disabled when using the Daniels/Enron Device.

OPC Quality Bad until Write: This option controls the initial OPC quality of tags attached to this driver. When dis-
abled, all tags have an initial value of 0 and good OPC quality. This is the default condition. When enabled, all tags
have an initial value of 0 and Bad OPC quality. The quality of a tag remains Bad until all coils or registers ref-
erenced by the tag have been written to by a Modbus client or a client application. For example, a tag with address
400001 and data type DWord references two holding registers: 400001 and 400002. This tag does not show Good
quality until both holding registers had been written.

www. ptc.com

11

Modbus RTU Server Serial Driver

Memory Addressing

Accessible Memory Locations

l Output coils-00001 to 065536
l Input coils-10001 to 165536
l Internal registers-30001 to 365536
l Holding registers-40001 to 465536

These settings are configurable. For more information, refer to Memory.

The address range of coils and registers can be configured with any value between 9999 and 65536. The tags can
be addressed up to and including the specified limit.

For example, if the initial memory size is 21; this translates into 3 bytes (byte aligned) of memory for Boolean types.
If the memory size is changed to 12 (2 bytes), the smaller of the two memory sizes is 2 bytes and that is the amount
of data that is preserved. Although users may think only 12 bits have been preserved, 16 bits (2 bytes) have been
preserved. Normally this would not be noticed, because with a memory size of 12, memory can be accessed up to
index 12 only. If the memory size is increased to 22 (3 bytes) the amount of data preserved from the old memory is
2 bytes (smaller of the two). Even though 12 bits were manipulated earlier (with a memory size of 12), old data for
bits 13-16 (which may have been initialized to some values the first time around when the memory size was 21) is
preserved.

The images below apply a coil memory type to the example above for a diagrammatic explanation.

www. ptc.com

12

Modbus RTU Server Serial Driver

Step V above shows old data for bits 13-16 that were initialized in Step II. Users may expect all the bits in Step V to
be '0,' but bits 13-16 have been carried over from Step II and are still set to '1'.

www. ptc.com

13

Modbus RTU Server Serial Driver

Data Types Description

Data Type Description
Boolean Single bit

Word
Unsigned 16-bit value
bit 0 is the low bit
bit 15 is the high bit

Short

Signed 16-bit value
bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord
Unsigned 32-bit value
bit 0 is the low bit
bit 31 is the high bit

Long

Signed 32-bit value
bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD
Two byte packed BCD
Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD
Four byte packed BCD
Value range is 0-99999999. Behavior is undefined for values beyond this range.

String
Null terminated ASCII string
Supported within the Holding Register Range, includes HiLo LoHi byte order selec-
tion.

Double*
64-bit floating point value
The driver interprets four consecutive registers as a double precision value by mak-
ing the last two registers the high DWord and the first two registers the low DWord.

Double Example
If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of
the 64-bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data
type.

Float*
32-bit floating point value
The driver interprets two consecutive registers as a single precision value by mak-
ing the last register the high word and the first register the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the
32-bit data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

*The descriptions assume the default-first DWord low data handling of 64-bit data types, and first word low data
handling of 32-bit data types.

www. ptc.com

14

Modbus RTU Server Serial Driver

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain specific
address information for the model of interest.

Modbus Addressing
Daniels/Enron Addressing

Modbus Addressing
5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits represent the
device's data item. The maximum value is a two byte unsigned integer (65,535). Six digits are required to represent
the entire address table and item. As such, addresses that are specified in the device's manual as 0xxxx, 1xxxx,
3xxxx, or 4xxxx are padded with an extra zero once applied to the Address field of a Modbus tag.

Primary Table Description
0 Output Coils

1 Input Coils

3 Internal Registers

4 Holding Registers

Modbus Addressing
The following address descriptions apply to the client application's access to each simulated Modbus server
device. The client application controls the memory of the simulated Modbus server device; therefore, all areas have
Read/Write access. The default data types for dynamically defined tags are shown in bold.

Address Range* Data Type Access
Output Coils 000001-065536 Boolean Read/Write

Input Coils 100001-165536 Boolean Read/Write

Internal Registers
300001-365536
300001-365535
3xxxxx.0-3xxxxx.15

Word, Short, BCD
Float, DWord, Long,
LBCD
Boolean, Double

Read/Write

Internal Registers As
String with HiLo Byte
Order**

300001.2H-365536.240H
.Bit is string length, range
2 to 240 bytes.

String Read Only

Internal Registers As
String with LoHi Byte
Order **

300001.2L-365536.240L
.Bit is string length, range
2 to 240 bytes.

String Read Only

Holding Registers
400001-465536
400001-465535
4xxxxx.0-4xxxxx.15

Word, Short, BCD
Float, DWord, Long,
LBCD
Boolean, Double

Read/Write

Holding Registers As
String with HiLo Byte
Order

400001.2H-465536.240H
.Bit is string length, range
2 to 240 bytes.

String Read/Write

Holding Registers As
String with LoHi Byte
Order

400001.2L-465536.240L
.Bit is string length, range
2 to 240 bytes.

String Read/Write

*The maximum range is determined by the value set in the Memory device property. For more information, refer to
Memory.
**This address supports Function Code 04, and only applies to decimal addressing.

Array Support

www. ptc.com

15

Modbus RTU Server Serial Driver

Arrays are supported for internal and holding register locations for all data types except for Boolean. Arrays are
also supported for input and output coils (Boolean data types). There are two methods of addressing an array.
Examples are given using holding register locations.

4xxxx [rows] [cols]

4xxxx [cols] this method assumes rows is equal to one
For Word, Short and BCD arrays, the base address + (rows *cols) cannot exceed 65536.
For Float, DWord, Long and Long BCD arrays, the base address + (rows *cols *2) cannot exceed 65535.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using holding
registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data within a given
register can be selected when the string is defined. The length of the string can be from 2 to 240 bytes and is
entered in place of a bit number. The length must be entered as an even number. The byte order is specified by
appending either a "H" or "L" to the address.
Note: For this driver, the terms server and unsolicited are used interchangeably.

String Examples

l To address a string starting at 400200 with a length of 100 bytes and HiLo byte order, enter: 400200.100H
l To address a string starting at 400500 with a length of 78 bytes and LoHi byte order, enter: 400500.78L

Daniels / Enron Addressing
The following address descriptions apply to the client application's access to each simulated Daniels/Enron server
device. The client application controls the memory of the simulated server device; therefore, all areas have
Read/Write access.

The default data types for dynamically defined tags are shown in bold where appropriate. The following table
assumes that the server device has been configured for the maximum allowed address range of 0 to 65535. For
more information, refer to Memory.

Address Range* Data Type Access
Output Coils 000000-065535 Boolean Read/Write

Input Coils 100000-165535 Boolean Read/Write

Internal Registers

300000-365535
300000-365534
300000-365532
300000.0-365535.15

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean

Read/Write

Holding Registers

400000-405000
406000-407000
408000-465535
400000-404999
406000-406999
408000-465534
400000-404999
405001-405999
406000-406999
408000-465534
400000-404999
406000-406999
407001-407999
408000-465534
400000-404997

Word, Short, BCD
DWord, LBCD
Long
Float
Double

Read/Write

www. ptc.com

16

Modbus RTU Server Serial Driver

Address Range* Data Type Access
406000-406997
408000-465532

Holding Registers as
Booleans

400000.xx-405000.xx
405001.yy-405999.yy
406000.xx-465535.xx
xx is the bit number from
0-15
yy is the bit number from
0-31

Boolean Read/Write

Holding Registers as
String with HiLo Byte
Order

400000.xxxH-405000.
xxxH
406000.xxxH-407000.
xxxH
408000.xxxH-465535.
xxxH
xxx is string length, range
2 to 240 bytes.

String Read/Write

Holding Registers as
String with LoHi Byte
Order

400000.xxxL-405000.xxxL
406000.xxxL-407000.xxxL
408000.xxxL-465535.xxxL
xxx is string length, range
2 to 240 bytes.

String Read/Write

*The maximum range is determined by the value in the Memory device property. For more information, refer to
Memory.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean. Arrays are
also supported for input and output coils (Boolean data types). There are two methods of addressing an array.
Examples are given using holding register locations.

4xxxx [rows] [cols]

4xxxx [cols] this method assumes rows is equal to one
For Word, Short and BCD arrays, the base address + (rows *cols) cannot exceed 65535.
For Float, DWord, Long and Long BCD arrays, the base address + (rows *cols *2) cannot exceed 65534.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using holding
registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data within a given
register can be selected when the string is defined. The length of the string can be from 2 to 240 bytes and is
entered in place of a bit number. The length must be entered as an even number. The byte order is specified by
appending either a "H" or "L" to the address.
Note: For this driver, the terms server and unsolicited are used interchangeably.

String Examples

l To address a string starting at 400200 with a length of 100 bytes and HiLo byte order, enter: 400200.100H
l To address a string starting at 400500 with a length of 78 bytes and LoHi byte order, enter: 400500.78L

www. ptc.com

17

Modbus RTU Server Serial Driver

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Consult the
OPC server help on filtering and sorting the Event Log detail view. Server help contains many common messages,
so should also be searched. Generally, the type of message (informational, warning) and troubleshooting inform-
ation is provided whenever possible.

Tip: Messages that originate from a data source (such as third-party software, including databases) are presen-
ted through the Event Log. Troubleshooting steps should include researching those messages online and in
vendor documentation.

Address size changed. | Previous Size = <number>, Current Size = <number>.
Error Type:
Error

Possible Cause:
The address size for the specified device has been changed.

Possible Solution:
Verify the new address size is correct.

Error Mask Definitions

B = Hardware break detected
F = Framing error
E = I/O error
O = Character buffer overrun
R = RX buffer overrun
P = Received byte parity error
T = TX buffer full

www. ptc.com

18

Modbus RTU Server Serial Driver

Modbus Exception Codes
The following data is from Modbus Application Protocol Specifications documentation.

Code
Dec/Hex

Name Meaning

01/0x01 ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the
server. This may be because the function code is only applicable to newer
devices, and was not implemented in the unit selected. It could also indicate
that the server is in the wrong state to process a request of this type, for
example, because it is unconfigured and is being asked to return register val-
ues.

02/0x02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the
server. More specifically, the combination of reference number and transfer
length is invalid. For a controller with 100 registers, a request with offset 96 and
length 4 would succeed. A request with offset 96 and length 5 generates excep-
tion 02.

03/0x03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for server.
This indicates a fault in the structure of the remainder of a complex request,
such as that the implied length is incorrect. It specifically does not mean that a
data item submitted for storage in a register has a value outside the expect-
ation of the application program, since the Modbus protocol is unaware of the
significance of any particular value of any particular register.

04/0x04
SERVER
DEVICE
FAILURE

An unrecoverable error occurred while the server was attempting to perform
the requested action.

05/0x05 ACKNOWLEDGE

The server has accepted the request and is processing it, but a long duration of
time is required to do so. This response is returned to prevent a timeout error
from occurring in the client. The client can next issue a Poll Program Complete
message to determine if processing is completed.

06/0x06 SERVER
DEVICE BUSY

The server is engaged in processing a long-duration program command. The
client should retransmit the message later when the server is free.

07/0x07 NEGATIVE
ACKNOWLEDGE

The server cannot perform the program function received in the query. This
code is returned for an unsuccessful programming request using function code
13 or 14 decimal. The client should request diagnostic or error information from
the server.

08/0x08 MEMORY
PARITY ERROR

The server attempted to read extended memory, but detected a parity error in
the memory. The client can retry the request, but service may be required on
the server device.

10/0x0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways indicates that the gateway was
unable to allocate an internal communication path from the input port to the out-
put port for processing the request. This usually means that the gateway is mis-
configured or overloaded.

11/0x0B

GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways indicates that no response was
obtained from the target device. This usually means that the device is not
present on the network.

Note: For this driver, the terms server and unsolicited are used interchangeably.

www. ptc.com

19

Modbus RTU Server Serial Driver

Index

3

32-bit data types 14

5

5-Digit Addressing 15

6

6-Digit Addressing 15

64-bit data types 14

A

Address Descriptions 15

Address Limit 10

Address size changed. | Previous Size = <number>, Current Size = <number>. 18

Array Support 15, 17

Auto-Dial 6

B

Baud Rate 3, 6

BCD 14

Boolean 14

Broadcast Commands 4

C

Channel Assignment 9

Channel Properties — Advanced 8

Channel Properties — General 4

Channel Properties — Serial Communications 5

Channel Properties — Write Optimizations 7

Close Idle Connection 6-7

COM ID 6

COM Port 5

Communication Protocol 3

www. ptc.com

20

Modbus RTU Server Serial Driver

Communications Timeout 8

Connect Timeout 6

Connection Type 5

D

Daniels/Enron Addressing 16

Data Bits 3, 6

Data Collection 9

Data Types Description 14

Description 9

Diagnostics 5

Do Not Scan, Demand Poll Only 10

Double 14

Driver 9

Drop 6

DTR 6

Duty Cycle 7

DWord 14

E

Error Mask Definitions 18

Event Log Messages 18

F

First DWord Low 11

First Word Low 11

Float 14

Flow Control 3, 6

Framing 18

Function Codes 3

H

Hardware break 18

Holding registers 12

I

I/O error 18

www. ptc.com

21

Modbus RTU Server Serial Driver

ID 9

ID Format 9

Identification 4, 9

Idle Time to Close 6-7

Initial Updates from Cache 10

Input coils 12

Inter-Device Delay 8

Internal registers 12

L

LBCD 14

Long 14

M

Memory 10

Memory Addressing 12

Memory Locations 12

Modbus Addressing 15

Modbus Exception Codes 19

Model 9

Modem 5-6

Modem Settings 6

N

Name 9

Non-Normalized Float Handling 8

None 5

O

OPC Quality 11

Operation with no Communications 7

Operational Behavior 6

Optimization Method 7

Output coils 12

Overrun 18

Overview 3

www. ptc.com

22

Modbus RTU Server Serial Driver

P

Parity 3, 6, 18

Physical Medium 5

Poll Delay 6

R

Raise 6

Read Processing 7

Replace with Zero 8

Report Communication Errors 6

Request Timeout 8

Respect Tag-Specified Scan Rate 10

RS-485 6

RS232 3

RS485 3

RTS 6

RX buffer overrun 18

S

Scan Mode 10

Serial Communication 3

Serial Communications 5

Serial Port Settings 6

Setup 3

Shared 5

Short 14

Simulated 9

Stop Bits 3, 6

String 14

String Support 16-17

Supported Devices 3

T

Tag Counts 5

Timing 8

TX buffer full 18

www. ptc.com

23

Modbus RTU Server Serial Driver

U

Unmodified 8

W

Word 14

Write All Values for All Tags 7

Write Only Latest Value for All Tags 7

Write Only Latest Value for Non-Boolean Tags 7

Z

Zero-Based Addressing 11

www. ptc.com

24

	Modbus RTU Server Serial Driver
	Table of Contents
	Modbus RTU Server Serial Driver
	Overview
	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Serial Communications
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Timing
	Device Properties — General
	Device Properties — Scan Mode
	Device Properties — Memory
	Memory Addressing

	Data Types Description
	Address Descriptions
	Modbus Addressing
	Daniels / Enron Addressing

	Event Log Messages
	Address size changed. | Previous Size = <number>, Current Size = <number>.
	Error Mask Definitions

	Modbus Exception Codes

	Index
	Bookmarks
	SERVERMAIN_CONNECTION_TYPE_SECTION
	SERVERMAIN_SERIAL_PORT_SETTINGS_SECTION
	SERVERMAIN_OPERATIONAL_BEHAVIOR_SECTION
	SERVERMAIN_MODEM_SETTINGS_SECTION
	SERVERMAIN_OPERATION_WITH_NO_COMMUNICATIONS_SECTION

