Mitsubishi CNC Ethernet ドライバー

© 2024 PTC Inc. All Rights Reserved.

目次

Mitsubishi CNC Ethernet ドライバー	1
目次	. 2
Mitsubishi CNC Ethernet ドライバー	. 3
概要	3
設定	. 3
チャネルのプロパティ- 一般	4
タグ数	
チャネルのプロパティ- イーサネット通信	
チャネルのプロパティ- 書き込み最適化	
チャネルのプロパティ- 詳細	6
デバイスのプロパティ- 一般	. 7
動作モード	. 7
タグ数	8
デバイスのプロパティ - スキャンモード	. 8
デバイスのプロパティ - タイミング	. 9
デバイスのプロパティ - 自動格下げ	10
デバイスのプロパティ - ネットワークパラメータ	.11
デバイスのプロパティ- 冗長	. 13
マルチレベルネットワーク	. 14
通信の最適化	. 15
データ型の説明	.16
アドレスの説明	
イベントログメッセージ	
デバイスでのタグの読み取りに失敗しました。 タグアドレス = '<アドレス>'。	
デバイスでのタグの書き込みに失敗しました。 デバイスがエラーコードを返しました。 タグアドレス = '<アドレス	
) バイスでの多りの音を込みに大致しました。) バイスルエノーコードを返しました。 ダケアドレス = ベアドレス > '、エラーコード = <コード >。	
デバイスでのブロック読み取りに失敗しました。デバイスはエラ―コードを返しました。 ブロックサイズ = <数値 > (ポイント)、ブロック開始アドレス = '<アドレス>'、エラ―コード = <コード>。	
デバイスでのタグの書き込みに失敗しました。フレーミングエラー。 タグアドレス = '<アドレス>'。	.20
デバイスでのタグの書き込みに失敗しました。デバイスが不正なトランザクション ID を返しました。 タグアドレス = '<アドレス>'。	
デバイスでのブロック読み取りに失敗しました。フレーミングエラー。 ブロックサイズ = <数値> (ポイント)、ブロック開始アドレス = '<アドレス>'。	.21
デバイスでのブロック読み取りに失敗しました。 デバイスが不正なトランザクション ID を返しました。 ブロックサイズ = <数値> (ポイント)、ブロック開始アドレス = '<アドレス>'。	
デバイスでのタグの書き込みに失敗しました。接続エラー。 タグアドレス = '<アドレス>'。	. 21
デバイスでのブロック読み取りに失敗しました。接続エラー。 ブロックサイズ = <数値> (ポイント)、ブロック開始アドレス = '<アドレス>'。	.21
索引	. 22

Mitsubishi CNC Ethernet ドライバー

ヘルプバージョン 1.045

目次

概要

Mitsubishi CNC Ethernet ドライバー とは

設定

このドライバーを使用するためにデバイスを構成する方法

通信の最適化

Mitsubishi CNC Ethernet ドライバー から最高のパフォーマンスを得る方法

データ型の説明

このドライバーでサポートされるデータ型

アドレスの説明

Mitsubishi CNC Ethernet デバイスでデータ位置のアドレスを指定する方法

エラーの説明

ドライバーで生成されるエラーメッセージ

概要

Mitsubishi CNC Ethernet ドライバー は三菱 CNC イーサネットコントローラが HMI、SCADA、Historian、MES、ERP や多数のカスタムアプリケーションを含む OPC クライアントアプリケーションに接続するための信頼性の高い手段を提供します。

設定

サポートされるデバイス

C64 CNC コントローラ

通信プロトコル

Winsock V1.1 以上を使用したイーサネット TCP/IP

サポートされる通信パラメータ

バイナリフォーマット のみ

モデル

AJ71QE71 と互換性のあるイーサネットモジュールが搭載された三菱 C64

チャネルとデバイスの制限値

このドライバーでサポートされているチャネルの最大数は256です。このドライバーでサポートされているデバイスの最大数は、1 つのチャネルにつき255です。

チャネルのプロパティ - 一般

このサーバーでは、複数の通信ドライバーを同時に使用することができます。サーバープロジェクトで使用される各プロトコルおよびドライバーをチャネルと呼びます。サーバープロジェクトは、同じ通信ドライバーまたは一意の通信ドライバーを使用する多数のチャネルから成ります。チャネルは、OPC リンクの基本的な構成要素として機能します。このグループは、識別属性や動作モードなどの一般的なチャネルプロパティを指定するときに使用します。

プロパティグループ	□ 識別	7 TO 18 180
一般	名前	
4. Code		1 0 000
イーサネット通信 書き込み最適化 詳細 プロトコル設定	ドライバー	
	□ 診断	101
	診断取り込み	無効化
	□ タグ数	72
	書 館りタグ	1

識別

「名前」:このチャネルのユーザー定義識別情報を指定します。各サーバープロジェクトで、それぞれのチャネル名が一意でなければなりません。名前は最大 256 文字ですが、一部のクライアントアプリケーションでは OPC サーバーのタグ空間をブラウズする際の表示ウィンドウが制限されています。チャネル名は OPC ブラウザ情報の一部です。チャネルの作成にはこのプロパティが必要です。

● 予約済み文字の詳細については、サーバーのヘルプで「チャネル、デバイス、タグ、およびタググループに適切な名前を付ける方法」を参照してください。

「説明」: このチャネルに関するユーザー定義情報を指定します。

「説明」などのこれらのプロパティの多くには、システムタグが関連付けられています。

「ドライバー」: このチャネル用のプロトコルドライバーを指定します。チャネル作成時に選択されたデバイスドライバーを指定します。チャネルのプロパティではこの設定を変更することはできません。チャネルの作成にはこのプロパティが必要です。

● 注記: サーバーがオンラインで常時稼働している場合、これらのプロパティをいつでも変更できます。これには、クライアントがデータをサーバーに登録できないようにチャネル名を変更することも含まれます。チャネル名を変更する前にクライアントがサーバーからアイテムをすでに取得している場合、それらのアイテムは影響を受けません。チャネル名が変更された後で、クライアントアプリケーションがそのアイテムを解放し、古いチャネル名を使用して再び取得しようとしても、そのアイテムは取得されません。大規模なクライアントアプリケーションを開発した場合は、プロパティを変更しないようにしてください。オペレータがプロパティを変更したりサーバーの機能にアクセスしたりすることを防ぐため、適切なユーザー役割を使用し、権限を正しく管理する必要があります。

診断

「診断取り込み」: このオプションが有効な場合、チャネルの診断情報が OPC アプリケーションに取り込まれます。サーバーの診断機能は最小限のオーバーヘッド処理を必要とするので、必要なときにだけ利用し、必要がないときには無効にしておくことをお勧めします。 デフォルトでは無効になっています。

- 注記: ドライバーで診断機能がサポートされていない場合、このプロパティは使用できません。
- ●詳細については、サーバーのヘルプで「通信診断」を参照してください。

タグ数

「**静的タグ**」: デバイスレベルまたはチャネルレベルで定義される静的タグの数を指定します。この情報は、トラブルシューティングと負荷分散を行う場合に役立ちます。

チャネルのプロパティ - イーサネット 通信

イーサネット通信を使用してデバイスと通信できます。

プロパティグループ	□ イーサネット設定		
一般	ネットワークアダプタ	デフォルト	•
イーサネット通信			

イーサネット設定

「ネットワークアダプタ」: バインド するネットワークアダプタを指定します。空白のままにするか、「デフォルト」を選択した場合、オペレーティングシステムはデフォルトのアダプタを選択します。

チャネルのプロパティ-書き込み最適化

サーバーは、クライアントアプリケーションから書き込まれたデータをデバイスに遅延なく届ける必要があります。このため、サーバーに用意されている最適化プロパティを使用して、特定のニーズを満たしたり、アプリケーションの応答性を高めたりすることができます。

プロパティグループ	□ 書き込み最適化	
一般 シリアル(通信	最適化方法 デューティサイクル	すべてのタグの最新の値のみを書き込み 10
書き込み最適化		

書き込み最適化

「最適化方法」: 基礎となる通信ドライバーに書き込みデータをどのように渡すかを制御します。以下のオプションがあります。

- 「すべてのタグのすべての値を書き込み」: このオプションを選択した場合、サーバーはすべての値をコントローラに書き込もうとします。このモードでは、サーバーは書き込み要求を絶えず収集し、サーバーの内部書き込みキューにこれらの要求を追加します。サーバーは書き込みキューを処理し、デバイスにできるだけ早くデータを書き込むことによって、このキューを空にしようとします。このモードでは、クライアントアプリケーションから書き込まれたすべてのデータがターゲットデバイスに送信されます。ターゲットデバイスで書き込み操作の順序または書き込みアイテムのコンテンツが一意に表示される必要がある場合、このモードを選択します。
- 「非 Boolean タグの最新の値のみを書き込み」: デバイスにデータを実際に送信するのに時間がかかっているために、同じ値への多数の連続書き込みが書き込みキューに累積することがあります。書き込みキューにすでに置かれている書き込み値をサーバーが更新した場合、同じ最終出力値に達するまでに必要な書き込み回数ははるかに少なくなります。このようにして、サーバーのキューに余分な書き込みが累積することがなくなります。ユーザーがスライドスイッチを動かすのをやめると、ほぼ同時にデバイス内の値が正確な値になります。モード名からもわかるように、Boolean 値でない値はサーバーの内部書き込みキュー内で更新され、次の機会にデバイスに送信されます。これによってアプリケーションのパフォーマンスが大幅に向上します。
 - 注記: このオプションを選択した場合、Boolean 値への書き込みは最適化されません。モーメンタリプッシュボタンなどの Boolean 操作で問題が発生することなく、HMI データの操作を最適化できます。
- 「すべてのタグの最新の値のみを書き込み」: このオプションを選択した場合、2 つ目の最適化モードの理論がすべてのタグに適用されます。これはアプリケーションが最新の値だけをデバイスに送信する必要がある場合に特に役立ちます。このモードでは、現在書き込みキューに入っているタグを送信する前に更新することによって、すべての書き込みが最適化されます。これがデフォルトのモードです。

「デューティサイクル」: 読み取り操作に対する書き込み操作の比率を制御するときに使用します。この比率は必ず、読み取り1回につき書き込みが1から10回の間であることが基になっています。デューティサイクルはデフォルトで10に設定されており、1回の読み取り操作につき10回の書き込みが行われます。アプリケーションが多数の連続書き込みを行っている場合でも、読み取りデータを処理する時間が確実に残っている必要があります。これを設定すると、書き込み操作が1回行われるたびに読み取り操作が1回行われるようになります。実行する書き込み操作がない場合、読み取りが連続処理されます。これにより、連続書き込みを行うアプリケーションが最適化され、データの送受信フローがよりバランスのとれたものとなります。

●注記:本番環境で使用する前に、強化された書き込み最適化機能との互換性が維持されるようにアプリケーションのプロパティを設定することをお勧めします。

チャネルのプロパティ- 詳細

このグループは、チャネルの詳細プロパティを指定するときに使用します。すべてのドライバーがすべてのプロトコルをサポートしているわけではないので、サポートしていないデバイスには詳細グループが表示されません。

プロパティグループ	□ 非正規化浮動小数点処理		
一般	浮動小数点値	ゼロで置換	
^x シリアル通信	□ デバイス間遅延		
書き込み最適化	デバイス間遅延 (ミリ秒)	0	
詳細			
通信シリアル化			

「非正規化浮動小数点処理」: 非正規化値は無限、非数 (NaN)、または非正規化数として定義されます。デフォルトは「ゼロで置換」です。ネイティブの浮動小数点処理が指定されているドライバーはデフォルトで「未修正」になります。「非正規化浮動小数点処理」では、ドライバーによる非正規化 IEEE-754 浮動小数点データの処理方法を指定できます。オプションの説明は次のとおりです。

- 「ゼロで置換」: このオプションを選択した場合、ドライバーが非正規化 IEEE-754 浮動小数点値をクライアント に転送する前にゼロで置き換えることができます。
- 「未修正」: このオプションを選択した場合、ドライバーは IEEE-754 非正規化、正規化、非数、および無限の値を変換または変更せずにクライアントに転送できます。

●注記: ドライバーが浮動小数点値をサポートしていない場合や、表示されているオプションだけをサポートする場合、このプロパティは無効になります。チャネルの浮動小数点正規化の設定に従って、リアルタイムのドライバータグ(値や配列など)が浮動小数点正規化の対象となります。たとえば、EFM データはこの設定の影響を受けません。

● 浮動小数点値の詳細については、サーバーのヘルプで「非正規化浮動小数点値を使用する方法」を参照してください。

「デバイス間遅延」: 通信チャネルが同じチャネルの現在のデバイスからデータを受信した後、次のデバイスに新しい要求を送信するまで待機する時間を指定します。ゼロ(0)を指定すると遅延は無効になります。

注記: このプロパティは、一部のドライバー、モデル、および依存する設定では使用できません。

デバイスのプロパティ - 一般

デバイスは、通信チャネル上の1つのターゲットを表します。ドライバーが複数のコントローラをサポートしている場合、ユーザーは各コントローラのデバイス ID を入力する必要があります。

プロパティグループ	□ 識別	
一般	名前	Device1
スキャンモード	説明	
74126 1.	ドライバー	Simulator
	モデル	16 Bit Device
	チャネル割り当て	Channel1
	ID フォーマット	10 進数
	ID	1

識別

「名前」: デバイスの名前を指定します。これは最大 256 文字のユーザー定義の論理名であり、複数のチャネルで使用できます。

- 注記: わかりやすい名前にすることを一般的にはお勧めしますが、一部の OPC クライアント アプリケーションでは OPC サーバーのタグ空間をブラウズする際の表示 ウィンド ウが制限されています。 デバイス名とチャネル名 はブラウズツリー情報の一部にもなります。 OPC クライアント内では、チャネル名とデバイス名の組み合わせが "<チャネル名>.<デバイス名>"として表示されます。
- ●詳細については、サーバーのヘルプで「チャネル、デバイス、タグ、およびタググループに適切な名前を付ける方法」を参照してください。

「説明」: このデバイスに関するユーザー定義情報を指定します。

「説明」などのこれらのプロパティの多くには、システムタグが関連付けられています。

「チャネル割り当て」:このデバイスが現在属しているチャネルのユーザー定義名を指定します。

「ドライバー」: このデバイスに設定されているプロトコルドライバー。

「モデル」: この ID に関連付けられているデバイスのタイプを指定します。このドロップダウンメニューの内容は、使用されている通信ドライバーのタイプによって異なります。ドライバーによってサポートされていないモデルは無効になります。通信ドライバーが複数のデバイスモデルをサポートしている場合、デバイスにクライアントアプリケーションが 1 つも接続していない場合にのみモデル選択を変更できます。

● 注記: 通信ドライバーが複数のモデルをサポートしている場合、ユーザーは物理デバイスに合わせてモデルを選択する必要があります。このドロップダウンメニューにデバイスが表示されない場合、ターゲットデバイスに最も近いモデルを選択します。一部のドライバーは"オープン"と呼ばれるモデル選択をサポートしており、ユーザーはターゲットデバイスの詳細を知らなくても通信できます。詳細については、ドライバーに関するマニュアルを参照してください。

「ID」: デバイスのドライバー固有のステーションまたはノードを指定します。入力する ID のタイプは、使用されている通信ドライバーによって異なります。多くの通信ドライバーでは、ID は数値です。数値 ID をサポートするドライバーでは、ユーザーは数値を入力でき、そのフォーマットはアプリケーションのニーズまたは選択した通信ドライバーの特性に合わせて変更できます。フォーマットはデフォルトではドライバーによって設定されます。オプションには「10 進数」、「8 進数」、「16 進数」があります。

● 注記: ドライバーがイーサネットベースであるか、通常とは異なるステーションまたはノード名をサポートしている場合、デバイスの TCP/IP アドレスをデバイス ID として使用できます。 TCP/IP アドレスはピリオドで区切った 4 つの値から成り、各値の範囲は 0 から 255 です。 一部のデバイス ID は文字列ベースです。ドライバーによっては、ID フィールドで追加のプロパティを設定する必要があります。

動作モード

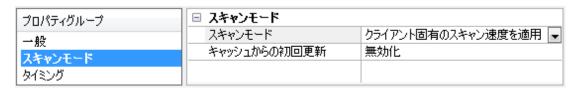
プロパティグループ	⊕ 識別		
一般	□ 動作モード		
スキャンモード	データコレクション	無効化	
自動格下げ	シミュレーション	いいえ	
日動が各下の カバ生成	・ タグ数 ・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<u>'</u>	

「データコレクション」: このプロパティでは、デバイスのアクティブな状態を制御します。デバイスの通信はデフォルトで有効になっていますが、このプロパティを使用して物理デバイスを無効にできます。デバイスが無効になっている場合、通信は試みられません。クライアントから見た場合、そのデータは無効としてマークされ、書き込み操作は許可されません。このプロパティは、このプロパティまたはデバイスのシステムタグを使用していつでも変更できます。

「シミュレーション」: デバイスをシミュレーションモードに切り替えるかどうかを指定します。このモードでは、ドライバーは物理デバイスとの通信を試みませんが、サーバーは引き続き有効な OPC データを返します。シミュレーションモードではデバイスとの物理的な通信は停止しますが、OPC データは有効なデータとして OPC クライアントに返されます。シミュレーションモードでは、サーバーはすべてのデバイスデータを自己反映的データとして扱います。つまり、シミュレーションモードのデバイスに書き込まれたデータはすべて再び読み取られ、各 OPC アイテムは個別に処理されます。(サーバーが再初期化された場合などに)サーバーがアイテムを除去した場合、そのデータは保存されません。デフォルトは「いいえ」です。

注記:

- 1. クライアントが切断して再接続するまで、更新は適用されません。
- 2. システムタグ (_Simulated) は読み取り専用であり、ランタイム保護のため、書き込みは禁止されています。このシステム タグを使用することで、このプロパティをクライアントからモニターできます。
- 3. シミュレーションモードでは、アイテムのメモリマップはクライアントの更新レート (OPC クライアントではグループ更新レート、ネイティブおよび DDE インタフェースではスキャン速度) に基づきます。 つまり、異なる更新レートで同じアイテムを参照する 2 つのクライアントは異なるデータを返します。
- 4. デバイスをシミュレートしたときに、クライアントで更新が1秒未満で表示されない場合があります。
 - ◆シミュレーションモードはテストとシミュレーションのみを目的としています。本番環境では決して使用しないでください。


タグ数

「静的タグ」: デバイスレベルまたはチャネルレベルで定義される静的タグの数を指定します。この情報は、トラブルシューティングと負荷分散を行う場合に役立ちます。

デバイスのプロパティ - スキャンモード

「スキャンモード」では、デバイスとの通信を必要とする、サブスクリプション済みクライアントが要求したタグのスキャン速度を指定します。同期および非同期デバイスの読み取りと書き込みは可能なかぎりただちに処理され、「スキャンモード」のプロパティの影響を受けません。

「スキャンモード」: 購読しているクライアントに送信される更新についてデバイス内のタグをどのようにスキャンするかを指定します。 オプションの説明は次のとおりです。

- 「クライアント 固有 のスキャン 速度を適用」: このモードでは、クライアントによって要求されたスキャン 速度を使用します。
- 「指定したスキャン速度以下でデータを要求」: このモードでは、最大スキャン速度として設定されている値を指定します。有効な範囲は10から9999990ミリ秒です。デフォルトは1000ミリ秒です。
 - ▶注記: サーバーにアクティブなクライアントがあり、デバイスのアイテム数とスキャン速度の値が増加している場合、変更はただちに有効になります。スキャン速度の値が減少している場合、すべてのクライアントアプリケーションが切断されるまで変更は有効になりません。
- 「すべてのデータを指定したスキャン速度で要求」: このモードでは、指定した速度で購読済みクライアント用にタグがスキャンされます。 有効な範囲は 10 から 9999990 ミリ秒です。 デフォルトは 1000 ミリ秒です。
- 「スキャンしない、要求ポールのみ」: このモードでは、デバイスに属するタグは定期的にポーリングされず、アクティブになった後はアイテムの初期値の読み取りは実行されません。更新のポーリングは、_DemandPoll タグに書き込むか、個々のアイテムについて明示的なデバイス読み取りを実行することによって、OPC クライアントが行います。詳細については、サーバーのヘルプで「デバイス要求ポール」を参照してください。
- 「タグに指定のスキャン速度を適用」: このモードでは、静的構成のタグプロパティで指定されている速度で静的タグがスキャンされます。動的タグはクライアントが指定したスキャン速度でスキャンされます。

「キャッシュからの初期更新」: このオプションを有効にした場合、サーバーは保存 (キャッシュ) されているデータから、新たにアクティブ化されたタグ参照の初回更新を行います。キャッシュからの更新は、新しいアイテム参照が同じアドレス、スキャン速度、データ型、クライアントアクセス、スケール設定のプロパティを共有している場合にのみ実行できます。1つ目のクライアント参照についてのみ、初期更新にデバイス読み取りが使用されます。デフォルトでは無効になっており、クライアントがタグ参照をアクティブ化したときにはいつでも、サーバーがデバイスから初期値の読み取りを試みます。

デバイスのプロパティ - タイミング

デバイスのタイミングのプロパティでは、エラー状態に対するデバイスの応答をアプリケーションのニーズに合わせて調整できます。多くの場合、最適なパフォーマンスを得るためにはこれらのプロパティを変更する必要があります。電気的に発生するノイズ、モデムの遅延、物理的な接続不良などの要因が、通信ドライバーで発生するエラーやタイムアウトの数に影響します。タイミングのプロパティは、設定されているデバイスごとに異なります。

プロパティグループ	□ 通信タイムアウト	
一般	接続タイムアウト (秒)	3
^x スキャンチード	要求のタイムアウト(ミリ秒)	1000
タイミング	タイムアウト前の試行回数	3
31322		İ

通信タイムアウト

「接続タイムアウト」: このプロパティ(イーサネットベースのドライバーで主に使用) は、リモートデバイスとのソケット接続を確立するために必要な時間を制御します。 デバイスの接続時間は、同じデバイスへの通常の通信要求よりも長くかかることがよくあります。 有効な範囲は 1 から 30 秒です。 デフォルトは通常は 3 秒ですが、各ドライバーの特性によって異なる場合があります。 この設定がドライバーでサポートされていない場合、無効になります。

🌞 注記:UDP 接続の特性により、UDP を介して通信する場合には接続タイムアウトの設定は適用されません。

「要求のタイムアウト」: すべてのドライバーがターゲットデバイスからの応答の完了を待機する時間を決定するために使用する間隔を指定します。 有効な範囲は 50 から 9,999,999 ミリ秒 (167 分) です。 デフォルトは通常は 1000 ミリ秒ですが、ドライバーによって異なる場合があります。 ほとんどのシリアルドライバーのデフォルトのタイムアウトは 9600 ボー以上のボーレートに基づきます。 低いボーレートでドライバーを使用している場合、データの取得に必要な時間が増えることを補うため、タイムアウト時間を増やします。

「タイムアウト前の試行回数」:ドライバーが通信要求を発行する回数を指定します。この回数を超えると、要求が失敗してデバイスがエラー状態にあると見なされます。有効な範囲は1から10です。デフォルトは通常は3ですが、各ドライバーの特性によって異なる場合があります。アプリケーションに設定される試行回数は、通信環境に大きく依存します。このプロパティは、接続の試行と要求の試行の両方に適用されます。

タイミング

「要求間遅延」: ドライバーがターゲットデバイスに次の要求を送信するまでの待ち時間を指定します。デバイスに関連付けられているタグおよび 1 回の読み取りと書き込みの標準のポーリング間隔がこれによってオーバーライドされます。この遅延は、応答時間が長いデバイスを扱う際や、ネットワークの負荷が問題である場合に役立ちます。デバイスの遅延を設定すると、そのチャネル上のその他すべてのデバイスとの通信に影響が生じます。可能な場合、要求間遅延を必要と

するデバイスは別々のチャネルに分けて配置することをお勧めします。その他の通信プロパティ(通信シリアル化など)によってこの遅延が延長されることがあります。有効な範囲は0から300,000ミリ秒ですが、一部のドライバーでは独自の設計の目的を果たすために最大値が制限されている場合があります。デフォルトは0であり、ターゲットデバイスへの要求間に遅延はありません。

● 注記: すべてのドライバーで「要求間遅延」がサポートされているわけではありません。使用できない場合にはこの設定は表示されません。

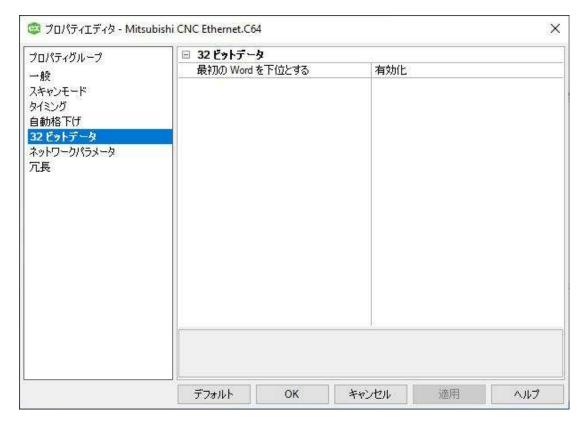
ねんミンガ	□ タイミング	
白動杦下げ	要求間遅延 (ミリ秒)	0
B 9//16 1 (/		

デバイスのプロパティ- 自動格下げ

自動格下げのプロパティを使用することで、デバイスが応答していない場合にそのデバイスを一時的にスキャン停止にできます。 応答していないデバイスを一定期間オフラインにすることで、ドライバーは同じチャネル上のほかのデバイスとの通信を引き続き最適化できます。 停止期間が経過すると、ドライバーは応答していないデバイスとの通信を再試行します。 デバイスが応答した場合はスキャンが開始され、応答しない場合はスキャン停止期間が再開します。

プロパティグループ	□ 自動格下げ	
一般	エラー時に格下げ	有効化
ー パメースキャンモード	格下げまでのタイムアウト回数	3
タイミング	格下げ期間 ミリ秒)	10000
自動格下げ	格下げ時に要求を破棄	無効化
自動格でし		

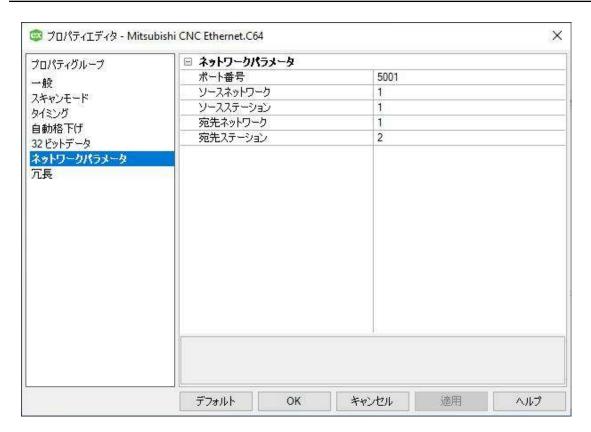
「エラー時に格下げ」: 有効にした場合、デバイスは再び応答するまで自動的にスキャン停止になります。


● ヒント: システムタグ_AutoDemoted を使用して格下げ状態をモニターすることで、デバイスがいつスキャン停止になったかを把握できます。

「格下げまでのタイムアウト回数」: デバイスをスキャン停止にするまでに要求のタイムアウトと再試行のサイクルを何回繰り返すかを指定します。有効な範囲は1から30回の連続エラーです。デフォルトは3です。

「格下げ期間」: タイムアウト値に達したときにデバイスをスキャン停止にする期間を指定します。この期間中、そのデバイスには読み取り要求が送信されず、その読み取り要求に関連するすべてのデータの品質は不良に設定されます。この期間が経過すると、ドライバーはそのデバイスのスキャンを開始し、通信での再試行が可能になります。有効な範囲は 100から 3600000 ミリ秒です。デフォルトは 10000 ミリ秒です。

「格下げ時に要求を破棄」: スキャン停止期間中に書き込み要求を試行するかどうかを選択します。格下げ期間中も書き込み要求を必ず送信するには、無効にします。書き込みを破棄するには有効にします。 サーバーはクライアントから受信した書き込み要求をすべて自動的に破棄し、イベントログにメッセージを書き込みません。


デバイスのプロパティ - 32 ビットデータ

「最初のWord を下位とする」: 最初のデータ Word が環境下で (上位ではなく) 下位であることを示します。 三菱デバイスでは 32 ビットデータ型に 2 つの連続するレジスタアドレスが使用されます。 ドライバーが最初の Word を 32 ビット値の下位 Word とするか上位 Word とするかを指定できます。 デフォルトでは「最初の Word を下位とする」が「有効化」になっています。

● 注記: デバイスにアクティブな参照がある間はこのプロパティを変更できません。

デバイスのプロパティ - ネットワークパラメータ

「ポート番号」: このプロパティでは宛先 CNC (またはマルチレイヤーネットワークが要求を受信するよう設定されている場合にはゲートウェイデバイス) の UDP ポートを指定します。 デフォルトの設定は 5001 です。

● 注記: デフォルト設定はプログラミングツールとモニタリングツールで必ず使用可能なので、デフォルト設定を使用することをお勧めします。

「ソースネットワーク」: このパラメータでは、PC が存在するソースネットワークの番号を指定します。 有効な範囲は 1 から 239 です。 デフォルトの設定は 1 です。 この設定はドライバーが (ゲートウェイデバイスなしで) 直接 CNC と通信するかどうかとは関係ありません。

「ソースステーション」: このパラメータでは、PC に割り当てられているステーション番号を指定します。 有効な範囲は 1 から 239 です。 デフォルトの設定は 1 です。 ソースネットワーク上のすべてのデバイスに一意のステーション番号を割り当てる必要があります。 この設定はドライバーが (ゲートウェイデバイスなしで) 直接 CNC と通信するかどうかとは関係ありません。

「宛先ネットワーク」: このパラメータでは、CNC が存在するネットワークの番号を指定します。 有効な範囲は 0 から 239です。 デフォルトの設定は 1 です。 この設定はドライバーが (ゲートウェイデバイスなしで) 直接 CNC と通信するかどうかとは関係ありません。

「宛先ステーション」: このパラメータでは、CNC に割り当てられているステーション番号を指定します。 有効な範囲は 0 から 239 です。 デフォルトの設定は 1 です。 宛先ネットワーク上のすべてのデバイスに一意のステーション番号を割り当てる必要があります。 この設定はドライバーが (ゲートウェイデバイスなしで) 直接 CNC と通信するかどうかとは関係ありません。

デバイスのプロパティ- 冗長

プロパティグループ	□ 冗長	
一般	セカンダリパス	
ー nx - スキャンモード	動作モード	障害時に切り替え
タイミング	モニターアイテム	
	モニター間隔 (秒)	300
冗長	できるだけ速やかにプライマリに	はい

冗長設定はメディアレベルの冗長プラグインで使用できます。 ●詳細については、Web サイトまたはユーザーマニュアルを参照するか、営業担当者までお問い合わせください。

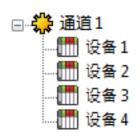
マルチレベルネットワーク

このドライバーを使用してリモートネットワーク上のデバイスと通信できます。以下に示す例では、CNC 1 と CNC 2 はローカルイーサネットネットワーク上にあります。 CNC 3 と CNC 4 はネットワーク 2 - NET/10 上にあります。 PLC 1 は 2 つのネットワークを接続するリレーデバイスとして機能します。

● 関連項目: デバイスの設定

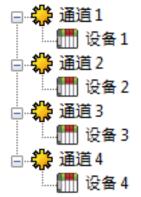
ゲートウェイには AJ71QE71 イーサネット モジュールと NET/10 モジュールが組み込まれています。 CNC 1 と CNC 2 には AJ 71QE 71 イーサネット モジュールと NET/10 モジュールが組み込まれています。 CNC 3 と CNC 2 には NET/10 モジュールが組み込まれています。 この例では、以下の表に示すデバイス ID を使用してサーバープロジェクト内に 4 つのデバイスが作成されています。

CNC	デバイスID	SRC NET	SRC STA	DST NET	DST STA	コメント
1	192.168.111.2	1	1	1	3	直接
2	192.168.111.2	1	1	1	4	直接
3	192.168.111.2	1	1	2	2	PLC 1 経由
4	192.168.111.2	1	1	2	3	PLC 1 経由


ユーザーはゲートウェイのイーサネットカードを設定できます (オープン方式 UDP とIP 192.168.111.2)。 宛先 IP (255.255.255.255) と宛先ポート (0xFFFF) を使用して、PC によって使用される可能性がある任意の IP とポートに対応できます。

●注記: リレーデバイスがリモートデバイスとの間の読み取り/書き込みの失敗について報告するまでに5秒以上かかることがあります。リモートデバイスの要求タイムアウトを適宜設定することをお勧めします。

通信の最適化


Mitsubishi CNC Ethernet ドライバーは、システム全体のパフォーマンスへの影響を最小限に抑えながら最大のパフォーマンスが得られるように設計されています。このドライバーは高速ですが、このアプリケーションを制御および最適化して最大のパフォーマンスを得るためのガイドラインがあります。

このサーバーでは、Mitsubishi CNC Ethernetドライバー などの通信プロトコルのことをチャネルと呼びます。アプリケーションで定義されている各チャネルは、サーバーでの個々の実行パスを表します。チャネルが定義された後、そのチャネルの下に一連のデバイスを定義できます。これらのデバイスそれぞれが、データの収集元となる単一のイーサネットデバイスを表します。このアプローチに従ってアプリケーションを定義することで高いパフォーマンスが得られますが、ドライバーやネットワークがフルに利用されるわけではありません。単一のチャネルを使用して構成されているアプリケーションの表示例を次に示します。

デバイスそれぞれが単一のデバイスチャネルの下に表示されます。この構成では、ドライバーは効果的な速度で情報を収集するために、できるだけ速やかにあるデバイスから次のデバイスに移動する必要があります。さらにデバイスが追加されたり、1 つのデバイスからより多くの情報が要求されたりするにしたがい、全体的な更新レートが低下していきます。

Mitsubishi CNC Ethernetドライバーで定義できるチャネルが1つだけの場合、上に示した例が唯一の方法になりますが、このドライバーでは、最大 256 チャネルを定義することができます。複数のチャネルを使用して複数の要求をネットワークに同時に発行することで、データ収集のワークロードが分散されます。パフォーマンスを改善するために同じアプリケーションを複数のチャネルを使用して構成した場合の例を次に示します。

各デバイスを、そのデバイス専用のチャネルの下で定義することができます。この構成では、 各デバイスからのデータ収集タスクごとに1つの実行パスが割り当てられます。アプリケーション のデバイスの数が256台以下の場合、ここで説明した方法で最適化することができます。

アプリケーションのデバイスの数が多い場合でもパフォーマンスは改善されます。デバイスの数は少ないことが理想的ですが、そうでない場合でもアプリケーションは追加のチャネルから恩恵を受けます。デバイスの負荷をチャネルすべてに分散してもサーバーはデバイスを切り替えますが、単一のチャネルで処理するデバイスの数ははるかに少なくなります。

データ型の説明

Mitsubishi CNC Ethernet ドライバー では次のデータ型がサポートされています。

データ型	説明
	符号なし 16 ビット値
Word	ビット 0 が下位ビット ビット 15 が上位ビット
	符号付き 16 ビット値
Short	ビット 0 が下位ビット ビット 14 が上位ビット ビット 15 が符号ビット
	符号なし 32 ビット値
DWord	ビット 0 が下位ビット ビット 31 が上位ビット
	符号付き 32 ビット値
Long*	ビット 0 が下位ビット ビット 30 が上位ビット ビット 31 が符号ビット
Long 型の例	レジスタ 40001 が Long 型として指定されている場合、レジスタ 40001 のビット 0 は32 ビットデータ型のビット 0 になり、レジスタ 40002 のビット 15 は32 ビットデータ型のビット 31 になります。これが選択されていない場合にはこの逆になります。
Float*	32 ビット浮動小数点値
Float の例	レジスタ40001 が Float として指定されている場合、レジスタ40001 のビット 0 は32 ビットデータ型のビット 0 になり、レジスタ40002 のビット 15 は32 ビットデータ型のビット 31 になります。これが選択されていない場合にはこの逆になります。

ドライバーは 1 つ目 のレジスタを下位 Word、2 つ目 のレジスタを上位 Word とすることで、連続する 2 つのレジスタを単精度値として解釈します。 これが選択されていない場合にはこの逆になります。

アドレスの説明

アドレスの仕様は使用されているモデルによって異なります。動的に定義されるタグのデフォルトのデータ型を**太字**で示しています。

デバイスタイプ	範囲*	データ型	アクセス
入力	X0000-X1FFF (16 進数)	Boolean Short Word Long DWord	読み取り/書き込 み
出力	Y0000-X1FFF (16 進数)	Boolean , Short, Word, Long, DWord	読み取り/書き込み
リンクリレー	B0000-B1FFF (16 進数)	Boolean Short Word Long DWord	読み取り/書き込み
特殊リンクリレー	SB0000-SB01FF (16 進数)	Boolean 、Short、Word、Long、DWord	読み取り/書き込 み
内部リレー	M0000-M10239	Boolean 、Short、Word、Long、DWord	読み取り/書き込 み
特殊内部リレー	SM0000-SM1023	Boolean Short Word Long DWord	読み取り/書き込み
ラッチリレー	L0000-L0511	Boolean Short Word Long DWord	読み取り/書き込み
アナンシエータリ レー	F0000-F1023	Boolean Short Word Long DWord	読み取り/書き込 み
タイマー接点	TS0000-TS0703	Boolean Short Word Long DWord	読み取り/書き込み
タイマーコイル	TC0000-TC0703	Boolean Short Word Long DWord	読み取り/書き込み
カウンタ接点	CS0000-CS0255	Boolean Short Word Long DWord	読み取り/書き込み
カウンタコイル	CC0000-CC0255	Boolean Short Word Long DWord	読み取り/書き込 み

^{*}開始アドレスが有効なメモリ範囲内にある場合、このデバイスはそのメモリ範囲を超えるブロック読み取りに応答します。 その場合、デバイスはこのメモリ範囲外のすべての値にゼロを返します。

● 注記: Boolean 型のいずれのデバイスにも Short 型、Word 型、Long 型、DWord 型としてアクセスできます。ただし、デバイスが 16 ビット境界でアドレス指定されている必要があります。

デバイスタイプ	範囲	データ型	アクセス
タイマーの値	TN0000-TN0703	Short \ Word	読み取 り/書き 込み
カウンタの値	CN0000-CN0255	Short、 Word	読み取 り/書き 込み
データレジスタ	D00000-D08191 D00000-D08190	Short \ Word \ Long \ DWord \ Float	読み取 り/書き 込み
データレジスタのビット アクセス	D00000.00-D08191.15* D00000.00-D08190.31*	Short \ Word \ Boolean** Long \ DWord	読み取 り/書き 込み
String データレジスタ、HiLo	DSH00000.002-DSH08190.002	String	読み取

デバイスタイプ	範囲	データ型	アクセス
バイトオーダリングでのアクセ ス	DSH00000.128-DSH08127.128 ピリオドの後ろのビット番号を使用して2-128 バイトの文字 列長を指定します。長さは偶数でなければなりません。		り/書き 込み
String データレジスタ、LoHi バイトオーダリングでのアクセ ス	DSL00000.002-DSL08190.002 DSL00000.128-DSL08127.128 ピリオドの後ろのビット番号を使用して 2-128 バイトの文字 列長を指定します。長さは偶数でなければなりません。	String	読み取 り/書き 込み
特殊データレジスタ	SD0000-SD1023 SD0000-SD1022	Short \ Word Long \ DWord \ Float	読み取 り/書き 込み
ビットアクセス特殊データレジ スタ	SD0000.00-SD1023.15* SD0000.00-SD1022.31*	Short \ Word \ Boolean** Long \ DWord	読み取 り/書き 込み
リンクレジスタ	W0000-W1FFF (16 進数) W0000-W1FFE (16 進数)	Short Nord Word Long Nord Nord Nord Nord Nord Nord Nord Nord	読み取 り/書き 込み
ビットアクセスリンクレジスタ	W0000.00-W1FFF.15* W0000.00-W1FFE.31*	Short \ Word \ Boolean** Long \ DWord	読み取 り/書き 込み
String リンクレジスタ、HiLo バイトオーダリングでのアクセ ス	WSH0000.002-WSH1FFE.002 WSH0000.128-WSH1FBF.128 ピリオドの後ろのビット番号を使用して2-128 バイトの文字 列長を指定します。長さは偶数でなければなりません。	String	読み取 り/書き 込み
String リンクレジスタ、LoHi バイトオーダリングでのアクセ ス	WSL0000.002-WSL1FFE.002 WSL0000.128-WSL1FBF.128 ピリオドの後ろのビット番号を使用して2-128 バイトの文字 列長を指定します。長さは偶数でなければなりません。	String	読み取 り/書き 込み
特殊リンクレジスタ	SW0000-SW01FF (16 進数) SW0000-SW01FE (16 進数)	Short \ Word \ Long \ DWord \ Float	読み取 り/書き 込み
特殊リンクレジスタ ビットアクセス	SW0000.00-SW01FF.15* SW0000.00-SW01FE.31*	Short \ Word \ Boolean** Long \ DWord	読み取 り/書き 込み
ファイルレジスタ	R00000-R13311 R00000-R13310	Short \ Word \ Long \ DWord \ Float	読み取 り/書き 込み
ビット アクセスファイルレジスタ	R00000.00-R13311.15* R00000.00-R13310.31*	Short \ Word \	読み取 り/書き

デバイスタイプ	範囲	データ型	アクセス
		Boolean** Long \ DWord	込み
String ファイルレジスタ アクセス HiLo バイトオーダリング	RSH0000.002-RSH13310.002 RSH0000.128-RSH13183.128 ピリオドの後ろのビット番号を使用して 2-128 バイトの文字 列長を指定します。 長さは偶数でなければなりません。	String	読み取 り/書き 込み
String ファイルレジスタ アクセス LoHi バイトオーダリング	RSL0000.002-RSL13310.002 RSL0000.128-RSL.128 ピリオドの後ろのビット番号を使用して 2-128 バイトの文字 列長を指定します。長さは偶数でなければなりません。	String	読み取 り/書き 込み
インデックスレジスタ	Z00-Z13 Z00-Z12	Short \ Word \ Long \ DWord \ Float	読み取 り/書き 込み
ビットアクセスインデックスレジ スタ	Z00.00-Z13.15* Z00.00-Z12.31*	Short \ Word \ Boolean** Long \ DWord	読み取 り/書き 込み

*レジスタメモリの場合、Short、Word、DWord、Long、および Boolean データ型では、特定の値のビットを参照するため、オプションの .bb (ドットビット) をアドレスの末尾に追加できます。オプションのビットの有効な範囲は Short、Word、Boolean では 0 から 15 であり、Long 型とDWord 型では 0 から 31 です。文字列ではビット番号を使用して長さを指定します。D メモリ内の文字列の有効な長さは 2 から 128 バイトです。さらに、文字列の長さは偶数でなければなりません。Float 型ではビット操作はサポートされません。ビット番号は必ず 10 進表記で指定します。

配列へのアクセス

すべてのタイプのデバイスに Short、Word、Long、DWord、または Float フォーマットの配列としてアクセスできます。配列のサイズはデータ型とデバイスタイプによって異なります。あらゆるタイプのレジスタデバイスが、Short および Word 型では最大 254 個の要素、Long、DWord、Float では 127 個の要素にアクセスできます。あらゆるタイプのビットメモリが、Short および Word 型では最大 125 個の要素、Long、DWord、Float では 62 個の要素にアクセスできます。配列は 1次元または 2次元です。次元にかかわらず、事前に定義されている上限を配列のサイズが超えてはいけません。通常のデバイス参照上に配列表記を追加すると配列に入力されます。

注記:配列タグ(すべてのデバイスタイプ)のデフォルトはWord型です。

例

- 1. D100[4] 1 次元配列には次のレジスタアドレスが含まれています: D100、D101、D102、D103。
- 2. M016[3][4] 2 次元配列には次のデバイスアドレスが Word 型として含まれています: M016、M032、M048、M064、M080、M096、M112、M128、M144、M160、M176、M192 3 行 x 4 列 = 12 Word 12 x 16 (Word) = 合計 192 ビット。

その他のデバイスの例

- 1. X デバイスメモリに Word 型としてアクセス: X??? ここで、??? は 16 ビット 境界に基づく 16 進数です (010、020、030 など)。
- 2. M デバイスメモリに Long 型としてアクセス: M???? ここで、???? は 16 ビット 境界に基づく 10 進数です (0、16、32、48 など)。

^{**}レジスタメモリにBoolean としてアクセスする場合、ビット番号を指定する必要があります。

イベントログメッセージ

次の情報は、メインユーザーインタフェースの「イベントログ」枠に記録されたメッセージに関するものです。「イベントログ」詳細ビューのフィルタリングとソートについては、OPC サーバーのヘルプを参照してください。 サーバーのヘルプには共通メッセージが多数含まれているので、これらも参照してください。 通常は、可能な場合、メッセージのタイプ (情報、警告) とトラブルシューティングに関する情報が提供されています。

デバイスでのタグの読み取りに失敗しました。| タグアドレス = '<アドレス>'。

エラータイプ:

警告

考えられる原因:

指定されているアドレスはデバイスの範囲外です。

解決策:

デバイスでサポートされているアドレス範囲を確認し、それに応じてタグの構成を修正してください。

デバイスでのタグの書き込みに失敗しました。デバイスがエラーコードを返しました。| タグアドレス = '<アドレス>'、エラーコード = <コード>。

エラータイプ:

警告

考えられる原因:

エラーコードはエラーメッセージの理由を示しています。

解決策:

エラーコードについてはドキュメントを参照してください。

デバイスでのブロック読み取りに失敗しました。デバイスはエラ―コ―ドを返しました。| ブロックサイズ = <数値> (ポイント)、ブロック開始アドレス = '<アドレス>'、エラ―コ―ド = <コ―ド >。

エラータイプ:

警告

考えられる原因:

エラーコードはエラーメッセージの理由を示しています。

解決策:

エラーコードについてはドキュメントを参照してください。

デバイスでのタグの書き込みに失敗しました。フレーミングエラー。| タグアドレス = '<アドレ ス>'。

エラータイプ:

警告

考えられる原因:

ソースステーション番号などのフィールドの値が無効であるパケットを受信しました。

デバイスでのタグの書き込みに失敗しました。デバイスが不正なトランザクション ID を返しました。| タグアドレス = '<アドレス>'。

エラータイプ:

警告

デバイスでのブロック読み取りに失敗しました。フレーミングエラー。| ブロックサイズ = <数値 > (ポイント)、ブロック開始アドレス = '<アドレス>'。

エラータイプ:

警告

考えられる原因:

ソースステーション番号などのフィールドの値が無効であるパケットを受信しました。

デバイスでのブロック読み取りに失敗しました。 デバイスが不正なトランザクション ID を返しました。 | ブロックサイズ = <数値 > (ポイント)、ブロック開始アドレス = '<アドレス>'。

エラータイプ:

警告

デバイスでのタグの書き込みに失敗しました。接続エラー。| タグアドレス = '<アドレス>'。

エラータイプ:

警告

考えられる原因:

このエラーは Winsock エラーによるものです (ソケット 作成の失敗など)。

デバイスでのブロック読み取りに失敗しました。接続エラー。| ブロックサイズ = <数値>(ポイント)、ブロック開始アドレス = '<アドレス>'。

エラータイプ:

警告

考えられる原因:

このエラーは Winsock エラーによるものです (ソケット作成の失敗など)。

索引

В Boolean 17 С CNC コントローラ 3 D DWord 16-17 ı ID 7 Long 16-17 S Short 16-17 W Winsock 3 Word 16-17 あ アドレスの説明 17 アナンシェータリレー 17 い イーサネットカード 14 イーサネット設定 5

イベントログメッセージ 20

え

エラー時に格下げ 10

か

カウンタコイル 17 カウンタ接点 17

き

キャッシュからの初期更新 9

け

ゲートウェイ 12

さ

サポートされるデバイス 3

し

シミュレーション 8

す

スキャンしない、要求ポールのみ 9 スキャンモード 8 すべてのタグのすべての値を書き込み 5 すべてのタグの最新の値のみを書き込み 5

世

ゼロで置換 6

そ

ソースステーション 12 ソースネットワーク 12

た

タイマーコイル 17 タイマー接点 17 タイミング 9 タイムアウト前の試行回数 9 タグに指定のスキャン速度を適用 9 タグ数 4.8

ち

チャネル 15 チャネルのプロパティ-イーサネット通信 5 チャネルのプロパティ-一般 4 チャネルのプロパティ-書き込み最適化 5 チャネルのプロパティ-詳細 6 チャネル割り当て 7

て

データコレクション 8 データ型の説明 16

デバイス 15

デバイスでのタグの書き込みに失敗しました。デバイスがエラーコードを返しました。| タグアドレス = '<アドレス>'、エラーコード = <コード >。 20

デバイスでのタグの書き込みに失敗しました。 デバイスが不正なトランザクション ID を返しました。 | タグアドレス = '<アドレス>'。 20

デバイスでのタグの書き込みに失敗しました。フレーミングエラー。| タグアドレス = '<アドレス>'。 20

デバイスでのタグの書き込みに失敗しました。接続エラー。| タグアドレス = '<アドレス>'。 21

デバイスでのタグの読み取りに失敗しました。| タグアドレス = '<アドレス>'。20

デバイスでのブロック読み取りに失敗しました。 デバイスが不正なトランザクション ID を返しました。 | ブロックサイズ = < 数値 > (ポイント)、ブロック開始アドレス = '<アドレス>'。 21

デバイスでのブロック読み取りに失敗しました。デバイスはエラーコードを返しました。| ブロックサイズ = <数値> (ポイント)、ブロック開始アドレス = '<アドレス>'、エラーコード = <コード>。20

デバイスでのブロック読み取りに失敗しました。フレーミングエラー。| ブロックサイズ = <数値> (ポイント)、ブロック開始 アドレス = '<アドレス>'。 21

デバイスでのブロック読み取りに失敗しました。接続エラー。| ブロックサイズ = <数値> (ポイント)、ブロック開始アドレス = '<アドレス>'。 21

デバイスのプロパティ-タイミング 9

デバイスのプロパティ - 一般 7 デバイスのプロパティ - 自動格下げ 10 デバイスのプロパティ - 冗長 13 デバイス間遅延 6 デューティサイクル 5

ح

ドライバー 7

ね

ネットワーク 14 ネットワークアダプタ 5 ネットワークパラメータ 11

は

バイナリ 3 パフォーマンス 15

ふ

プロトコル 15

ほ

ポート 12

ま

マルチレベルネットワーク 14

ŧ

モデル 3,7

b

ラッチリレー 17

IJ

リンクリレー 17

漢字

宛先ステーション 12

宛先ネットワーク 12

一般 7

概要 3

格下げまでのタイムアウト回数 10

格下げ期間 10

格下げ時に要求を破棄 10

最初のWordを下位とする 11

最適化方法 5

自動格下げ 10

識別 4,7

出力 17

冗長 13

診断 4

接続のタイムアウト 9

設定 3

通信タイムアウト 9

通信の最適化 15

通信プロトコル 3

動作モード 7

特殊リンクリレー 17

特殊内部リレー 17

内部リレー 17

入力 17

非 Boolean タグの最新の値のみを書き込み 5

非正規化浮動小数点処理 6

未修正 6

名前 7

要求のタイムアウト 9