
Modbus ASCII Serial Driver

© 2023 PTC Inc. All Rights Reserved.



Modbus ASCII Serial Driver

Table of Contents

Modbus ASCII Serial Driver 1

Table of Contents 2

Modbus ASCII Serial Driver 4

Overview 4

Setup 5

Channel Properties — General 6

Tag Counts 6

Channel Properties — Serial Communications 8

Channel Properties — Write Optimizations 10

Channel Properties — Advanced 11

Channel Properties — Communication Serialization 12

Device Properties — General 13

Device Properties — Scan Mode 14

Device Properties — Timing 15

Device Properties — Auto-Demotion 16

Device Properties — Tag Generation 17

Device Properties — Block Sizes 18

Device Properties — Variable Import Settings 19

Device Properties — Settings 21

Device Properties — Error Handling 23

Device Properties — Redundancy 24

Automatic Tag Database Generation 25

Data Types Description 26

Address Descriptions 27

Modbus ASCII Addressing 27

Function Codes Description 29

Flow Computer Addressing 30

Flow Automation Addressing 30

Event Log Messages 31

Bad address in block. | Block range = <address> to <address>. 31

Bad array. | Array range = <start> to <end>. 31

Error opening file for tag database import. | OS error = '<error>'. 31

Received block length does not match expected length. | Received length = <number> (bytes),

Expected length = <number> (bytes). 31

Block request on device responded with exception. | Block Range = <address> to <address>,

Exception = <code>. 31

www.ptc.com

2



Modbus ASCII Serial Driver

Unable to write to address on device. Device responded with exception. | Address = '<address>',

Exception = <code>. 32

Unable to read from address on device. Device responded with exception. | Address =

'<address>', Exception = <code>. 32

Tag import failed due to low memory resources. 32

File exception encountered during tag import. 32

Error parsing record in import file. | Record number = <number>, Field = <number>. 33

Description truncated for record in import file. | Record number = <number>. 33

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name =

'<tag>'. 33

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsup-

ported data type = '<type>'. 34

Importing tag database. | Source file = '<path>'. 34

Modbus Except ion Codes 35

Error Mask Definitions 36

Index 37

www.ptc.com

3



Modbus ASCII Serial Driver

Modbus ASCII Serial Driver
Help version 1.061

CONTENTS

Overview
What is the Modbus ASCII Serial Driver?

Setup
How do I configure devices for use with this driver?

Automat ic Tag Database Generat ion
How can I configure tags for the Modbus ASCII Serial Driver?

Data Types Descript ion
What data types does this driver support?

Address Descript ions
How do I address a data location on a Modbus device?

Event Log M essages
What messages does the Modbus ASCII Serial Driver produce?

Overview
The Modbus ASCII Serial Driver provides a reliable way to connect Modbus ASCII serial devices to OPC client

applications; including HMI, SCADA, Historian, MES, ERP, and custom applications. It is intended for use with

serial devices that support the Modbus ASCII protocol. The driver's features provide control over the fol-

lowing: the amount of data requested from a device in a single request, the word ordering of 32-bit double

register values, the byte ordering of 32-bit and 16-bit register values, and address base adjustment. The

driver can control the RTS line operation for use with radio modems that require specific RTS timing.

www.ptc.com

4



Modbus ASCII Serial Driver

Setup

Supported Devices
Modbus ASCII compatible devices
Flow Computers using the Daniels/Omni/Elliot register addressing

Communication Protocol
Modbus ASCII Protocol

Channel and Device Limits
The maximum number of channels supported by this driver is 100. The maximum number of devices sup-

ported by this driver is 247 per channel.

Ethernet Encapsulation
This driver supports Ethernet Encapsulation, which allows the driver to communicate with serial devices

attached to an Ethernet network using a terminal server. It may be invoked through the COM ID dialog in

Channel Properties. For more information, refer to the server help file.

Supported Communication Properties
Baud Rate: 1200, 2400, 9600, 19200
Parity: Odd, Even, None
Data Bits: 8
Stop Bits: 1,2

Note: Some devices may not support the listed configurations.

Flow Control
When using an RS232 / RS485 converter, the type of flow control that is required depends on the needs of

the converter. Some converters do not require any flow control whereas others require RTS flow. Consult the

converter's documentation to determine its flow requirements. An RS485 converter that provides automatic

flow control is recommended.

Notes:

1. When using the manufacturer's supplied communications cable, it is sometimes necessary to choose

a flow control setting of RTS or RTS Always under the channel properties.

2. The Modbus ASCII Serial Driver supports the RTS Manual flow control option. This selection is used to

configure the driver for operation with radio modems that require special RTS timing characteristics.

For more information on RTS Manual flow control, refer to the server help file.

Communication Serialization
The Modbus ASCII Serial Driver supports communication serialization, which specifies whether data trans-

missions should be limited to one channel at a time.

www.ptc.com

5



Modbus ASCII Serial Driver

Channel Propert ies — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used

in a server project is called a channel. A server project may consist of many channels with the same com-

munications driver or with unique communications drivers. A channel acts as the basic building block of an

OPC link. This group is used to specify general channel properties, such as the identification attributes and

operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be

unique. Although names can be up to 256 characters, some client applications have a limited display window

when browsing the OPC server's tag space. The channel name is part of the OPC browser information. The

property is required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.

 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during chan-

nel creation. It is a disabled setting in the channel properties. The property is required for creating a chan-

nel.
Note: With the server's online full-time operation, these properties can be changed at any time. This

includes changing the channel name to prevent clients from registering data with the server. If a client has

already acquired an item from the server before the channel name is changed, the items are unaffected. If,

after the channel name has been changed, the client application releases the item and attempts to re-

acquire using the old channel name, the item is not accepted. Changes to the properties should not be made

once a large client application has been developed. Utilize proper user role and privilege management to

prevent operators from changing properties or accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to

OPC applications. Because the server's diagnostic features require a minimal amount of overhead pro-

cessing, it is recommended that they be utilized when needed and disabled when not. The default is dis-

abled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to "Communication Diagnostics" and "Statistics Tags" in the server help.

Tag Counts

www.ptc.com

6



Modbus ASCII Serial Driver

Static Tags:  Provides the total number of defined static tags at this level (device or channel). This inform-

ation can be helpful in troubleshooting and load balancing.

www.ptc.com

7



Modbus ASCII Serial Driver

Channel Propert ies — Serial Communications
Serial communication properties are available to serial drivers and vary depending on the driver, connection

type, and options selected. Below is a superset of the possible properties.
Click to jump to one of the sections: Connection Type, Serial Port Settings or Ethernet Settings, and

Operational Behavior.

Notes:

l With the server's online full-time operation, these properties can be changed at any time. Utilize

proper user role and privilege management to prevent operators from changing properties or

accessing server features.

l Users must define the specific communication parameters to be used. Depending on the driver, chan-

nels may or may not be able to share identical communication parameters. Only one shared serial

connection can be configured for a Virtual Network (see Channel Properties — Serial Com-

munications).

Connection Type

Physical Medium : Choose the type of hardware device for data communications. Options include Modem,

Ethernet Encapsulation, COM Port, and None. The default is COM Port.

1. None: Select None to indicate there is no physical connection, which displays the Operation with no

Communications section.

2. COM Port : Select Com Port to display and configure the Serial Port Settings section.

3. Modem : Select Modem if phone lines are used for communications, which are configured in the

Modem Settings section.

4. Ethernet Encap.: Select if Ethernet Encapsulation is used for communications, which displays the

Ethernet Settings section.

5. Shared: Verify the connection is correctly identified as sharing the current configuration with another

channel. This is a read-only property.

Serial Port Settings

www.ptc.com

8



Modbus ASCII Serial Driver

COM ID: Specify the Communications ID to be used when communicating with devices assigned to the chan-

nel. The valid range is 1 to 9991 to 16. The default is 1.

Baud Rate: Specify the baud rate to be used to configure the selected communications port.

Data Bits: Specify the number of data bits per data word. Options include 5, 6, 7, or 8.

Parity: Specify the type of parity for the data. Options include Odd, Even, or None.

Stop Bits: Specify the number of stop bits per data word. Options include 1 or 2.

Flow Control: Select how the RTS and DTRcontrol lines are utilized. Flow control is required to communicate

with some serial devices. Options are:

l None:  This option does not toggle or assert control lines.

l DTR:  This option asserts the DTRline when the communications port is opened and remains on.

l RTS:  This option specifies that the RTS line is high if bytes are available for transmission. After all buf-

fered bytes have been sent, the RTS line is low. This is normally used with RS232/RS485 converter

hardware.

l RTS, DTR:  This option is a combination of DTRand RTS.

l RTS Always:  This option asserts the RTS line when the communication port is opened and remains

on.

l RTS Manual:  This option asserts the RTS line based on the timing properties entered for RTS Line

Control. It is only available when the driver supports manual RTS line control (or when the properties

are shared and at least one of the channels belongs to a driver that provides this support).

RTS Manual adds an RTS Line Control property with options as follows:

l Raise: Specify the amount of time that the RTS line is raised prior to data transmission. The

valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Drop: Specify the amount of time that the RTS line remains high after data transmission. The

valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Poll Delay: Specify the amount of time that polling for communications is delayed. The valid

range is 0 to 9999. The default is 10 milliseconds.

Tip: When using two-wire RS-485, "echoes" may occur on the communication lines. Since this com-

munication does not support echo suppression, it is recommended that echoes be disabled or a RS-485 con-

verter be used.

Operational Behavior

l Report Communication Errors:  Enable or disable reporting of low-level communications errors.

When enabled, low-level errors are posted to the Event Log as they occur. When disabled, these

same errors are not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the connection when there are no longer any tags being ref-

erenced by a client on the channel. The default is Enable.

l Idle Time to Close:  Specify the amount of time that the server waits once all tags have been

removed before closing the COM port. The default is 15 seconds.

Ethernet Settings
Note: Not all serial drivers support Ethernet Encapsulation. If this group does not appear, the functionality

is not supported.

www.ptc.com

9



Modbus ASCII Serial Driver

Ethernet Encapsulation provides communication with serial devices connected to terminal servers on the

Ethernet network. A terminal server is essentially a virtual serial port that converts TCP/IP messages on the

Ethernet network to serial data. Once the message has been converted, users can connect standard devices

that support serial communications to the terminal server. The terminal server's serial port must be prop-

erly configured to match the requirements of the serial device to which it is attached. For more information,

refer to "Using Ethernet Encapsulation" in the server help.

l Network Adapter: Indicate a network adapter to bind for Ethernet devices in this channel. Choose a

network adapter to bind to or allow the OS to select the default.

Specific drivers may display additional Ethernet Encapsulation properties. For more information, refer

to Channel Properties — Ethernet Encapsulation.

Modem Settings

l Modem : Specify the installed modem to be used for communications.

l Connect Timeout : Specify the amount of time to wait for connections to be established before failing

a read or write. The default is 60 seconds.

l Modem Properties: Configure the modem hardware. When clicked, it opens vendor-specific modem

properties.

l Auto-Dial: Enables the automatic dialing of entries in the Phonebook. The default is Disable. For more

information, refer to "Modem Auto-Dial" in the server help.

l Report Communication Errors: Enable or disable reporting of low-level communications errors.

When enabled, low-level errors are posted to the Event Log as they occur. When disabled, these

same errors are not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the modem connection when there are no longer any tags

being referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been

removed before closing the modem connection. The default is 15 seconds.

Operation with no Communications

l Read Processing: Select the action to be taken when an explicit device read is requested. Options

include Ignore and Fail. Ignore does nothing; Fail provides the client with an update that indicates fail-

ure. The default setting is Ignore.

Channel Propert ies — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given

this goal, the server provides optimization properties to meet specific needs or improve application respons-

iveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The

options are:

www.ptc.com

10



Modbus ASCII Serial Driver

l Write All Values for All Tags:  This option forces the server to attempt to write every value to the

controller. In this mode, the server continues to gather write requests and add them to the server's

internal write queue. The server processes the write queue and attempts to empty it by writing data

to the device as quickly as possible. This mode ensures that everything written from the client applic-

ations is sent to the target device. This mode should be selected if the write operation order or the

write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can

accumulate in the write queue due to the time required to actually send the data to the device. If the

server updates a write value that has already been placed in the write queue, far fewer writes are

needed to reach the same final output value. In this way, no extra writes accumulate in the server's

queue. When the user stops moving the slide switch, the value in the device is at the correct value at

virtually the same time. As the mode states, any value that is not a Boolean value is updated in the

server's internal write queue and sent to the device at the next possible opportunity. This can greatly

improve the application performance.

Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize

the operation of HMI data without causing problems with Boolean operations, such as a momentary

push button.

l Write Only Latest Value for All Tags:  This option takes the theory behind the second optimization

mode and applies it to all tags. It is especially useful if the application only needs to send the latest

value to the device. This mode optimizes all writes by updating the tags currently in the write queue

before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for

every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read

operation. Although the application is performing a large number of continuous writes, it must be ensured

that read data is still given time to process. A setting of one results in one read operation for every write

operation. If there are no write operations to perform, reads are processed continuously. This allows optim-

ization for applications with continuous writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

Channel Propert ies — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the

Advanced group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as

a Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may

default to Unmodified. Non-normalized float handling allows users to specify how a driver handles non-nor-

malized IEEE-754 floating point data. Descriptions of the options are as follows:

l Replace with Zero:  This option allows a driver to replace non-normalized IEEE-754 floating point val-

ues with zero before being transferred to clients.

l Unmodified:  This option allows a driver to transfer IEEE-754 denormalized, normalized, non-num-

ber, and infinity values to clients without any conversion or changes.

www.ptc.com

11



Modbus ASCII Serial Driver

Note: This property is disabled if the driver does not support floating-point values or if it only supports the

option that is displayed. According to the channel's float normalization setting, only real-time driver tags

(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this

setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-

Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to

the next device after data is received from the current device on the same channel. Zero (0) disables the

delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Propert ies — Communication Serializat ion
The server's multi-threading architecture allows channels to communicate with devices in parallel. Although

this is efficient, communication can be serialized in cases with physical network restrictions (such as Eth-

ernet radios). Communication serialization limits communication to one channel at a time within a virtual net-

work.

The term "virtual network" describes a collection of channels and associated devices that use the same

pipeline for communications. For example, the pipeline of an Ethernet radio is the client radio. All channels

using the same client radio associate with the same virtual network. Channels are allowed to communicate

each in turn, in a "round-robin" manner. By default, a channel can process one transaction before handing

communications off to another channel. A transaction can include one or more tags. If the controlling chan-

nel contains a device that is not responding to a request, the channel cannot release control until the trans-

action times out. This results in data update delays for the other channels in the virtual network.

Channel-Level Settings

Virtual Network: Specify the channel's mode of communication serialization. Options include None and Net-

work 1 - Network 500. The default is None. Descriptions of the options are as follows:

l None:  This option disables communication serialization for the channel.

l Network 1 - Network 500:  This option specifies the virtual network to which the channel is

assigned.

Transactions per Cycle: Specify the number of single blocked/non-blocked read/write transactions that can

occur on the channel. When a channel is given the opportunity to communicate, this is the number of trans-

actions attempted. The valid range is 1 to 99. The default is 1.

Global Settings

Network Mode:  This property is used to control how channel communication is delegated. In Load Bal-

anced mode, each channel is given the opportunity to communicate in turn, one at a time. In Priority mode,

www.ptc.com

12



Modbus ASCII Serial Driver

channels are given the opportunity to communicate according to the following rules (highest to lowest pri-

ority):

1. Channels with pending writes have the highest priority.

2. Channels with pending explicit reads (through internal plug-ins or external client interfaces) are pri-

oritized based on the read's priority.

3. Scanned reads and other periodic events (driver specific).

The default is Load Balanced and affects all virtual networks and channels.
 Devices that rely on unsolicited responses should not be placed in a virtual network. In situations where

communications must be serialized, it is recommended that Auto-Demotion be enabled.

Due to differences in the way that drivers read and write data (such as in single, blocked, or non-blocked

transactions); the application's Transactions per cycle property may need to be adjusted. When doing so,

consider the following factors:

l How many tags must be read from each channel?

l How often is data written to each channel?

l Is the channel using a serial or Ethernet driver?

l Does the driver read tags in separate requests, or are multiple tags read in a block?

l Have the device's Timing properties (such as Request timeout and Fail after x successive timeouts)

been optimized for the virtual network's communication medium?

Device Propert ies — General

Identification

Name: User-defined identity of this device.

Description: User-defined information about this device.

Channel Assignment : User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: The specific version of the device.

www.ptc.com

13



Modbus ASCII Serial Driver

ID Format : Select how the device identity is formatted. Options include Decimal, Octal, and Hex.

ID: the unique device number. Modbus Serial devices are assigned device IDs in the range of 1 to 247.

Operating Mode

Data Collection:  This property controls the device's active state. Although device communications are

enabled by default, this property can be used to disable a physical device. Communications are not attemp-

ted when a device is disabled. From a client standpoint, the data is marked as invalid and write operations

are not accepted. This property can be changed at any time through this property or the device system tags.

Simulated:  This option places the device into Simulation Mode. In this mode, the driver does not attempt to

communicate with the physical device, but the server continues to return valid OPC data. Simulated stops

physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.

While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated

device is read back and each OPC item is treated individually. The item's memory map is based on the group

Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).

The default is No.

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System

tag allows this property to be monitored from the client.

2. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for

OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference

the same item with different update rates return different data.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production envir-

onment.

Device Propert ies — Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device com-

munications. Synchronous and asynchronous device reads and writes are processed as soon as possible;

unaffected by the Scan Mode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions

of the options are:

l Respect Client-Specified Scan Rate:  This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate:  This mode specifies the value set as the maximum scan

rate. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes

do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate:  This mode forces tags to be scanned at the specified rate for sub-

scribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

www.ptc.com

14



Modbus ASCII Serial Driver

l Do Not Scan, Demand Poll Only:  This mode does not periodically poll tags that belong to the

device nor perform a read to get an item's initial value once it becomes active. It is the OPC client's

responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device

reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate:  This mode forces static tags to be scanned at the rate specified

in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan

rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for

newly activated tag references from stored (cached) data. Cache updates can only be provided when the

new item reference shares the same address, scan rate, data type, client access, and scaling properties. A

device read is used for the initial update for the first client reference only. The default is disabled; any time a

client activates a tag reference the server attempts to read the initial value from the device.

Device Propert ies — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the applic-

ation's needs. In many cases, the environment requires changes to these properties for optimum per-

formance. Factors such as electrically generated noise, modem delays, and poor physical connections can

influence how many errors or timeouts a communications driver encounters. Timing properties are specific

to each configured device.

Communications Timeouts

Connect Timeout :  This property (which is used primarily by Ethernet based drivers) controls the amount of

time required to establish a socket connection to a remote device. The device's connection time often takes

longer than normal communications requests to that same device. The valid range is 1 to 30 seconds. The

default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not sup-

ported by the driver, it is disabled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout :  Specify an interval used by all drivers to determine how long the driver waits for a

response from the target device to complete. The valid range is 50 to 9999 milliseconds (167 minutes). The

default is usually 1000 milliseconds, but can vary depending on the driver. The default timeout for most

serial drivers is based on a baud rate of 9600 baud or better. When using a driver at lower baud rates,

increase the timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout : Specify how many times the driver issues a communications request before con-

sidering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is typ-

ically 3, but can vary depending on the driver's specific nature. The number of attempts configured for an

application depends largely on the communications environment. This property applies to both connection

attempts and request attempts.

Timing

www.ptc.com

15



Modbus ASCII Serial Driver

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target

device. It overrides the normal polling frequency of tags associated with the device, as well as one-time

reads and writes. This delay can be useful when dealing with devices with slow turnaround times and in

cases where network load is a concern. Configuring a delay for a device affects communications with all

other devices on the channel. It is recommended that users separate any device that requires an inter-

request delay to a separate channel if possible. Other communications properties (such as communication

serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may

limit the maximum value due to a function of their particular design. The default is 0, which indicates no

delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Propert ies — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not

responding. By placing a non-responsive device offline for a specific time period, the driver can continue to

optimize its communications with other devices on the same channel. After the time period has been

reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,

the device is placed on-scan; otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted sys-

tem tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the

device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is

reached. During this period, no read requests are sent to the device and all data associated with the read

requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for

another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000

milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the

off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard

writes; the server automatically fails any write request received from a client and does not post a message

to the Event Log.

www.ptc.com

16



Modbus ASCII Serial Driver

Device Propert ies — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation.

Select communications drivers can be configured to automatically build a list of tags that correspond to

device-specific data. These automatically generated tags (which depend on the nature of the supporting

driver) can be browsed from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data

types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and

uses the data to generate tags within the server. If the device does not natively support named tags, the

driver creates a list of tags based on driver-specific information. An example of these two conditions is as fol-

lows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the

tag names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/O module types, the com-

munications driver automatically generates tags in the server that are based on the types of I/O mod-

ules plugged into the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more inform-

ation, refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the

On Property Change option is shown. It is set to Yes by default, but it can be set to No to control over when

tag generation is performed. In this case, the Create tags action must be manually invoked to perform tag

generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as

follows:

l Do Not Generate on Startup:  This option prevents the driver from adding any OPC tags to the tag

space of the server. This is the default setting.

l Always Generate on Startup:  This option causes the driver to evaluate the device for tag inform-

ation. It also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup:  This option causes the driver to evaluate the target device for tag

information the first time the project is run. It also adds any OPC tags to the server tag space as

needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the

server's tag space must be saved with the project. Users can configure the project to automatically save

from the Tools | Options menu.

www.ptc.com

17



Modbus ASCII Serial Driver

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to

do with the tags that it may have previously added or with tags that have been added or modified after the

communications driver since their original creation. This setting controls how the server handles OPC tags

that were automatically generated and currently exist in the project. It also prevents automatically gen-

erated tags from accumulating in the server.

For example, if a user changes the I/O modules in the rack with the server configured to Always Generate

on Startup, new tags would be added to the server every time the communications driver detected a new

I/O module. If the old tags were not removed, many unused tags could accumulate in the server's tag space.

The options are:

l Delete on Create:  This option deletes any tags that were previously added to the tag space before

any new tags are added. This is the default setting.

l Overwrite as Necessary:  This option instructs the server to only remove the tags that the com-

munications driver is replacing with new tags. Any tags that are not being overwritten remain in the

server's tag space.

l Do not Overwrite:  This option prevents the server from removing any tags that were previously gen-

erated or already existed in the server. The communications driver can only add tags that are com-

pletely new.

l Do not Overwrite, Log Error:  This option has the same effect as the prior option, and also posts an

error message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the com-

munications driver as well as any tags that have been added using names that match generated tags.

Users should avoid adding tags to the server using names that may match tags that are automatically

generated by the driver.

Parent Group:  This property keeps automatically generated tags from mixing with tags that have been

entered manually by specifying a group to be used for automatically generated tags. The name of the group

can be up to 256 characters. This parent group provides a root branch to which all automatically generated

tags are added.

Allow Automatically Generated Subgroups:  This property controls whether the server automatically cre-

ates subgroups for the automatically generated tags. This is the default setting. If disabled, the server gen-

erates the device's tags in a flat list without any grouping. In the server project, the resulting tags are named

with the address value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system

automatically increments to the next highest number so that the tag name is not duplicated. For example, if

the generation process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been

modified, Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be

accessed from the System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Device Propert ies — Block Sizes

www.ptc.com

18



Modbus ASCII Serial Driver

Coils
Output Coils: Coils can be read from 8 to 2000 points (bits) at a time. A higher block size means more

points are read from the device in a single request. Block size can be reduced if data needs to be read from

non-contiguous locations within the device.

Input Coils: Coils can be read from 8 to 2000 points (bits) at a time. A higher block size means more points

are read from the device in a single request. Block size can be reduced if data needs to be read from non-

contiguous locations within the device.

Registers
Internal Registers: Registers can be read from 1 to 100 locations (words) at a time. A higher block size

means more register values are read from the device in a single request. Block size can be reduced if data

needs to be read from non-contiguous locations within the device.

Holding Registers: Registers can be read from 1 to 100 locations (words) at a time. A higher block size

means more register values are read from the device in a single request. Block size can be reduced if data

needs to be read from non-contiguous locations within the device.
Caution: If the register block sizes value is set above 120 and a 32- or 64-bit data type is used for any tag,

an error can occur. To prevent errors from occurring, decrease the block size value to 120.

Block Sizes
Block Read Strings: Enable this option to block read string tags, which are normally read individually. When

this option is enabled, string tags are grouped together depending on the selected block size. Block reads

can only be performed for Modbus model string tags.

Device Propert ies — Variable Import Sett ings

For more information on CSV files for Modbus Drivers, refer to Creating CSV Files for Modbus Drivers.

www.ptc.com

19

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/creating_csv_files_for_kepware_modbus_drivers.pdf?sc_lang=en


Modbus ASCII Serial Driver

Variable Import File: Specifies the exact location and name of the semicolon-delimited text file the driver

should use for automatic tag generation. Variable import files can be created from many applications.

Include Descriptions: When enabled, tag descriptions are imported if present in the file. The default setting

is enabled.

For more information on configuring the Automatic Tag Database Generation feature and creating a variable

import file, refer to Automatic Tag Database Generation.

For specific information on creating the variable import file from Concept and ProWORX, consult Technical

Note "Creating CSV Files for Modbus Drivers."

www.ptc.com

20



Modbus ASCII Serial Driver

Device Propert ies — Sett ings

Data Access

Zero-Based Addressing : If the address numbering convention for the device starts at one as opposed to

zero, users can specify it when defining the device's properties. By default, user-entered addresses have

one subtracted when frames are constructed to communicate with a Modbus device. If the device doesn't fol-

low this convention, users can disable the zero-based addressing. The default behavior (zero-based) follows

the convention of the Modicon PLCs.

Zero-Based Bit Addressing: For memory types that allow bits within Words can be referenced as a

Boolean, the addressing notation is <address>.<bit> where <bit> represents the bit number within the Word.

Addressing within registers provides two ways of addressing a bit within a given Word. Zero-based bit

addressing within registers means the first bit begins at 0. One-based addressing within registers means

that the first bit begins at 1. For data type Word, the bit range with zero-bit addressing is 0-15; whereas the

range for one-based bit addressing is 1-16.

Holding Register Bit Writes: When writing to a bit location within a holding register, the driver should only

modify the bit of interest. Some devices support a command to manipulate a single bit within a register

(Function code hex 0x16 or decimal 22). If the device does not support this feature, the driver must perform

a Read/Modify/Write operation to ensure that only the single bit is changed. Enable if the device supports

holding register bit access. The default setting is disabled. If this setting is enabled, the driver uses function

code 0x16 regardless of the setting for Modbus Function 06 for register writes. If this setting is not selected,

the driver uses either function code 0x06 or 0x10, depending on the setting for Modbus Function 06.

Note: When Modbus byte order is not selected, the byte order of the masks sent in the command is Intel

byte order.

Modbus Function 06: The Modbus driver has the option of using two Modbus protocol functions to write

holding register data to the target device. In most cases, the driver switches between these two functions

based on the number of registers being written. When writing a single 16-bit register, the driver generally

uses Modbus function 06. When writing a 32-bit value into two registers, the driver uses Modbus function 16.

For the standard Modicon PLC, the use of either of these functions is not a problem. There are, however, a

number of third-party devices using the Modbus protocol and many of these devices support only the use of

Modbus function 16 to write to holding registers regardless of the number of registers to be written. Use

function 06 can be used to force the driver to use only Modbus function 16 if needed. This selection is

enabled by default. It allows the driver to switch between 06 and 16 as needed. If the device requires all

writes to be done using only Modbus function 16, disable this selection.

www.ptc.com

21



Modbus ASCII Serial Driver

Note: For bit within word writes, the Holding Register Bit Writes property takes precedence over this prop-

erty (Modbus Function 06). If Holding Register Bit Writes is selected, then function code 0x16 is used regard-

less of the selection for this property. However, if Holding Register Bit Writes is not selected, depending on

the selection of this property, either function code 0x06 or 0x10 is used for bit within word writes.

Use Function 05: The Modbus driver has the option of using two Modbus protocol functions to write output

coil data to the target device. In most cases, the driver switches between these two functions based on the

number of coils being written. When writing a single coil, the driver uses Modbus function 05. When writing

an array of coils, the driver uses Modbus function 15. For the standard Modicon PLC, the use of either of

these functions is not a problem. There are, however, a number of third-party devices using the Modbus pro-

tocol and many of these devices support only the use of Modbus function 15 to write to output coils regard-

less of the number of coils to be written. Modbus Function 05 can be used to force the driver to use only

Modbus function 15 if needed. This selection is enabled by default. It allows the driver to switch between 05

and 15 as needed. If a device requires all writes to be done using only Modbus function 15, disable this selec-

tion.

Data Encoding

Modbus Byte Order: The driver's byte order can be changed from the default Modbus byte ordering to Intel

byte ordering by using this selection. Modbus Byte Order sets the data encoding of each register / 16-bit

value. This election is enabed by default, which is the normal setting for Modbus compatible devices. If the

device uses Intel byte ordering, disabling this selection allows the Modbus driver to properly read Intel

formatted data.

First Word Low: Two consecutive registers' addresses in a Modbus device are used for 32-bit data types.

Users can specify whether the driver should assume the first word is the low or the high word of the 32-bit

value and each double word of a 64-bit value. The default, first word low, follows the convention of the

Modicon Modsoft programming software.

First DWord Low: Four consecutive registers' addresses in a Modbus device are used for 64-bit data types.

Users can specify whether the driver should assume the first DWord is the low or the high DWord of the 64-

bit value. The default, first DWord low, follows the default convention of 64-bit data types.

Modicon Bit Order: When enabled, the driver reverses the bit order on reads and writes to registers to fol-

low the convention of the Modicon Modsoft programming software. For example, a write to address

40001.0/1 affects bit 15/16 in the device when this option is enabled. This option is disabled by default.

Note: For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits depending

on if the driver is set at zero-based or one-based bit addressing within registers.

MSB = Most Significant Bit
LSB = Least Significant Bit

Modicon Bit Order Enabled

M SB LSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Modicon Bit Order Disabled

M SB LSB

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

www.ptc.com

22



Modbus ASCII Serial Driver

Data Types M odbus Byte Order First Word Low First DWord Low

Word, Short, BCD Applicable N/A N/A

Float, DWord, Long, LBCD Applicable Applicable N/A

Double Applicable Applicable Applicable

Data Encoding

Group Opt ion
Data Encoding

Modbus Byte Order -

Enable

High Byte (15..8) Low Byte (7..0)

Modbus Byte Order -

Disable
Low Byte (7..0) High Byte (15..8)

First Word Low - Dis-

abled

High Word (31..16)

High Word(63..48) of Double Word in

64-bit data types

Low Word (15..0)

Low Word (47..32) of Double Word in

64-bit data types

First Word Low -

Enabled

Low Word (15..0)

Low Word (47..32) of Double Word in

64-bit data types

High Word (31..16)

High Word (63..48) of Double Word in

64-bit data types

First DWord Low - Dis-

abled
High Double Word (63..32) Low Double Word (31..0)

First DWord Low -

Enabled
Low Double Word (31..0) High Double Word (63..32)

The default settings are correct for the majority of Modbus devices, but the particular device's doc-

umentation can determine the correct settings of the data encoding options.

Device Propert ies — Error Handling

Deactivate Tags on Illegal Address: If a device returns Modbus exception code 2 (illegal address) or 3

(illegal data, such as number of points) in response to a read of a block, the driver can stop polling the block

with the errors or continue trying to poll the block. Select Enable to stop polling on an illegal address error.

Select disable to continue to poll that data block. Restarting the server is not required to activate a deac-

tivated block. The default setting is enabled.

www.ptc.com

23



Modbus ASCII Serial Driver

Device Propert ies — Redundancy

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

www.ptc.com

24

https://www.ptc.com/-/media/Kepware-Store/EN/2022/2022-media-level-redundancy-manual-en


Modbus ASCII Serial Driver

Automatic Tag Database Generation
The Modbus ASCII Serial Driver makes use of the Automatic Tag Database Generation feature. This enables

drivers to automatically create tags that access data points used by the device's ladder program. While it is

sometimes possible to query a device for the information needed to build a tag database, this driver must

use a Variable Import File instead. Variable import files can be generated using device programming applic-

ations, such as Concept and ProWORX.

Creating the Variable Import File
The import file must be in semicolon-delimited .TXT format, which is the default export file format of the

Concept device programming application. The ProWORX programming application can export variable data

in this format.
For specific information on creating the variable import file from Concept and ProWORX, consult Technical

Note "Creating CSV Files for Modbus Drivers."

Server Configuration
The automatic tag database generation feature can be customized to fit the application's needs. The

primary control options can be set during the Database Creation step of the Device Wizard or later by select-

ing the device then Properties | Tag Generation.
For more information, refer to the server help documentation.

This driver requires specialized properties in addition to the basic settings that are common to all drivers

that support automatic tag database generation. These specialized properties include the name and loc-

ation of the variable import file. This information can be specified during the Variable Import Settings step of

the Device Wizard or later by selecting the device then Properties | Variable Import Settings.
For more information, refer to Variable Import Settin.

Operation
Depending on the configuration, tag generation may start automatically when the server project starts or be

initiated manually at some other time. The Event Log shows when the tag generation process started, any

errors that occurred while processing the variable import file and when the process completed.

www.ptc.com

25



Modbus ASCII Serial Driver

Data Types Descript ion

Data Type Descript ion

Boolean Single bit

Word Unsigned 16-bit value

bit 0 is the low bit

bit 15 is the high bit

Short Signed 16-bit value

bit 0 is the low bit

bit 14 is the high bit

bit 15 is the sign bit

DWord Unsigned 32-bit value

bit 0 is the low bit

bit 31 is the high bit

Long Signed 32-bit value

bit 0 is the low bit

bit 30 is the high bit

bit 31 is the sign bit

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.

String

Null terminated ASCII string

Supported on Modbus Model, includes Hi-Lo Lo-Hi byte order selection.

Double*

64-bit floating point value

The driver interprets four consecutive registers as a double precision value by making

the last two registers the high DWord and the first two registers the low DWord.

Double Example If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the

64-bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

Float* 32-bit floating point value

The driver interprets two consecutive registers as a single precision value by making

the last register the high word and the first register the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-

bit data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

* The descriptions above assume the default settings; that is, first DWord low data handling of 64-bit data

types and first word low data handling of 32-bit data types.

www.ptc.com

26



Modbus ASCII Serial Driver

Address Descript ions
Address specifications vary depending on the model in use. Select a link from the following list to obtain spe-

cific address information for the model of interest.

M odbus ASCII Addressing

Flow Computer Addressing

Flow Automat ion Addressing

Modbus ASCII Addressing

5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits rep-

resent the device's data item. The maximum value is a two byte unsigned integer (65,535). Six digits are

required to represent the entire address table and item. As such, addresses that are specified in the

device's manual as 0xxxx, 1xxxx, 3xxxx, or 4xxxx are padded with an extra zero once applied to the Address

field of a Modbus tag.

Primary Table Descript ion

0 Output Coils

1 Input Coils

3 Internal Registers

4 Holding Registers

Modbus ASCII Addressing
The default data types for dynamically defined tags are shown in bold.

For notes and restrictions, refer to Packed Coil Tags, String Support , and Array Support.

Address Range Data Type Access Funct ion

Codes*

Output Coils 000001-065536

000001#1-065521#16

Boolean

Word (Packed

Coil Tag)

Read/Write 01, 05,

15* *

Input Coils 100001-165536

100001#1-165521#16

Boolean

Word (Packed

Coil Tag)

Read Only 02* *

Internal Registers 300001-365536

300001-365535

300001-365533

3xxxxx.0/1-

3xxxxx.15/16* * *

Word, Short,

BCD

Float, DWord,

Long, LBCD

Double

Boolean

Read Only 04

Internal Registers As String with

HiLo Byte Order

300001.2H-365536.240H

.Bit is string length, range

2 to 240 bytes.

String Read Only 04

Internal Registers As String with

LoHi Byte Order

300001.2L-365536.240L String Read Only 04

www.ptc.com

27



Modbus ASCII Serial Driver

Address Range Data Type Access Funct ion

Codes*

.Bit is string length, range

2 to 240 bytes.

Holding Registers 400001-465536

400001-465535

400001-465533

4xxxxx.0/1-

4xxxxx.15/16* * *

Word, Short,

BCD

Float, DWord,

Long, LBCD

Double

Boolean

Read/Write 03, 06, 16

03, 06, 16,

22

Holding Registers As String with

HiLo Byte Order

400001.240H-465536.2H

.Bit is string length,

range 2 to 240 bytes.

String Read/Write 03, 16

Holding Registers As String with

LoHi Byte Order

400001.2L-465536.240L

.Bit is string length,

range 2 to 240 bytes.

String Read/Write 03, 16

* The supported Function Codes are displayed in decimal. For more information, refer to Function Codes

Description.
* * For more information, refer to Packed Coil Tags.
* * * For more information, refer to the Use Zero-Based Bit Addressing subtopic in Settings.

Write-Only Access
All Read/Write addresses may be set as Write Only by prefixing a "W" to the address such as "W40001",

which prevents the driver from reading the register at the specified address. Any attempts by the client to

read a Write Only tag result in obtaining the last successful write value to the specified address. If no suc-

cessful writes have occurred, then the client receives 0/NULL for numeric / string values for an initial value.

Caution: Setting the Client Access privileges of Write Only tags to Read Only causes writes to these tags

to fail and the client to always receive 0 / NULL for numeric / string values.

Packed Coil Tags
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is

available for the Modbus ASCII model only. The only valid data type is Word. The syntax is as follows.

Output coils: 0xxxxx#nn Word Read/Write
Input coils: 1xxxxx#nn Word Read Only

where xxxxx is the address of the first coil, and nn is the number of coils to be packed into an analog value

(1-16).

The bit order is such that the start address is the LSB (least significant bit) of the analog value.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using

holding registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data

within a given register can be selected when the string is defined. The length of the string can be from 2 to

www.ptc.com

28



Modbus ASCII Serial Driver

240 bytes and is entered in place of a bit number. The length must be entered as an even number. The byte

order is specified by appending either a "H" or "L" to the address.

For information on how to perform block read on string tags for the Modbus model, refer to Block Sizes.

String Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter:

40200.100H

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter: 40500.78L

Note: The string length may be limited by the maximum size of the write request that the device allows. If

the error message "Unable to write to address <address> on device <device>: Device responded with excep-

tion code 3" is received while utilizing a string tag, the device did not like the string's length. If possible, try

shortening the string.

Normal Address Examples

1. The 255th output coil would be addressed as '0255' using decimal addressing.

2. Some documentation refers to Modbus addresses by function code and location. For instance, func-

tion code 3; location 2000 would be addressed as '42000' (the leading '4' represents holding

registers or function code 3).

3. Some documentation refers to Modbus addresses by function code and location. For instance, setting

function code 5 location 100 would be addressed as '0100' (the leading '0' represents output coils or

function code 5). Writing 1 or 0 to this address would set or reset the coil.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean and

strings. Arrays are also supported for input and output coils (Boolean data types). There are two methods of

addressing an array. Examples are given using holding register locations.

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one

For arrays, rows multiplied by cols cannot exceed the block size that has been assigned to the device for the

register / coil type. For register arrays of 32-bit data types, rows multiplied by cols multiplied by 2 cannot

exceed the block size.

Function Codes Descript ion

Decimal Hexadecimal Descript ion

01 0x01 Read Coil Status

02 0x02 Read Input Status

03 0x03 Read Holding Registers

04 0x04 Read Internal Registers

05 0x05 Force Single Coil

06 0x06 Preset Single Register

www.ptc.com

29



Modbus ASCII Serial Driver

15 0x0F Force Multiple Coils

16 0x10 Preset Multiple Registers

22 0x16 Masked Write Register

Flow Computer Addressing
The default data types for dynamically defined tags are shown in bold.

Address Range Data Type Access

Output Coils 000001-065536 Boolean Read/Write

Input Coils 100001-165536 Boolean Read Only

Internal Registers 300001-365536

300001-365535

Word, Short, BCD

Float, DWord, Long, LBCD

Read Only

Holding Registers 400001-465536

400001-465535

Word, Short, BCD* ,

Float, DWord, Long, LBCD

Read/Write

Flow Computer Registers 405000-406800

407000-407800

Long, DWord, LBCD

Float , Long, DWord

Read/Write

* Address ranges 405000 to 406800 and 407000 to 407800 are 32-bit registers. Addresses in the range of

405000 to 406800 use a default data type of Long. Addresses in the range of 407000 to 407800 use a

default data type of Float. Since these address registers are 32 bit, only Float, DWord, Long or LBCD data

types are allowed. Arrays are not allowed for these special address ranges.

Arrays
Arrays are supported for internal and holding register locations for all data types except for Boolean. There

are two methods of addressing an array. Examples are given using holding register locations.

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one

Rows multiplied by cols cannot exceed the block size that has been assigned to the device for the register

type. For arrays of 32-bit data types, rows multiplied by cols multiplied by 2 cannot exceed the block size.

Flow Automation Addressing
The default data types for dynamically defined tags are shown in bold.

Address Range Data Type Access

Flow Computer Registers 40001-465535 Float Read/Write

The Flow Automation Flow Computer treats all data as a 32-bit floating point value. All addresses in the hold-

ing register space of the device are read as 32-bit floating point numbers. A complete memory map of the

flow automation control is provided in the custom report section of the flow automation manual.

www.ptc.com

30



Modbus ASCII Serial Driver

Event Log Messages

The following information concerns messages posted to the Event Log pane in the main user interface. Con-

sult the OPC server help on filtering and sorting the Event Log detail view. Server help contains many com-

mon messages, so should also be searched. Generally, the type of message (informational, warning) and

troubleshooting information is provided whenever possible.

Bad address in block. | Block range = <address> to <address>.

Error Type:
Error

Possible Cause:
An attempt has been made to reference a nonexistent location in the specified device.

Possible Solution:
Verify the tags assigned to addresses in the specified range on the device and eliminate ones that reference

invalid locations.

Bad array. | Array range = <start> to <end>.

Error Type:
Error

Possible Cause:
An array of addresses was defined that spans past the end of the address space.

Possible Solution:
Verify the size of the device memory space and redefine the array length accordingly.

Error opening file for tag database import. | OS error = '<error>'.

Error Type:
Error

Received block length does not match expected length. | Received length
= <number> (bytes), Expected length = <number> (bytes).

Error Type:
Warning

Block request on device responded with exception. | Block Range =
<address> to <address>, Exception = <code>.

Error Type:
Warning

Possible Cause:
Communication with the device succeeded, but the device reported a problem.

www.ptc.com

31



Modbus ASCII Serial Driver

Possible Solution:
Consult the device documentation for information about the error code provided.

 See Also:
Modbus Exception Codes

Unable to write to address on device. Device responded with exception. |
Address = '<address>', Exception = <code>.

Error Type:
Warning

Possible Cause:
Communication with the device succeeded, but the device reported a problem.

Possible Solution:
Consult the device documentation for information about the error code provided.

 See Also:
Modbus Exception Codes

Unable to read from address on device. Device responded with exception.
| Address = '<address>', Exception = <code>.

Error Type:
Warning

Possible Cause:
Communication with the device succeeded, but the device reported a problem.

Possible Solution:
Consult the device documentation for information about the error code provided.

 See Also:
Modbus Exception Codes

Tag import failed due to low memory resources.

Error Type:
Warning

Possible Cause:
The driver could not allocate the memory required to process the variable import file.

Possible Solution:
Shut down unnecessary applications and try again.

File exception encountered during tag import.

Error Type:

www.ptc.com

32



Modbus ASCII Serial Driver

Warning

Possible Cause:
The variable import file could not be read.

Possible Solution:
Correct or regenerate the variable import file.

Error parsing record in import file. | Record number = <number>, Field =
<number>.

Error Type:
Warning

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or

invalid.

Possible Solution:
Edit the variable import file to correct the field.

Descript ion truncated for record in import file. | Record number = <num-
ber>.

Error Type:
Warning

Possible Cause:
The tag description in the specified record is too long.

Possible Solution:
The description is shortened as needed. To prevent this error in the future, edit the variable import file to

shorten the description.

Imported tag name is invalid and has been changed. | Tag name = '<tag>',
Changed tag name = '<tag>'.

Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Possible Solution:
A valid name was constructed based on the variable import file. To prevent this error in the future and to

maintain name consistency, change the name of the exported variable.

www.ptc.com

33



Modbus ASCII Serial Driver

A tag could not be imported because the data type is not supported. | Tag
name = '<tag>', Unsupported data type = '<type>'.

Error Type:
Warning

Possible Cause:
The data type specified in the variable import file is not one of the types supported by this driver.

Possible Solution:
Change the data type specified in import file to a supported types. If the variable is for a structure, edit file to

define each tag required for the structure or configure the required tags in the server.

 See Also:
Exporting Variables from Concept

Import ing tag database. | Source file = '<path>'.

Error Type:
Informational

www.ptc.com

34



Modbus ASCII Serial Driver

Modbus Exception Codes
The following data is from Modbus Application Protocol Specifications documentation.

Code

Dec/ Hex
Name M eaning

01/0x01
ILLEGAL

FUNCTION

The function code received in the query is not an allowable action for the

server. This may be because the function code is only applicable to newer

devices, and was not implemented in the unit selected. It could also indic-

ate that the server is in the wrong state to process a request of this type,

for example, because it is unconfigured and is being asked to return

register values.

02/0x02
ILLEGAL DATA

ADDRESS

The data address received in the query is not an allowable address for the

server. More specifically, the combination of reference number and trans-

fer length is invalid. For a controller with 100 registers, a request with off-

set 96 and length 4 would succeed. A request with offset 96 and length 5

generates exception 02.

03/0x03
ILLEGAL DATA

VALUE

A value contained in the query data field is not an allowable value for

server. This indicates a fault in the structure of the remainder of a complex

request, such as that the implied length is incorrect. It specifically does not

mean that a data item submitted for storage in a register has a value out-

side the expectation of the application program, since the Modbus protocol

is unaware of the significance of any particular value of any particular

register.

04/0x04
SERVERDEVICE

FAILURE

An unrecoverable error occurred while the server was attempting to per-

form the requested action.

05/0x05 ACKNOWLEDGE

The server has accepted the request and is processing it, but a long dur-

ation of time is required to do so. This response is returned to prevent a

timeout error from occurring in the client. The client can next issue a Poll

Program Complete message to determine if processing is completed.

06/0x06
SERVERDEVICE

BUSY

The server is engaged in processing a long-duration program command.

The client should retransmit the message later when the server is free.

07/0x07
NEGATIVE

ACKNOWLEDGE

The server cannot perform the program function received in the query.

This code is returned for an unsuccessful programming request using func-

tion code 13 or 14 decimal. The client should request diagnostic or error

information from the server.

08/0x08
MEMORY

PARITY ERROR

The server attempted to read extended memory, but detected a parity

error in the memory. The client can retry the request, but service may be

required on the server device.

10/0x0A
GATEWAY PATH

UNAVAILABLE

Specialized use in conjunction with gateways indicates that the gateway

was unable to allocate an internal communication path from the input port

to the output port for processing the request. This usually means that the

gateway is misconfigured or overloaded.

11/0x0B

GATEWAY

TARGET DEVICE

FAILED TO

RESPOND

Specialized use in conjunction with gateways indicates that no response

was obtained from the target device. This usually means that the device is

not present on the network.

Note: For this driver, the terms server and unsolicited are used interchangeably.

www.ptc.com

35



Modbus ASCII Serial Driver

Error Mask Definit ions
B = Hardware break detected
F = Framing error
E = I/O error
O = Character buffer overrun
R = RX buffer overrun
P = Received byte parity error
T = TX buffer full

www.ptc.com

36



Modbus ASCII Serial Driver

Index

5

5-Digit Addressing 27

6

6-Digit Addressing 27

A

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsupported

data type = '<type>'. 34

Address Descriptions 27

Allow Sub Groups 18

Array Support 29

Arrays 30

ASCII protocol 4

Attempts Before Timeout 15

Auto-Demotion 16

Auto-Dial 10

Automatic Tag Database Generation 25

B

Bad address in block. | Block range = <address> to <address>. 31

Bad array. | Array range = <start> to <end>. 31

Baud Rate 5, 9

BCD 26

Bit Mask 21

Block Read 19

Block request on device responded with exception. | Block Range = <address> to <address>, Exception =

<code>. 31

Block Sizes 18-19

Boolean 26

www.ptc.com

37



Modbus ASCII Serial Driver

C

Channel-Level Settings 12

Channel Assignment 13

Channel Properties — Advanced 11

Channel Properties — Communication Serialization 12

Channel Properties — General 6

Channel Properties — Serial Communications 8

Channel Properties — Write Optimizations 10

Close Idle Connection 9-10

Coils 19

COM ID 9

COM Port 8

Communications Timeouts 15

Concept 25

Connect Timeout 10, 15

Connection Type 8

Create 18

D

Daniels 5

Data Access 21

Data Bits 5, 9

Data Collection 14

Data Encoding 22

Data Types Description 26

Deactivate 23

Decimal 29

Delete 18

Demote on Failure 16

Demotion Period 16

Description truncated for record in import file. | Record number = <number>. 33

Device Properties — Auto-Demotion 16

Device Properties — Redundancy 24

Device Properties — Tag Generation 17

Device Properties — Timing 15

Diagnostics 6

www.ptc.com

38



Modbus ASCII Serial Driver

Discard Requests when Demoted 16

Do Not Scan, Demand Poll Only 15

Double 26

Driver 13

Drop 9

DTR 9

Duty Cycle 11

DWord 26

E

Elliot 5

Error Handling 23

Error Mask Definitions 36

Error opening file for tag database import. | OS error = '<error>'. 31

Error parsing record in import file. | Record number = <number>, Field = <number>. 33

Ethernet Encap. 8

Ethernet Encapsulation 5

Ethernet Settings 9

Event Log Messages 31

Exception code 2 23

Exception code 3 23

F

File exception encountered during tag import. 32

First DWord Low 22

First Word Low 22

Float 26

Flow Automation Addressing 30

Flow Computer Addressing 30

Flow Computer Registers 30

Flow Control 5, 9

Force Multiple Coils 30

Force Single Coil 29

Framing 36

Function 05 22

Function 06 21

www.ptc.com

39



Modbus ASCII Serial Driver

Function Codes Description 29

G

General 13

Generate 17

Global Settings 12

H

Hardware break 36

Hexadecimal 29

Holding Register 21

Holding Registers 27, 30

I

I/O error 36

ID 14

ID Format 14

Identification 6

Idle Time to Close 9-10

Illegal address 23

Import 19

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name =

'<tag>'. 33

Importing tag database. | Source file = '<path>'. 34

Include descriptions 20

Initial Updates from Cache 15

Input Coils 27, 30

Inter-Device Delay 12

Internal Registers 27, 30

L

LBCD 26

Load Balanced 13

Long 26

www.ptc.com

40



Modbus ASCII Serial Driver

LSB 22

M

Masked Write Register 30

Modbus ASCII Addressing 27

Modbus Byte Order 22

Modbus Exception Codes 35

Model 13

Modem 8, 10

Modem Settings 10

Modicon Bit Order 22

MSB 22

N

Network 5

Network 1 - Network 500 12

Network Adapter 10

Network Mode 13

Non-Normalized Float Handling 11

None 8

O

Omni 5

On Device Startup 17

On Duplicate Tag 18

On Property Change 17

OPC Client 4

Operation with no Communications 10

Operational Behavior 9

Optimization Method 10

Output Coils 27, 30

Overrun 36

Overview 4

Overwrite 18

www.ptc.com

41



Modbus ASCII Serial Driver

P

Packed Coil Tags 28

Parent Group 18

Parity 5, 9, 36

Physical Medium 8

Poll Delay 9

Preset Multiple Registers 30

Preset Single Register 29

Priority 13

Protocol 5

ProWORX 25

ProWORX programming application 25

R

Raise 9

Read Coil Status 29

Read Holding Registers 29

Read Input Status 29

Read Internal Registers 29

Read Processing 10

Received block length does not match expected length. | Received length = <number> (bytes), Expected

length = <number> (bytes). 31

Redundancy 24

Registers 19

Replace with Zero 11

Report Communication Errors 9-10

Request Timeout 15

Respect Tag-Specified Scan Rate 15

RS-485 9

RS232 5

RS485 5

RTS 9

RX buffer overrun 36

www.ptc.com

42



Modbus ASCII Serial Driver

S

Scan Mode 14

Serial Communications 8

Serial Port Settings 8

Serialization 5

Settings 21

Setup 5

Shared 8

Short 26

Simulated 14

Stop Bits 5, 9

String 26

String Support 28

Supported Devices 5

T

Tag Counts 6

Tag Generation 17

Tag import failed due to low memory resources. 32

Timeouts to Demote 16

Timing 15

Transactions per Cycle 12

TX buffer full 36

U

Unable to read from address on device. Device responded with exception. | Address = '<address>',

Exception = <code>. 32

Unable to write to address on device. Device responded with exception. | Address = '<address>', Excep-

tion = <code>. 32

Unmodified 11

V

Variable Import File 20, 25

Variable Import Settings 19, 25

www.ptc.com

43



Modbus ASCII Serial Driver

Virtual Network 12

W

Word 26

Write-Only Access 28

Write All Values for All Tags 11

Write Only Latest Value for All Tags 11

Write Only Latest Value for Non-Boolean Tags 11

Z

Zero-Based Addressing 21

Zero-Based Bit Addressing 21

www.ptc.com

44


	Modbus ASCII Serial Driver
	Table of Contents
	Modbus ASCII Serial Driver

	Overview
	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Serial Communications
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Communication Serialization
	Device Properties — General
	Device Properties — Scan Mode
	Device Properties — Timing
	Device Properties — Auto-Demotion
	Device Properties — Tag Generation
	Device Properties — Block Sizes
	Device Properties — Variable Import Settings
	Device Properties — Settings
	Device Properties — Error Handling
	Device Properties — Redundancy

	Automatic Tag Database Generation
	Data Types Description
	Address Descriptions
	Modbus ASCII Addressing
	Function Codes Description

	Flow Computer Addressing
	Flow Automation Addressing

	Event Log Messages
	Bad address in block. | Block range = <address> to <address>.
	Bad array. | Array range = <start> to <end>.
	Error opening file for tag database import. | OS error = '<error>'.
	Received block length does not match expected length. | Received length = <nu...
	Block request on device responded with exception. | Block Range = <address> t...
	Unable to write to address on device. Device responded with exception. | Addr...
	Unable to read from address on device. Device responded with exception. | Add...
	Tag import failed due to low memory resources.
	File exception encountered during tag import.
	Error parsing record in import file. | Record number = <number>, Field = <num...
	Description truncated for record in import file. | Record number = <number>.
	Imported tag name is invalid and has been changed. | Tag name = '<tag>', Chan...
	A tag could not be imported because the data type is not supported. | Tag nam...
	Importing tag database. | Source file = '<path>'.
	Modbus Exception Codes
	Error Mask Definitions


	Index

