
CODESYS Driver

© 2025 PTC Inc. All Rights Reserved.

CODESYS Driver

Table of Contents

CODESYS Driver 1

Table of Contents 2

CODESYS Driver 5

Overview 5

Setup 5

Channel Properties — General 6

Tag Counts 6

Channel Properties — Write Optimizations 7

Channel Properties — Advanced 7

Channel Properties — Communication Parameters 8

Device Discovery Procedure 8

Device Discovery Settings 9

Device Properties — General 9

Operating Mode 10

Tag Counts 11

Device Properties — Scan Mode 11

Device Properties — Auto-Demotion 11

Device Properties — Tag Generation 12

Automatic Tag Database Generation 13

Device Properties — Communication Parameters 15

Device Properties — User Credentials 17

Device Properties — Tag Import Settings 17

Device Properties — Redundancy 19

Performance Optimization 20

Data Types Description 21

Symbolic Tag-Based Addressing 22

Tag Scope 22

Tag Addressing 22

Nested Structures 23

Arrays 23

Array Elements 23

Bit Addressing 24

Access Privileges 24

Addressing Atomic Data Types 25

Event Log Messages 26

Tag generation failed because the device symbols could not be loaded. | Device = '<Chan-
nelName.DeviceName>'. 26

Tag generation failed because communications could not be established with the device. | Device =
'<ChannelName.DeviceName>'. 26

Tag generation failed because an unexpected failure occurred. | Device = '<Chan-
nelName.DeviceName>'. 26

Internal Error. An unexpected error occurred. Resetting the PLC connection. | Transaction info = 27

www. ptc.com

2

CODESYS Driver

'<Transaction Type and Details>'.

Device discovery failed because an unexpected failure occurred. 27

Error occurred while attempting to write tag. Unable to connect to the device. | Tag address = '<.my-
struct.innerstruct.tag>'. 27

Failed to browse tags. 27

Error occurred while attempting to connect to device. Failed to retrieve symbol list from device or file. 28

Internal error occurred while attempting to read tag. | Tag address = '<.mystruct.innerstruct.tag>'. 28

Internal error occurred while attempting to write tag. | Tag address = '<.mystruct.innerstruct.tag>'. 28

Error occurred while attempting to read tag. Unsupported data type or invalid address specified. | Tag
address = '<.mystruct.innerstruct.tag>', data type = '<type>'. 28

Error occurred while attempting to read tag. The specified tag address was not found on the device. |
Tag address = '<.mystruct.innerstruct.tag>'. 29

Error occurred while attempting to write tag. The specified tag address was not found on the device. |
Tag address = '<.mystruct.innerstruct.tag>'. 29

Error occurred while attempting to read tag. The specified server data type is not compatible with the
device data type. | Tag address = '<.mystruct.innerstruct.tag>', server data type = '<type>', device data
type = '<type>'. 29

Error occurred while attempting to write tag. The specified server data type is not compatible with the
device data type. | Tag address = '<.mystruct.innerstruct.tag>', server data type = '<type>', device data
type = '<type>'. 29

Internal error occurred while attempting to connect to device. The configuration provided is not valid. 30

The browse path contains invalid characters. 30

Error occurred while attempting to read tag. The array size must match between the server and device. |
Tag address = '<.mystruct.innerstruct.tag>', server array size = '<length>', device array size =
'<length>'. 30

Error occurred while attempting to write tag. The array size must match between the server and device. |
Tag address = '<.mystruct.innerstruct.tag>', server array size = '<length>', device array size =
'<length>'. 30

Tag browsing failed because communications could not be established with the device. 30

Error occurred while attempting to read tag. The specified tag address has a string length that is larger
than the maximum supported by the server. | Tag address = '<.mystruct.innerstruct.tag>', Max length =
'<number>' characters. 31

Error occurred while attempting to write tag. The specified tag address has a string length that is larger
than the maximum supported by the server. | Tag address = '<.mystruct.innerstruct.tag>', Max length =
'<number>' characters. 31

The browse path does not exist. 31

Tag browse request aborted due to unknown error. 31

The browse request was canceled because the driver has been stopped. 32

Data type for the given address is not supported. A tag is not generated for this data point. | Tag address
= '<.mystruct.innerstruct.tag>'. 32

The tag could not be added to the server because the address exceeds the maximum length. | Tag
address = '<.mystruct.innerstruct.tag>', Max length = '<1024>' characters. 32

The tag could not be added to the server because it failed address validation. | Tag address = '<.my-
struct.innerstruct.tag>'. 32

The value read from the string tag was truncated. | Tag address = '<.mystruct.innerstruct.tag>', max-
imum length = '<number>' characters. 33

The value written to the string tag was truncated. | Tag address = '<.mystruct.innerstruct.tag>', max-
imum length = '<number>' characters. 33

Devices across channels must have unique address (IP address or hostname) and port combinations. |
Address = '<number>', Port = '<number>', Overlapping device = '<device>'. 33

www. ptc.com

3

CODESYS Driver

Failed to open the symbol file. | File = '<path to file>'. 33

The file path cannot be empty. 33

The symbol file was invalid or corrupt. | File = '<path to file>'. 33

Error opening file for tag database import. | OS Error = '<OS Supplied Message>'. 34

Error occurred while attempting to write tag. The bit value exceeds the size of the controller data type. |
Tag address = '<.mystruct.innerstruct.tag>', bit value = '<bit location>', controller data type size (bytes) =
'<size in bytes>'. 34

Error occurred while attempting to read tag. The bit value exceeds the size of the controller data type. |
Tag address = '<.mystruct.innerstruct.tag>', bit value = '<bit location>', controller data type size (bytes) =
'<size in bytes>'. 34

Invalid address. Please enter a valid Logical Address or PLC Name. 34

Devices across channels must have unique Logical Address/PLC Names. | Address = '<address>',
Overlapping device = '<device>'. 34

Some of the imported tags replaced tags of the same name in your project. 34

Failed to open the symbol file. | File = '<path to file>', Reason = '<error message from operating sys-
tem>'. 34

The tag could not be included in the browse because the address exceeds the maximum length. | Tag
address = '<.mystruct.innerstruct.tag>', Max length = '<1024>' characters. 34

The tag could not be included in the browse because it failed address validation. | Tag address = '<.my-
struct.innerstruct.tag>'. 34

Failure browsing tags. | Reason = '<string indicating why the tag browse failed>'. 35

Tags generated. | Tag count = <count>. 35

Index 36

www. ptc.com

4

CODESYS Driver

CODESYS Driver
Help version 1.054

CONTENTS

Overview
What is the CODESYS Driver?

Channel Setup
How do I configure channels for use with this driver?

Device Setup
How do I configure a specific device to work with this driver?

Optimizing Communications
How do I get the best performance from the CODESYS Driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location on a CODESYS device?

Overview
The CODESYS Driver provides a reliable way to connect CODESYS-compliant controllers to client applications,
including HMI, SCADA, Historian, MES, ERP, and countless custom applications.

Setup

Communication Protocol
CODESYS V2.3 Ethernet over ARTI
CODESYS V3 Ethernet over ARTI
CODESYS Gateway for V2.3
CODESYS Gateway for V3
CODESYS Gateway for V3.5.18.0

Channel and Device Limits
The maximum number of channels supported by this driver is 1024. The maximum number of devices supported by
this driver is 256 per channel.

Tag Database Creation
The Automatic Tag Database Generation feature of this driver has been designed to make setting up the OPC
application less time consuming. This driver can be configured to automatically build a list of server tags within the
server that correspond to device-specific data. The automatically generated OPC tags can then be browsed from
the OPC client.

Device Timeouts
The driver does not support configurable timing parameters. These parameters are always set to the following val-
ues:

l Connect Timeout: 20 seconds
l Request Timeout: 10000 milliseconds
l Retry Attempts: 3 attempts

Note: This driver doesn’t allow configuration of the request timeout. This can result in a device taking a long time
to update the tag quality once connectivity is lost.

www. ptc.com

5

CODESYS Driver

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used in a
server project is called a channel. A server project may consist of many channels with the same communications
driver or with unique communications drivers. A channel acts as the basic building block of an OPC link. This group
is used to specify general channel properties, such as the identification attributes and operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information. The property is
required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during channel cre-
ation. It is a disabled setting in the channel properties. The property is required for creating a channel.

Note: With the server's online full-time operation, these properties can be changed at any time. This includes
changing the channel name to prevent clients from registering data with the server. If a client has already acquired
an item from the server before the channel name is changed, the items are unaffected. If, after the channel name
has been changed, the client application releases the item and attempts to re-acquire using the old channel name,
the item is not accepted. Changes to the properties should not be made once a large client application has been
developed. Utilize proper user role and privilege management to prevent operators from changing properties or
accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to OPC
applications. Because the server's diagnostic features require a minimal amount of overhead processing, it is
recommended that they be utilized when needed and disabled when not. The default is disabled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

www. ptc.com

6

CODESYS Driver

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given this goal,
the server provides optimization properties to meet specific needs or improve application responsiveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the controller.
In this mode, the server continues to gather write requests and add them to the server's internal write
queue. The server processes the write queue and attempts to empty it by writing data to the device as
quickly as possible. This mode ensures that everything written from the client applications is sent to the tar-
get device. This mode should be selected if the write operation order or the write item's content must
uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can accu-
mulate in the write queue due to the time required to actually send the data to the device. If the server
updates a write value that has already been placed in the write queue, far fewer writes are needed to reach
the same final output value. In this way, no extra writes accumulate in the server's queue. When the user
stops moving the slide switch, the value in the device is at the correct value at virtually the same time. As
the mode states, any value that is not a Boolean value is updated in the server's internal write queue and
sent to the device at the next possible opportunity. This can greatly improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize the

operation of HMI data without causing problems with Boolean operations, such as a momentary push but-
ton.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization mode
and applies it to all tags. It is especially useful if the application only needs to send the latest value to the
device. This mode optimizes all writes by updating the tags currently in the write queue before they are
sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for every
one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read operation.
Although the application is performing a large number of continuous writes, it must be ensured that read data is still
given time to process. A setting of one results in one read operation for every write operation. If there are no write
operations to perform, reads are processed continuously. This allows optimization for applications with continuous
writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the Advanced
group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as a
Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may default to
Unmodified. Non-normalized float handling allows users to specify how a driver handles non-normalized IEEE-754
floating point data. Descriptions of the options are as follows:

www. ptc.com

7

CODESYS Driver

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point values
with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-number, and
infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the option
that is displayed. According to the channel's float normalization setting, only real-time driver tags (such as values
and arrays) are subject to float normalization. For example, EFM data is not affected by this setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-Point
Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to the
next device after data is received from the current device on the same channel. Zero (0) disables the delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Communication Parameters
The Communication Parameters group is a collection of properties that configure communication parameters that
apply to all devices within the channel.

Communication Parameters

Keep Alive: Configure how many minutes the driver maintain an open connection with the device after all client ref-
erences are removed. If no client references are added before the timeout expires, the connection is closed. If a cli-
ent reference is added while the timer is active, the timeout is canceled, preventing the connection from being
closed.

Device Discovery Procedure
Device Discovery is available for drivers that support locating devices on the network. Once devices are found,
they may be added to a channel. The maximum number of devices that can be discovered at once is 65535.

www. ptc.com

8

CODESYS Driver

1. Select the channel in which devices should be discovered and added.

2. Right click on the channel node and select Device Discovery...

3. Specify the discovery properties, which are driver-specific, such as address range, timeout, discovery
scope.

4. Click OK.

5. Devices discovered populate the dialog with the following information / headings Device Name, ID,
Description.

6. If any discovered device is of interest, select the desired device(s) and click Add selected device(s)....

7. Click Close.

Device Discovery Settings
To discover devices, it is necessary to communicate with the network where the devices are located.

Use Gateway: Enable if discovery can occur through a network gateway.

Gateway Address: Specify the IP address or host name for the gateway server.

Gateway Port: Specify the port number through which to contact the gateway server

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers, users
must enter a device ID for each controller.

Identification

Name: Specify the name of the device. It is a logical user-defined name that can be up to 256 characters long and
may be used on multiple channels.

www. ptc.com

9

CODESYS Driver

Note: Although descriptive names are generally a good idea, some OPC client applications may have a limited
display window when browsing the OPC server's tag space. The device name and channel name become part of
the browse tree information as well. Within an OPC client, the combination of channel name and device name
would appear as "ChannelName.DeviceName".
For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server help.

Description: Specify the user-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: Specify the user-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: Specify the type of device that is associated with this ID. The contents of the drop-down menu depend on
the type of communications driver being used. Models that are not supported by a driver are disabled. If the com-
munications driver supports multiple device models, the model selection can only be changed when there are no cli-
ent applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model selection to the
physical device. If the device is not represented in the drop-down menu, select a model that conforms closest to the
target device. Some drivers support a model selection called "Open," which allows users to communicate without
knowing the specific details of the target device. For more information, refer to the driver documentation.

ID: Specify the device's driver-specific station or node. The type of ID entered depends on the communications
driver being used. For many communication drivers, the ID is a numeric value. Drivers that support a Numeric ID
provide users with the option to enter a numeric value whose format can be changed to suit the needs of the applic-
ation or the characteristics of the selected communications driver. The format is set by the driver by default.
Options include Decimal, Octal, and Hexadecimal.

Note: If the driver is Ethernet-based or supports an unconventional station or node name, the device's TCP/IP
address may be used as the device ID. TCP/IP addresses consist of four values that are separated by periods, with
each value in the range of 0 to 255. Some device IDs are string based. There may be additional properties to con-
figure within the ID field, depending on the driver.

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are enabled by
default, this property can be used to disable a physical device. Communications are not attempted when a device is
disabled. From a client standpoint, the data is marked as invalid and write operations are not accepted. This prop-
erty can be changed at any time through this property or the device system tags.

Simulated: Place the device into or out of Simulation Mode. In this mode, the driver does not attempt to com-
municate with the physical device, but the server continues to return valid OPC data. Simulated stops physical com-
munications with the device, but allows OPC data to be returned to the OPC client as valid data. While in
Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated device is read
back and each OPC item is treated individually. The data is not saved if the server removes the item (such as when
the server is reinitialized). The default is No.

Notes:
1. Updates are not applied until clients disconnect and reconnect.

2. The System tag (_Simulated) is read only and cannot be written to for runtime protection. The System tag allows
this property to be monitored from the client.

3. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for OPC clients
or Scan Rate for native and DDE interfaces). This means that two clients that reference the same item with dif-
ferent update rates return different data.

4. When a device is simulated, updates may not appear faster than one (1) second in the client.

www. ptc.com

10

CODESYS Driver

 Simulation Mode is for test and simulation purposes only. It should never be used in a production environment.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

Device Properties — Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device communications.
Synchronous and asynchronous device reads and writes are processed as soon as possible; unaffected by the
Scan Mode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions of the
options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan rate.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is increased,

the changes take effect immediately. When the scan rate value is decreased, the changes do not take
effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for subscribed
clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the device nor
perform a read to get an item's initial value once it becomes active. It is the OPC client's responsibility to
poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device reads for individual
items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified in
their static configuration tag properties. Dynamic tags are scanned at the client-specified scan rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for newly activ-
ated tag references from stored (cached) data. Cache updates can only be provided when the new item reference
shares the same address, scan rate, data type, client access, and scaling properties. A device read is used for the
initial update for the first client reference only. The default is disabled; any time a client activates a tag reference the
server attempts to read the initial value from the device.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not responding.
By placing a non-responsive device offline for a specific time period, the driver can continue to optimize its com-
munications with other devices on the same channel. After the time period has been reached, the driver re-
attempts to communicate with the non-responsive device. If the device is responsive, the device is placed on-scan;
otherwise, it restarts its off-scan time period.

www. ptc.com

11

CODESYS Driver

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted system tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the device
is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is reached. Dur-
ing this period, no read requests are sent to the device and all data associated with the read requests are set to bad
quality. When this period expires, the driver places the device on-scan and allows for another attempt at com-
munications. The valid range is 100 to 3600000 milliseconds. The default is 10000 milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the off-scan
period. Disable to always send write requests regardless of the demotion period. Enable to discard writes; the
server automatically fails any write request received from a client and does not post a message to the Event Log.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation. Select
communications drivers can be configured to automatically build a list of tags that correspond to device-specific
data. These automatically generated tags (which depend on the nature of the supporting driver) can be browsed
from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and uses the
data to generate tags within the server. If the device does not natively support named tags, the driver creates a list
of tags based on driver-specific information. An example of these two conditions is as follows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the tag
names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/O module types, the communications
driver automatically generates tags in the server that are based on the types of I/O modules plugged into
the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more information,
refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the On
Property Change option is shown. It is set to Yes by default, but it can be set to No to control over when tag gen-
eration is performed. In this case, the Create tags action must be manually invoked to perform tag generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as fol-
lows:

www. ptc.com

12

CODESYS Driver

l Do Not Generate on Startup: This option prevents the driver from adding any OPC tags to the tag space of
the server. This is the default setting.

l Always Generate on Startup: This option causes the driver to evaluate the device for tag information. It
also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup: This option causes the driver to evaluate the target device for tag information
the first time the project is run. It also adds any OPC tags to the server tag space as needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save from
the Tools | Options menu.

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to do with
the tags that it may have previously added or with tags that have been added or modified after the communications
driver since their original creation. This setting controls how the server handles OPC tags that were automatically
generated and currently exist in the project. It also prevents automatically generated tags from accumulating in the
server.

For example, if a user changes the I/O modules in the rack with the server configured to Always Generate on Star-
tup, new tags would be added to the server every time the communications driver detected a new I/O module. If the
old tags were not removed, many unused tags could accumulate in the server's tag space. The options are:

l Delete on Create: This option deletes any tags that were previously added to the tag space before any
new tags are added. This is the default setting.

l Overwrite as Necessary: This option instructs the server to only remove the tags that the communications
driver is replacing with new tags. Any tags that are not being overwritten remain in the server's tag space.

l Do not Overwrite: This option prevents the server from removing any tags that were previously generated
or already existed in the server. The communications driver can only add tags that are completely new.

l Do not Overwrite, Log Error: This option has the same effect as the prior option, and also posts an error
message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the communications
driver as well as any tags that have been added using names that match generated tags. Users should avoid
adding tags to the server using names that may match tags that are automatically generated by the driver.

Parent Group: This property keeps automatically generated tags from mixing with tags that have been entered
manually by specifying a group to be used for automatically generated tags. The name of the group can be up to
256 characters. This parent group provides a root branch to which all automatically generated tags are added.

Allow Automatically Generated Subgroups: This property controls whether the server automatically creates sub-
groups for the automatically generated tags. This is the default setting. If disabled, the server generates the
device's tags in a flat list without any grouping. In the server project, the resulting tags are named with the address
value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system auto-

matically increments to the next highest number so that the tag name is not duplicated. For example, if the gen-
eration process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been modified,
Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be accessed from the
System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Automatic Tag Database Generation

l When tags are automatically generated, they are created with Client Access privileges matching the access
privileges provided by the PLC wherever possible.

l Tags with Write Only privileges are generated with Read/Write Client Access privileges because there is no
Write Only Client Access setting in the server.

l Tags that do not have Read or Write permissions are not generated as there is no corresponding access
privilege in the server.

www. ptc.com

13

CODESYS Driver

l According to the CODESYS V2.3 Protocol, addresses must be defined in a PLC Program variable list or a
Global variable list. The first group is always the location of the variable (Global or the name of PLC Pro-
gram where the tag is defined).

l Arrays are always expanded during tag generation, meaning that a tag is created for each element in the
array. No tag is generated for the array itself.

l When Allow Automatically Generated Subgroups is enabled, subgroups are created for each segment of
a tag address, with a maximum depth of eight groups. The tag name is the part of the address left over after
subgroups have been created.

l When array elements are generated, provided the nested group limit has not been reached, the tags are
placed in a group named after the array to which they belong.

CODESYS V2.3 Examples

Tag Address Groups Tag Name
.myTag Global myTag

PLC_PRG.myTag PLC_PRG myTag

.myStruct.myArray[0] Global.myStruct.myArray[x] myArray[0]

PLC_PRG.myStruct.myArray[0] PLC_PRG.myStruct.myArray[x] myArray[0]

.group1…group7.myTag Global.group1…group7 Group7_myTag

CODESYS V3 Examples

Tag Address Groups Tag Name
Application.GVL.myTag Application.GVL myTag

Application.PLC_PRG.myTag Application.PLC_PRG myTag

Application.GVL.myStruct.myArray[0] Application.GVL.myStruct.myArray
[x] myArray[0]

Application.PLC_PRG.myStruct.myAr-
ray[0]

Application.PLC_
PRG.myStruct.myArray[x] myArray[0]

Application.GVL.group1…group6.myTag Application.GVL.group1…group6 Group6_myTag

Tip: To make it easier to read, Groups have been concatenated together using periods (similar to how a user
would access the tag via an OPC DA/UA client).

See Also: Tag Import Settings

www. ptc.com

14

CODESYS Driver

Device Properties — Communication Parameters
Communication parameters are properties used for establishing a connection to the device.

Communication Parameters

Address Type: Specify the type of address to use to connect to the device (V3 Model only).

Address: Specify the logical address or the PLC name for the device (V3 Model only).

IP Address / Hostname: Specify the IP address or hostname for the target device. Only IP Addresses are valid for
V3 devices.

Port: Specify the Ethernet / IP port number on the target device.

Protocol: Specify the protocol in use in this device.

Request Timeout: Specify how long the driver waits for a response from the target device to complete. The valid
range is 4,000 to 9,999,999 milliseconds (167.6667 minutes). The default is 10,000 milliseconds. Valid for V2.3
Model only.

Layer 7 Motorola Byte Order: Specify if Layer 7 uses the Motorola byte order (Big Endian).

Device Motorola Byte Order: Specify if the target device uses the Motorola byte order (Big Endian). In most cases,
this is set to the same value as Layer 7 Motorola Byte Order.

PLC Login: Specify if the driver should stay logged into the PLC after connecting. This setting should be disabled if
the PLC only supports a single client connection, otherwise it should be enabled.

Target ID: Specify the identity if this is a sub-PLC device. PLCs that require communications to be routed through
another PLC are called sub-PLCs. The target ID provides additional address information required to communicate
with sub-PLCs. When not communicating with a sub-PLC, this setting should be 0.

www. ptc.com

15

CODESYS Driver

ELAU-Max4 Version: Specify the hardware revision of the target PLC. This value should be disabled except when
the device is an ELAU Max 4 1100 or 1200.

The IP address and port combination must be unique across all devices, even under different channels. Most
CODESYS PLCs do not support parallel communication channels, so there is no performance gain by pointing mul-
tiple channels at the same CODESYS PLC. Currently, copying and pasting a channel in the server creates a device
with the same IP address and port combination. All devices under the channel that have been copied should be
changed to remove any IP address and port combination overlaps. Undefined behavior may occur if these col-
lisions are not resolved.

Symbol Parameters (V2.3 Only)

Load Symbols From: Specify where the driver should look for device symbols.

l File: loads the symbols file as specified by the Symbol File property. When this option is selected, the
Symbol File property must specify the full file name, including path and extension (.sdb) to the symbol file.

l Device: loads the symbols from the device on every connect or reconnect attempt. This is the default
option.

l Device and Cache: loads the symbols from the local cache directory as specified by the Symbol Cache
Location property. When this option is selected, the Symbol Cache Location property must specify the full
directory path to the local cache location.

Symbol File: This property is required if the Load Symbols From property has the Fileoption selected. Specify the
full file name, including path, to use if the symbol file cannot be stored on the device. This symbol file must match
the symbols stored on the device. If the symbols do not match, communications with the device fails.

Symbol Cache Location: This property is required if the Load Symbols From property has the Device and Cache
option selected. Specify the local directory location where the device symbols are cached. For use with devices
that store symbols. If the symbol file size is large or the network has poor quality and / or bandwidth, use this prop-
erty to avoid the overhead of a symbol copy over the network on every connect or reconnect attempt. The directory
path, if specified, must end with a backslash (\).

Performance Tips:

l Enable Device and Cache to avoid potential network congestion due to symbols being copied over the
network.

l When using the Device and Cache setting:
o The Symbol Cache Location should be unique for each device.
o Copying symbol files into place at project configuration avoids the symbol copy on the initial

connect.

Gateway Parameters

Use Gateway: Specify if a gateway should be used when connecting to the device.

Gateway Address: Specify the IP address or hostname for the gateway.

Gateway Port: Specify the port for the gateway.

Gateway Password: Specify the password for the gateway (V2.3 Model only).

 Device connection via a gateway requires that the CODESYS Gateway be installed on the same host as the
server. If the CODESYS Gateway is not installed on the same server as the host, reading a tag results in a “Device
is not responding” message in the event log. This only applies to configurations including the V2.3 Ethernet model.

 Device connection via a gateway requires that initial communications be serialized. If devices are configured
under different channels, they connect to the gateway one at a time. After the initial connection, communications
stop being serialized. This only applies to configurations including the V2.3 Ethernet model.

Performance

Tags per Request: Maximum number of tags to include in a single request. For each single request, there is some
service overhead. In general, it is better to handle several items in one request instead of request each item

www. ptc.com

16

CODESYS Driver

separately. However, requesting many items in one request causes the round-trip time (answer time) to rise.
Depending on the application, it may be better to split up huge lists in several small requests.

Note: The number of writes per request is limited based on the Duty Cycle specified in the channel settings.

Strings

Allow Extended ASCII: Specify whether to enable or disable strings with extended ASCII characters. The default is
disabled (V2.3 Model only).

Device Properties — User Credentials
CODESYS V3 devices have the option to require authentication. If authentication is required, the Username and
Password properties need to be configured with the correct settings to connect. These settings are not available for
V2.3 devices.

Username: Specify the name of the account to use for authentication. The maximum length supported for a user
name is 254 characters.

Password: Specify the password associated with the specified user name. The maximum length supported for a
password is 251 characters.

Device Properties — Tag Import Settings
Tag Import Settings are properties used for tag generation.

Tag Import Settings

Tag Generation Method: Tags can be imported in one of two ways. Select Online to import tags from a device on
a network visible to the driver at the time of import. Select Offline to import tags without a device connection by
providing the server with the corresponding plain-text symbol (.SYM) file created when the CODESYS project is
compiled.

Tag Generation File: Specify the path and file name of a symbol file to import. To locate and select the .SYM file,
click on the Browse (...) button. This property is disabled if Online is chosen as the import method.
Tip: Once the file is selected, start tag generation using the Create Tags command in the Tag Generation group.

Tag Browse: Click Select Tags to Import... to invoke the Add Tags dialog to navigate to and select tags.

Tag Browser

www. ptc.com

17

CODESYS Driver

The Tag Browser is used to navigate to and select the tags on the current device to be imported.
In addition to the graphical Tag Browser, a Tag Browser service is provided so users may search a device for

tags using the Configuration API Service.
For more information on how to use the Configuration API Service, consult the server help.

Browsing: Provides a tree that represents the device tag hierarchy, including all tags and tag groups on the device.
Multiple tags may be selected, but only one tag group may be selected at a time.

Tags to Add: A list of all the tags to be added under this device in the project.

Leaf Filter: Limits the items shown in the Browsing tree to only those that match the filter. Click Apply to refresh the
tag list with the filter enabled.
For more information on syntax, see the table below.

Automatically Generate Subgroups: Controls whether the server automatically creates groups for the browsed
tags.
See Also: Allow Automatically Generated Subgroups under Tag Generation for more information.

>>: All selected tags in the browsing tree are added to the Tags to Add list. If a tag group is selected, all tags under
that branch are added.
Note: Depending on the project size and complexity, it is possible that adding a tag group could take up to an

hour. An example would be adding a group that contains many nested subgroups.

<<: Removes all selected tags from the Tags to Add list.
Note: The user must have permission to add tags, delete tags, and to add tag groups to use the Tag Browser.

Filter Syntax

The filter allows the browser to reduce the items displayed to those which match a pattern. The filter only supports
ASCII characters. The syntax supported is documented in the table below.

Characters in Pattern Matches in String

?
Any single character
Example: ? matches “a”, “!”, “3”, etc. It does not match “aa” or “ok” as those strings
have two characters versus one.

*
Zero or more characters
Example: *server matches “server”, “cloud server”, and “OPC server” ...not “OPC
Server” or “erver”.

#
Any single digit (0-9)
Example: # matches “0”, “1”, “2”; not “a” or “z”.

[charlist]
Any single character in the list.
Example: [a-c] matches “a”, “b”, or “c”; not any other characters including “A” “B”

www. ptc.com

18

CODESYS Driver

Characters in Pattern Matches in String
and “C”.

[!charlist]
Any single character not in the list.
Example: [!a-c] matches “d”, “e”, “A”, and “B”; not “a”, “b”, or “c”.

Device Properties — Redundancy

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

www. ptc.com

19

https://ptc-p-001.sitecorecontenthub.cloud/api/public/content/e96f85a9eef84807b06504cdd95b1084?v=3b0e1d04

CODESYS Driver

Performance Optimization

Optimizing Communications
With any programmable controller, there are unique ways for optimizing system throughput, and the CODESYS
Driver is no different. The CODESYS Driver is designed to optimize reads and writes. For tags of all data types,
requests are grouped into a single transaction. This provides drastic improvement in performance over single-tag
transactions. The only limitation is on the number of tags that can fit in a single transaction.

Optimizing the Application
While the driver is fast, there are a couple of guidelines to optimizing the application for maximum performance.
Communications protocols like CODESYS are referred to as channels. Each channel defined in the application rep-
resents a separate path of execution in the server. Once a channel has been defined, a series of devices may then
be defined under that channel. Each of these devices represents a single CODESYS controller from which data
can be collected. This approach to defining the application provides a high level of performance, it doesn't take full
advantage of the driver or the network. An example of how the application may appear when configured using a
single channel is shown below.

In this example, each device appears under a single channel. In this configuration, the
driver must move from one device to the next as quickly as possible to gather inform-
ation at an effective rate. As more devices are added or more information is requested
from a single device, the overall update rate begins to suffer.

If the CODESYS Driver could only define a single channel, the example above would be the only option. However,
the driver can define up to 1024 channels. Using multiple channels distributes the data collection workload by sim-
ultaneously issuing multiple requests to the network. An example of how the same application may appear when
configured using multiple channels to improve performance is shown below.

Each device is defined under its own channel. In this configuration, a single path of exe-
cution is dedicated to the task of gathering data from each device. If the application has
1024 or fewer devices, it can be optimized exactly as shown here.

The performance improves even if the application has more devices. While fewer devices
may be ideal, the application still benefits from additional channels. Spreading the device
load across all channels causes the server to move from device to device again with far
fewer devices to process on a single channel.

www. ptc.com

20

CODESYS Driver

Data Types Description

Data Type Description
Boolean Single bit

Byte Unsigned 8-bit value

Char Signed 8-bit value

Word Unsigned 16-bit value

Short Signed 16-bit value

DWord Unsigned 32-bit value

Long Signed 32-bit value

QWord Unsigned 64-bit value

Long Long Signed 64-bit value

Float 32-bit IEEE floating point value

Double 64-bit IEEE floating point value

Date 64-bit IEEE date and time value

String Null-terminated character array

For a description of CODESYS-platform specific data types, refer to CODESYS data types.

Unsupported Data Types
Unsupported data types include LBCD and BCD.

See Also: Address Descriptions, Atomic Data Types

www. ptc.com

21

https://help.codesys.com/webapp/_cds_struct_reference_datatypes;product=codesys;version=3.5.17.0

CODESYS Driver

Symbolic Tag-Based Addressing
The CODESYS Driver uses a symbolic addressing structure for tags. These tags (commonly referred to as Native
Tags) differ from conventional PLC data items in that the tag name itself is the address, not a physical or logical
address.

Client / Server Tag Address Rules
CODESYS variable names correspond to client / server tag addresses. CODESYS variable names (entered via
CODESYS PLC) follow the IEC 61131-3 identifier rules. Client / server tag addresses follow these same rules and
are listed below:

l Must begin with an alphabetic (A-Z, a-z) character or an underscore (_).
l Can only contain alphanumeric characters and underscores.
l Are not case sensitive.

Client / Server Tag Name Rules
The rules for tag name assignment in the server differs from address assignment because tag names cannot begin
with an underscore.

Tag Scope

Global Tags
Global tags are CODESYS variables that have global scope in the controller. Any program or task can access the
global tags, which use the following notation:

.<tag name>

.<struct name>.<tag name>

Note: Structures can be nested within other structures, so a tag name may be prefixed by multiple structure
entries (<outer struct>.<inner struct>.<my tag>).

Program Tags
Program tags are identical to global tags, except that a program tag's scope is local to the program in which it is
defined. Program tags have the same addressing rules and limitations as global tags. The only difference is that
program tags are prefixed with the program name:
<program name>.<tag name>
OR
<program name>.<outer struct>.<inner struct>.<tag name>

Example:
“prog_1.tag_1”: Program “prog_1” containing a tag called “tag_1”

Tag Addressing

CODESYS V2.3
There are two categories of variables supported by CODESYS: global and private. Each of these categories has a
slightly different format. The following tables provides examples of the different CODESYS variables and their cor-
responding server addressing syntax.

Address Type Address Syntax
Global variable .MyTag

Global variable within a struct* .MyStruct.MyTag

Global bit within variable .MyTag.[0]

Private variable Program.MyTag

Private variable within a struct* Program.MyStruct.MyTag

Private bit within a variable Program.MyTag.[0]

www. ptc.com

22

CODESYS Driver

* Multiple levels of structs are supported (up to eight levels deep).

CODESYS V3
There are two categories of variables supported by CODESYS: global and private. Each of these categories has a
slightly different format. The following tables provides examples of the different CODESYS variables and their cor-
responding server addressing syntax.

Address Type Address Syntax
Global variable Application.GVL.MyTag

Global variable within a struct* Application.GVL.MyStruct.MyTag

Global bit within variable Application.GVL.MyTag.[0]

Private variable Application Program.MyTag

Private variable within a struct* Application Program.MyStruct.MyTag

Private bit within a variable Application Program.MyTag.[0]

* Multiple levels of structs are supported (up to eight levels deep).

Nested Structures
Symbolic tags have the potential to be nested deep within any number of structures (i.e. .Struct1.
Struct2.Struct3.Struct4.Struct5.Struct6.Struct7.Struct8.Struct9.tag). To keep the tag hierarchy from becoming
overly complex due to nested structures, Automatic Tag Generation prevents the server from generating tags more
than eight groups deep. If the tag’s hierarchy on the device exceeds eight groups, the remaining groups are placed
in the tag name. For automatically generated tags, the first group is either GLOBAL or the Program Organization
Unit (POU) name.

Notes:

1. This only applies when the Allow Automatically Generated Subgroups property is set to Enabled.

2. The symbol file contains data points for structures as a whole represented as a byte array. The server does
not support these tags.

Arrays
The CODESYS Driver supports arrays for all basic types, as well as user-defined structures. This driver has partial
support for the arrays that can be defined in a PLC. Both one- and two-dimensional arrays are supported for all
types, except Strings and Structures. Strings and Structures must be accessed using the array element syntax.
Neither three-dimensional arrays nor nested arrays can be read as arrays. They must be accessed element by ele-
ment using the array element syntax.

It is necessary to provide the size of each of the array dimensions. The array size in the server must match the
array size in the PLC to read or write the array. See the table below for several examples.

Address Type Address Syntax
Global 1D Array (10 elements) .myArray{10}

Private 1D Array (100 elements) PLC_PRG.myArray {100}

Global 2D Array (9 elements) .myArray{3}{3}

Private 2D Array (25 elements) PLC_PRG.myArray {5}{5}

Note: The maximum number of elements supported by an array is 65535.

Array Elements
If reading an entire array is not necessary or supported, it is possible to directly access a particular array element.
Element access is available for one, two, and three-dimensional arrays as well as nested arrays. See the table
below for example address syntax. It is important to note that while Structures must be accessed as array ele-

www. ptc.com

23

CODESYS Driver

ments, they must be accessed using each of their member variables because reading an entire structure as a
single tag is not supported by OPC.

Address Type Address Syntax
One-Dimensional Array Element .myArray[0]

Two-Dimensional Array Element .myArray[1,7]

Three-Dimensional Array Element .myArray[2,4,5]

Nested Array Element (5 Levels) .myNestedArray[1][0][4][5][9]

Nested 3D Array (2 Levels) .my3DNestedArray[4,8,1][3,2,0]

Note: Non-zero indexed arrays, arrays with a first element not beginning at zero, are supported. Example: To
have the first element of a 1-indexed 1D array, use .myArray[1] as the address.

Bit Addressing
The CODESYS Driver supports bit addressing for the following controller data types: USINT, SINT, BYTE, UINT,
INT, WORD, UDINT, DINT, and DWORD. Bit addressing provides access to a single bit within a 1, 2, or 4, byte
data type in the controller.

When writing to a bit tag, the driver reads the contents of the data type in the controller, changes the value of the
bit being written, and writes the entire contents of the data type back out to the controller. This is also known as
read/modify/write (RMW) behavior.

Address Type Address Syntax
Global bit variable Application.GVL.MyTag.[0]

Global bit variable within a struct Application.GVL.MyStruct.MyTag.[1]

Private bit variable .Program.MyTag.[2]

Private bit variable within a struct .Program.MyStruct.MyTag.[2]

Global bit variable in an array element Application.GVL.MyArray[0].[5]

Note: The bit value inside the brackets for bit addresses can range from 0 to 31.

Unions
The CODESYS Driver supports the union data structure when communicating with a V3 device. All components
defined in the union share the same memory.

 A value change to one variable in the union affects all other variables in the union, regardless of data type.

Access Privileges
Each tag described by a program’s symbol file has specific access privileges: None, Read, Write, or Both (Read +
Write). These privileges tell the server how the PLC program intends for each tag with which a client interacts, but
these privileges can be overridden by the server. This is supported through the Client Access property on each tag.
If a tag in the server is configured as Read Only, regardless of the Access Privileges reported by the device, the
server only allows clients to perform Read operations. If the tag is configured as Read/Write, regardless of the
access privileges reported by the device, clients can Read and Write to the tag.

When a user performs automatic tag generation, the tags are configured with the correct client access based on
the access privileges reported by the device. There are two cases where this does not occur.

Write Only: Tags that report as being Write Only are generated as Read/Write tags with both Read and Write per-
missions as there is no Write Only setting for client access.

None: Tags that report as having permissions None are not supported either through automatic tag generation or
through manual tag creation because there is no client access setting that can correctly represent this access priv-
ilege.

www. ptc.com

24

CODESYS Driver

Addressing Atomic Data Types
The table below shows the available CODESYS data types and the OPC equivalents.

Atomic Data Type (CODESYS Type) OPC Data Type
BOOL Boolean

USINT Byte, Char

SINT Byte, Char

BYTE Byte, Char

UINT Short, Word

INT Short, Word

WORD Short, Word

DWORD DWord, Long

UDINT DWord, Long

DINT DWord, Long

ULINT QWord, Long Long

LINT QWord, Long Long

LWORD QWord, Long Long

REAL Float

LREAL Double

TIME DWord

TIME_OF_DAY DWord

LTIME QWord

DATE DWord, Date

DATE_AND_TIME DWord, Date

STRING String

WSTRING String

ENUM Short, Word

BIT Boolean

Unsupported CODESYS Data Types
The only unsupported data type is pointer.

See Also: Address Descriptions

www. ptc.com

25

CODESYS Driver

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Consult the
OPC server help on filtering and sorting the Event Log detail view. Server help contains many common messages,
so should also be searched. Generally, the type of message (informational, warning) and troubleshooting inform-
ation is provided whenever possible.

Tip: Messages that originate from a data source (such as third-party software, including databases) are presen-
ted through the Event Log. Troubleshooting steps should include researching those messages online and in
vendor documentation.

Tag generation failed because the device symbols could not be loaded. | Device =
'<ChannelName.DeviceName>'.
Error Type:
Error

Possible Cause:
The automatic tag generation operation failed because the server could not access the symbol information on the
device.

Possible Solution:

1. Verify that the device is capable of storing its own symbol information. Some devices do not have this cap-
ability, requiring symbol information to be manually exported and accessed by the server.

2. Ensure that the device communication parameters are correctly configured in the server.

Tag generation failed because communications could not be established with the
device. | Device = '<ChannelName.DeviceName>'.
Error Type:
Error

Possible Cause:
The automatic tag generation operation failed because the server was unable to connect to the device.

Possible Solution:

1. Ensure that the device communication parameters are correctly configured in the server.

2. Check the physical connection between the server and the device.

3. If connecting to the device via a gateway, verify that the CODESYS Gateway is installed on the same host
as the server.

Tag generation failed because an unexpected failure occurred. | Device = '<Chan-
nelName.DeviceName>'.
Error Type:
Error

Possible Cause:
The automatic tag generation operation failed due to an unknown reason.

Possible Solution:

www. ptc.com

26

CODESYS Driver

1. Ensure that the device communication parameters are correctly configured in the server.

2. Check the physical connection between the server and the device.

3. Ensure the device is functioning properly.

4. Contact technical support.

Internal Error. An unexpected error occurred. Resetting the PLC connection. |
Transaction info = '<Transaction Type and Details>'.
Error Type:
Error

Possible Cause:
An unknown error occurred.

Possible Solution:
Attempt the operation again or contact technical support.

Device discovery failed because an unexpected failure occurred.
Error Type:
Error

Possible Cause:
The device discovery operation failed due to an unknown reason.

Possible Solution:

1. Check the physical connection between the server, gateway if one is being used, and the devices.

2. Ensure the devices, and gateway if one is being used, are functioning properly.

3. Contact technical support.

Error occurred while attempting to write tag. Unable to connect to the device. | Tag
address = '<.mystruct.innerstruct.tag>'.
Error Type:
Error

Possible Cause:
The server failed to connect to the device.

Possible Solution:

1. Ensure that the device communication parameters are correctly configured in the server.

2. Check the physical connection between the server and the device.

3. If connecting to the device via a gateway, verify that the CODESYS Gateway is installed on the same host
as the server.

Failed to browse tags.
Error Type:
Error

www. ptc.com

27

CODESYS Driver

Error occurred while attempting to connect to device. Failed to retrieve symbol list
from device or file.
Error Type:
Error

Possible Cause:

1. The server could not access the symbol information on the device.

2. The symbols do not match between the device and the specified symbol file in the device communication
parameters.

Possible Solution:

1. Verify that the device is capable of storing its own symbol information. Some devices do not have this cap-
ability, and a symbol file must be specified in the device communication parameters.

2. Ensure that the device communication parameters are correctly configured in the server.

Internal error occurred while attempting to read tag. | Tag address = '<.my-
struct.innerstruct.tag>'.
Error Type:
Error

Possible Cause:
The read failed due to an unknown reason.

Possible Solution:
Contact technical support.

Internal error occurred while attempting to write tag. | Tag address = '<.my-
struct.innerstruct.tag>'.
Error Type:
Error

Possible Cause:

1. Non-ASCII characters were written to the string tag.

2. The write failed due to an unknown reason.

Possible Solution:

1. Only write ASCII characters to the string tag.

2. Contact technical support.

Error occurred while attempting to read tag. Unsupported data type or invalid
address specified. | Tag address = '<.mystruct.innerstruct.tag>', data type =
'<type>'.
Error Type:
Error

Possible Cause:

www. ptc.com

28

CODESYS Driver

1. The specified data type is not supported.

2. The specified address is not valid.

Possible Solution:
Ensure that the correct data type and address are specified.

Error occurred while attempting to read tag. The specified tag address was not
found on the device. | Tag address = '<.mystruct.innerstruct.tag>'.
Error Type:
Error

Possible Cause:
The tag address was not found on the device.

Possible Solution:

1. Verify that the correct address is specified.

2. Verify that the address exists on the device.

Error occurred while attempting to write tag. The specified tag address was not
found on the device. | Tag address = '<.mystruct.innerstruct.tag>'.
Error Type:
Error

Possible Cause:
The tag address was not found on the device.

Possible Solution:

1. Verify that the correct address is specified.

2. Verify that the address exists on the device.

Error occurred while attempting to read tag. The specified server data type is not
compatible with the device data type. | Tag address = '<.mystruct.innerstruct.tag>',
server data type = '<type>', device data type = '<type>'.
Error Type:
Error

Possible Cause:
The specified server data type is not compatible with the device data type.

Possible Solution:
Change the server data type to one that is compatible with the device data type for this address.

Error occurred while attempting to write tag. The specified server data type is not
compatible with the device data type. | Tag address = '<.mystruct.innerstruct.tag>',
server data type = '<type>', device data type = '<type>'.
Error Type:
Error

Possible Cause:

www. ptc.com

29

CODESYS Driver

The specified server data type is not compatible with the device data type.

Possible Solution:
Change the server data type to one that is compatible with the device data type for this address.

Internal error occurred while attempting to connect to device. The configuration
provided is not valid.
Error Type:
Error

Possible Cause:
The configuration provided is not valid.

Possible Solution:
Contact technical support.

The browse path contains invalid characters.
Error Type:
Error

Possible Cause:
The path specified by the user contained non-ascii characters.

Possible Solution:
Remove all invalid characters.

Error occurred while attempting to read tag. The array size must match between
the server and device. | Tag address = '<.mystruct.innerstruct.tag>', server array
size = '<length>', device array size = '<length>'.
Error Type:
Error

Possible Cause:
The array size does not match between the server and device.

Possible Solution:
Specify the same array size for both the server and device.

Error occurred while attempting to write tag. The array size must match between
the server and device. | Tag address = '<.mystruct.innerstruct.tag>', server array
size = '<length>', device array size = '<length>'.
Error Type:
Error

Possible Cause:
The array size does not match between the server and device.

Possible Solution:
Specify the same array size for both the server and device.

Tag browsing failed because communications could not be established with the
device.
Error Type:

www. ptc.com

30

CODESYS Driver

Error

Possible Cause:
The tag browse operation failed because the server was unable to connect to the device.

Possible Solution:

1. Ensure that the device communication parameters are correctly configured in the server.

2. Check the physical connection between the server and the device.

3. If connecting to the device via a gateway, verify that the CODESYS Gateway is installed on the same host
as the server.

Error occurred while attempting to read tag. The specified tag address has a string
length that is larger than the maximum supported by the server. | Tag address =
'<.mystruct.innerstruct.tag>', Max length = '<number>' characters.
Error Type:
Error

Possible Cause:
The corresponding tag on the device has a string length larger than the maximum supported by the server.

Possible Solution:
Shorten the string length of the tag on the device to a value that is supported by the server.

Error occurred while attempting to write tag. The specified tag address has a string
length that is larger than the maximum supported by the server. | Tag address =
'<.mystruct.innerstruct.tag>', Max length = '<number>' characters.
Error Type:
Error

Possible Cause:
The corresponding tag on the device has a string length larger than the maximum supported by the server.

Possible Solution:
Shorten the string length of the tag on the device to a value that is supported by the server.

The browse path does not exist.
Error Type:
Error

Possible Cause:
The user supplied an invalid path.

Possible Solution:

1. Verify the path is valid for the target device.

2. Verify the device is properly programmed.

Tag browse request aborted due to unknown error.
Error Type:
Error

Possible Cause:

www. ptc.com

31

CODESYS Driver

1. The runtime is shutting down.

2. An unknown error was encountered.

Possible Solution:

1. Retry the tag browse operation.

2. Contact Tech Support if the issue persists.

The browse request was canceled because the driver has been stopped.
Error Type:
Error

Possible Cause:
The license or evaluation period for this driver has expired.

Possible Solution:
Verify the driver is properly licensed.

Data type for the given address is not supported. A tag is not generated for this
data point. | Tag address = '<.mystruct.innerstruct.tag>'.
Error Type:
Warning

Possible Cause:
This is caused by having an unsupported data type in the PLC program.

Possible Solution:
Verify that the tag is the correct data type in the programming software. Correct or use a different data type (sup-
ported by the server) or data the unsupported type contains is not accessible.

The tag could not be added to the server because the address exceeds the max-
imum length. | Tag address = '<.mystruct.innerstruct.tag>', Max length = '<1024>'
characters.
Error Type:
Warning

Possible Cause:
This is caused by having a tag address in the PLC program that exceeds the maximum length supported by the
server.

Possible Solution:
Restructure the PLC program so that the tag address is shorter than the maximum length.

The tag could not be added to the server because it failed address validation. | Tag
address = '<.mystruct.innerstruct.tag>'.
Error Type:
Warning

Possible Cause:
The tag address is malformed or is not supported by the server.

Possible Solution:

www. ptc.com

32

CODESYS Driver

1. Verify the integrity of the symbol file or make a correction before trying again.

2. Verify or correct the tag address before trying again.

The value read from the string tag was truncated. | Tag address = '<.my-
struct.innerstruct.tag>', maximum length = '<number>' characters.
Error Type:
Warning

Possible Cause:
The value read from the string tag was longer than the buffer size reported by the device.

Possible Solution:
Restart the server runtime.

The value written to the string tag was truncated. | Tag address = '<.my-
struct.innerstruct.tag>', maximum length = '<number>' characters.
Error Type:
Warning

Possible Cause:
The value written to the string tag was longer than the buffer on the device.

Possible Solution:

1. Write a value that has a length less than or equal to the buffer on the device.

2. Make the buffer on the device large enough to fit the value being written.

Devices across channels must have unique address (IP address or hostname) and
port combinations. | Address = '<number>', Port = '<number>', Overlapping device
= '<device>'.
Error Type:
Warning

Possible Cause:
The address and port combination has already been used for another device.

Possible Solution:
Change the address and/or port for this device.

Failed to open the symbol file. | File = '<path to file>'.
Error Type:
Warning

The file path cannot be empty.
Error Type:
Warning

The symbol file was invalid or corrupt. | File = '<path to file>'.
Error Type:
Warning

www. ptc.com

33

CODESYS Driver

Error opening file for tag database import. | OS Error = '<OS Supplied Message>'.
Error Type:
Warning

Error occurred while attempting to write tag. The bit value exceeds the size of the
controller data type. | Tag address = '<.mystruct.innerstruct.tag>', bit value = '<bit
location>', controller data type size (bytes) = '<size in bytes>'.
Error Type:
Warning

Error occurred while attempting to read tag. The bit value exceeds the size of the
controller data type. | Tag address = '<.mystruct.innerstruct.tag>', bit value = '<bit
location>', controller data type size (bytes) = '<size in bytes>'.
Error Type:
Warning

Invalid address. Please enter a valid Logical Address or PLC Name.
Error Type:
Warning

Devices across channels must have unique Logical Address/PLC Names. |
Address = '<address>', Overlapping device = '<device>'.
Error Type:
Warning

Some of the imported tags replaced tags of the same name in your project.
Error Type:
Warning

Failed to open the symbol file. | File = '<path to file>', Reason = '<error message
from operating system>'.
Error Type:
Warning

The tag could not be included in the browse because the address exceeds the
maximum length. | Tag address = '<.mystruct.innerstruct.tag>', Max length =
'<1024>' characters.
Error Type:
Warning

Possible Cause:
This is caused by having a tag address in the PLC program that exceeds the maximum length supported by the
server.

Possible Solution:
Restructure the PLC program so that the tag address is shorter than the maximum length.

The tag could not be included in the browse because it failed address validation. |
Tag address = '<.mystruct.innerstruct.tag>'.
Error Type:

www. ptc.com

34

CODESYS Driver

Warning

Possible Cause:
The tag address is malformed or is not supported by the server.

Possible Solution:

1. Verify the integrity of the symbol file or make a correction before trying again.

2. Verify or correct the tag address before trying again.

Failure browsing tags. | Reason = '<string indicating why the tag browse failed>'.
Error Type:
Warning

Possible Cause:

1. The tag browse operation failed because the server was unable to connect to the device.

2. The supplied path is invalid.

3. The server could not access the symbol information on the device.

4. The symbols do not match between the device and the specified symbol file in the device communication
parameters.

Possible Solution:

1. Ensure that the device communication parameters are correctly configured in the server.

2. Check the physical connection between the server and the device.

3. If connecting to the device via a gateway, verify that the CODESYS Gateway is installed on the same host
as the server.

4. Verify the path is valid for the target device.

5. Verify the device is properly programmed.

6. Verify that the device is capable of storing its own symbol information. Some devices do not have this cap-
ability, and a symbol file must be specified in the device communication parameters.

Tags generated. | Tag count = <count>.
Error Type:
Informational

www. ptc.com

35

CODESYS Driver

Index

A

Access Privileges 24

Address 15

Address Rules 22

Addressing Atomic Data Types 25

Allow Extended ASCII 17

Allow Sub Groups 13

Array Elements 23

Arrays 23

Auto-Demotion 11

B

BIT 25

Bit Addressing 24

BOOL 25

Boolean 21

Byte 15, 21

BYTE 25

Byteorder 15

C

Cache 16

Channel Assignment 10

Channel Properties — Advanced 7

Channel Properties — General 6

Channel Properties — Write Optimizations 7

Char 21

Client / Server 22

Client Access 24

Communication Parameters 8, 15

Create 13

D

Data Collection 10

Data type for the given address is not supported. A tag is not generated for this data point. | Tag address =
'<.mystruct.innerstruct.tag>'. 32

Data Types Description 21

www. ptc.com

36

CODESYS Driver

Date 21

DATE 25

DATE_AND_TIME 25

Delete 13

Demote on Failure 12

Demotion Period 12

Device 16

Device Discovery 8

Device discovery failed because an unexpected failure occurred. 27

Device Discovery Settings 9

Device Properties — Auto-Demotion 11

Device Properties — General 9

Device Properties — Redundancy 19

Device Properties — Tag Generation 12

Devices across channels must have unique address (IP address or hostname) and port combinations. |
Address = '<number>', Port = '<number>', Overlapping device = '<device>'. 33

Devices across channels must have unique Logical Address/PLC Names. | Address = '<address>', Overlapping
device = '<device>'. 34

Diagnostics 6

DINT 25

Discard Requests when Demoted 12

Do Not Scan, Demand Poll Only 11

Double 21

Driver 10

Duty Cycle 7

DWord 21

DWORD 25

E

ELAU-Max4 Version 16

Endian 15

ENUM 25

Error occurred while attempting to connect to device. Failed to retrieve symbol list from device or file. 28

Error occurred while attempting to read tag. The array size must match between the server and device. | Tag
address = '<.mystruct.innerstruct.tag>', server array size = '<length>', device array size = '<length>'. 30

Error occurred while attempting to read tag. The bit value exceeds the size of the controller data type. | Tag
address = '<.mystruct.innerstruct.tag>', bit value = '<bit location>', controller data type size (bytes) =
'<size in bytes>'. 34

Error occurred while attempting to read tag. The specified server data type is not compatible with the device
data type. | Tag address = '<.mystruct.innerstruct.tag>', server data type = '<type>', device data type =
'<type>'. 29

Error occurred while attempting to read tag. The specified tag address has a string length that is larger than the
maximum supported by the server. | Tag address = '<.mystruct.innerstruct.tag>', Max length = '<num-
ber>' characters. 31

Error occurred while attempting to read tag. The specified tag address was not found on the device. | Tag
address = '<.mystruct.innerstruct.tag>'. 29

www. ptc.com

37

CODESYS Driver

Error occurred while attempting to read tag. Unsupported data type or invalid address specified. | Tag address =
'<.mystruct.innerstruct.tag>', data type = '<type>'. 28

Error occurred while attempting to write tag. The array size must match between the server and device. | Tag
address = '<.mystruct.innerstruct.tag>', server array size = '<length>', device array size = '<length>'. 30

Error occurred while attempting to write tag. The bit value exceeds the size of the controller data type. | Tag
address = '<.mystruct.innerstruct.tag>', bit value = '<bit location>', controller data type size (bytes) =
'<size in bytes>'. 34

Error occurred while attempting to write tag. The specified server data type is not compatible with the device
data type. | Tag address = '<.mystruct.innerstruct.tag>', server data type = '<type>', device data type =
'<type>'. 29

Error occurred while attempting to write tag. The specified tag address has a string length that is larger than the
maximum supported by the server. | Tag address = '<.mystruct.innerstruct.tag>', Max length = '<num-
ber>' characters. 31

Error occurred while attempting to write tag. The specified tag address was not found on the device. | Tag
address = '<.mystruct.innerstruct.tag>'. 29

Error occurred while attempting to write tag. Unable to connect to the device. | Tag address = '<.my-
struct.innerstruct.tag>'. 27

Error opening file for tag database import. | OS Error = '<OS Supplied Message>'. 34

Event Log Messages 26

F

Failed to browse tags. 27

Failed to open the symbol file. | File = '<path to file>', Reason = '<error message from operating system>'. 34

Failed to open the symbol file. | File = '<path to file>'. 33

Failure browsing tags. | Reason = '<string indicating why the tag browse failed>'. 35

Float 21

G

Gateway 16

General 9

Generate 13

Global 22-23

Global bit 24

Global Tags 22

H

Help Contents 5

Hostname 15

I

ID 10

www. ptc.com

38

CODESYS Driver

Identification 6, 9

Initial Updates from Cache 11

INT 25

Inter-Device Delay 8

Internal error occurred while attempting to connect to device. The configuration provided is not valid. 30

Internal error occurred while attempting to read tag. | Tag address = '<.mystruct.innerstruct.tag>'. 28

Internal error occurred while attempting to write tag. | Tag address = '<.mystruct.innerstruct.tag>'. 28

Internal Error. An unexpected error occurred. Resetting the PLC connection. | Transaction info = '<Transaction
Type and Details>'. 27

Invalid address. Please enter a valid Logical Address or PLC Name. 34

K

Keep Alive 8

L

Layer 7 15

LINT 25

Load Symbols 16

Long 21

Long Long 21

LREAL 25

LTIME 25

LWORD 25

M

Method 17

Model 10

Motorola 15

N

Name 9

Nested Structures 23

Non-Normalized Float Handling 7

None 24

O

On Device Startup 12

www. ptc.com

39

CODESYS Driver

On Duplicate Tag 13

On Property Change 12

Operating Mode 10

Optimization Method 7

Order 15

Overview 5

Overwrite 13

OWord 21

P

Parent Group 13

Password 17

Performance Optimization 20

PLC 15

Port 15

Private 22-23

Private bit 24

Program Tags 22

Protocol 5, 15

R

Read, Write 24

Read/Write 24

REAL 25

Redundancy 19

Replace with Zero 8

Request Timeout 15

Respect Tag-Specified Scan Rate 11

S

Scan Mode 11

Setup 5

Short 21

Signed 21

Simulated 10

SINT 25

Some of the imported tags replaced tags of the same name in your project. 34

String 21

STRING 25

Symbol Cache Location 16

www. ptc.com

40

CODESYS Driver

Symbol File 16

Symbolic 22

T

Tag Addressing 22

Tag browse request aborted due to unknown error. 31

Tag browsing failed because communications could not be established with the device. 30

Tag Counts 6, 11

Tag Generation 12

Tag generation failed because an unexpected failure occurred. | Device = '<ChannelName.DeviceName>'. 26

Tag generation failed because communications could not be established with the device. | Device = '<Chan-
nelName.DeviceName>'. 26

Tag generation failed because the device symbols could not be loaded. | Device = '<Chan-
nelName.DeviceName>'. 26

Tag Import Settings 17

Tag Scope 22

Tags generated. | Tag count = <count>. 35

Tags per Request 16

Target 15

The browse path contains invalid characters. 30

The browse path does not exist. 31

The browse request was canceled because the driver has been stopped. 32

The file path cannot be empty. 33

The symbol file was invalid or corrupt. | File = '<path to file>'. 33

The tag could not be added to the server because it failed address validation. | Tag address = '<.my-
struct.innerstruct.tag>'. 32

The tag could not be added to the server because the address exceeds the maximum length. | Tag address =
'<.mystruct.innerstruct.tag>', Max length = '<1024>' characters. 32

The tag could not be included in the browse because it failed address validation. | Tag address = '<.my-
struct.innerstruct.tag>'. 34

The tag could not be included in the browse because the address exceeds the maximum length. | Tag address
= '<.mystruct.innerstruct.tag>', Max length = '<1024>' characters. 34

The value read from the string tag was truncated. | Tag address = '<.mystruct.innerstruct.tag>', maximum length
= '<number>' characters. 33

The value written to the string tag was truncated. | Tag address = '<.mystruct.innerstruct.tag>', maximum length
= '<number>' characters. 33

TIME 25

TIME_OF_DAY 25

Timeouts to Demote 12

U

UDINT 25

UINT 25

ULINT 25

www. ptc.com

41

CODESYS Driver

Unmodified 8

Unsigned 21

Unsupported 21, 25

User Credentials 17

Username 17

USINT 25

V

V2.3 17

V3 17

W

Word 21

WORD 25

Write All Values for All Tags 7

Write Only Latest Value for All Tags 7

Write Only Latest Value for Non-Boolean Tags 7

WSTRING 25

www. ptc.com

42

	CODESYS Driver
	Table of Contents
	CODESYS Driver
	Overview
	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Communication Parameters
	Device Discovery Procedure
	Device Discovery Settings

	Device Properties — General
	Operating Mode
	Tag Counts

	Device Properties — Scan Mode
	Device Properties — Auto-Demotion
	Device Properties — Tag Generation
	Automatic Tag Database Generation

	Device Properties — Communication Parameters
	Device Properties — User Credentials
	Device Properties — Tag Import Settings
	Device Properties — Redundancy

	Performance Optimization
	Data Types Description
	Symbolic Tag-Based Addressing
	Tag Scope
	Tag Addressing
	Nested Structures
	Arrays
	Array Elements
	Bit Addressing
	Access Privileges
	Addressing Atomic Data Types

	Event Log Messages
	Tag generation failed because the device symbols could not be loaded. | Devic...
	Tag generation failed because communications could not be established with th...
	Tag generation failed because an unexpected failure occurred. | Device = '<Ch...
	Internal Error. An unexpected error occurred. Resetting the PLC connection. |...
	Device discovery failed because an unexpected failure occurred.
	Error occurred while attempting to write tag. Unable to connect to the device...
	Failed to browse tags.
	Error occurred while attempting to connect to device. Failed to retrieve symb...
	Internal error occurred while attempting to read tag. | Tag address = '<.myst...
	Internal error occurred while attempting to write tag. | Tag address = '<.mys...
	Error occurred while attempting to read tag. Unsupported data type or invalid...
	Error occurred while attempting to read tag. The specified tag address was no...
	Error occurred while attempting to write tag. The specified tag address was n...
	Error occurred while attempting to read tag. The specified server data type i...
	Error occurred while attempting to write tag. The specified server data type ...
	Internal error occurred while attempting to connect to device. The configurat...
	The browse path contains invalid characters.
	Error occurred while attempting to read tag. The array size must match betwee...
	Error occurred while attempting to write tag. The array size must match betwe...
	Tag browsing failed because communications could not be established with the ...
	Error occurred while attempting to read tag. The specified tag address has a ...
	Error occurred while attempting to write tag. The specified tag address has a...
	The browse path does not exist.
	Tag browse request aborted due to unknown error.
	The browse request was canceled because the driver has been stopped.
	Data type for the given address is not supported. A tag is not generated for ...
	The tag could not be added to the server because the address exceeds the maxi...
	The tag could not be added to the server because it failed address validation...
	The value read from the string tag was truncated. | Tag address = '<.mystruct...
	The value written to the string tag was truncated. | Tag address = '<.mystruc...
	Devices across channels must have unique address (IP address or hostname) and...
	Failed to open the symbol file. | File = '<path to file>'.
	The file path cannot be empty.
	The symbol file was invalid or corrupt. | File = '<path to file>'.
	Error opening file for tag database import. | OS Error = '<OS Supplied Messag...
	Error occurred while attempting to write tag. The bit value exceeds the size ...
	Error occurred while attempting to read tag. The bit value exceeds the size o...
	Invalid address. Please enter a valid Logical Address or PLC Name.
	Devices across channels must have unique Logical Address/PLC Names. | Address...
	Some of the imported tags replaced tags of the same name in your project.
	Failed to open the symbol file. | File = '<path to file>', Reason = '<error m...
	The tag could not be included in the browse because the address exceeds the m...
	The tag could not be included in the browse because it failed address validat...
	Failure browsing tags. | Reason = '<string indicating why the tag browse fail...
	Tags generated. | Tag count = <count>.

	Index

