

SESSION ID: CA1522C

ART OF POSSIBLE: GENERATIVE DESIGN AND LATTICE STRUCTURES

SPEAKER(s): Andreas Vlahinos

CTO, Advanced Engineering Solutions

Jose Coronado Product Management Director, PTC

MAY 15, 2023

LIVEWORX.COM | #LIVEWORX

ARKen for Dock Market Marke

AND IN AN ADDRESS OF A

Andreas Vlahinos

CTO, Advanced Engineering Solutions

Product Management Director, PTC

Taxonomy of Lattice Structures

- OptimizationWorkflow
- Simulation-driven lattices in Creo
- Special cases

Taxonomy of Lattice Structures

- OptimizationWorkflow
- Simulation-driven lattices in Creo
- Special cases

WHAT NATURE CAN TEACH US ABOUT STRENGTH, ENERGY ABSORPTION AND LIGHT WEIGHING ?

TAXONOMY OF LATTICE STRUCTURES IN NATURE

TAXONOMY OF LATTICE STRUCTURES IN CREO

On Surface Lattice Periodic Triangle, Square, Hexagon, Octagon, etc. Stochastic Voronoi Tessellation Delaunay Triangulation Uniform Spatially Varied Triangle, Square, Hexagon, Octagon, etc. Stochastic Voronoi Tessellation Uniform Spatially Varied	2 1/2 D Lattice Periodic Cartesian Trimmed Triangle, Square, Hexa Octagon, etc. Cartesian Conformal Edge Polar Herringbone
Iriangulation	Rocket Nozzle with Ribs
3D Beam Lattice Periodic Cartesian, Triangle, Square, Hexaç Octagon, etc. Polar Stochastic Voronoi Tessellation Delaunay Triangulation Uniform Spatially Varied	3D Surface Lattice TPMS Periodic Uniform thickness Variable thickness Variable cell size Spatially Varied Examples: Gyroids, Diamonds, Octets, Lidinoid, Schwarz D, Schwarz P, Neovius,

WHAT ARE THE CHALLENGES IN SIMULATING LATTICE GEOMETRIES?

Challenges

- Massive tet element size
 - Required to capture the small geometry details
- Interoperability
 - TPMS are using explicit or voxelbased kernels not (B-rep) without neutral file format (STEP, Parasolid) exports
- Integration with Generative Design
 - GD tools can't use a TPMS geometry as a design space

Solutions

- Geometric Representation
 - Full Geometry
 - Simplified
 - Homogenized
- Real Time Simulation
 - Use & Understand Voxel geometry
- Generative Design
 - Use Homogenized Material properties,
 - Simulation Driven lattice sizing

Taxonomy of Lattice Structures

OptimizationWorkflow

- Simulation-driven lattices in Creo
- Special cases

OPTIMIZATION WORKFLOW TO MINIMIZE WEIGHT AND MEET PERFORMANCE REQUIREMENTS

PERFORM A SENSITIVITY ANALYSIS TO DETERMINE THE REQUIRED CELL THICKNESS TO MINIMIZE THE DEFLECTION TO 0.1 MM

COMPARE DISPLACEMENTS FOR VARIOUS LATTICES - GYROID

THE GYROID INFILL

COMPARE DISPLACEMENTS – PRIMITIVE LATTICE

COMPARE DISPLACEMENTS - DIAMOND LATTICE

SENSITIVITY OF WING TIP DEFLECTION TO VERTICAL GYROID CELL HEIGHT

OPTIMIZATION SETUP MINIMIZE WEIGHT WITH DEFLECTION CONSTRAINT

The Avenue	Optimization/Feasibility				
we wun opnions					
2 🗧 🖬 🕴 ✓					
Study Type/Name Optimization 	O Feasi	bility			
Name OPTIM1					
Goal	PROP 4				
Minimize MASSIMASS	PROP_1		12		
Design Constraints					
Parameter O	p Value				
Add Delete					
Add Delete Design Variables					
Add Delete Design Variables Variable	Min	Max			
Add Delete Design Variables Variable Cell_vertical:LATTICE_SELECTION	Min 0.450000	Max 0.550000			
Add Delete Design Variables Variable Cell_vertical:LATTICE_SELECTION Cell_lateral:LATTICE_SELECTION	Min 0.450000 0.675000	Max 0.550000 0.825000			
Add Delete Design Variables Variable Cell_vertical:LATTICE_SELECTION Cell_lateral:LATTICE_SELECTION Cell_longitudinal:LATTICE_SELECTION	Min 0.450000 0.675000 0.675000	Max 0.550000 0.825000 0.825000			
Add Delete Design Variables Variable Cell_vertical:LATTICE_SELECTION Cell_lateral:LATTICE_SELECTION Cell_longitudinal:LATTICE_SELECTION d47:LATTICE_SELECTION	Min 0.450000 0.675000 0.018000	Max 0.550000 0.825000 0.825000 0.022000			
Add Delete Design Variables Variable Cell_vertical:LATTICE_SELECTION Cell_lateral:LATTICE_SELECTION Cell_longitudinal:LATTICE_SELECTION d47:LATTICE_SELECTION Add Dimension Add Parameter.	Min 0.450000 0.675000 0.018000	Max 0.550000 0.825000 0.825000 0.022000			

Design Variables are the 4 dimensions of the unit cell

LIVE DEMONSTRATION – DESIGN EXPLORATION

PRESSURE DROP OPTIMIZATION OF A MOLD CAVITY

PRESSURE DROP OPTIMIZATION OF A MOLD CAVITY STEAMLINES

PRESSURE DROP OPTIMIZATION OF A MOLD CAVITY VELOCITY DISTIBUTION

PRESSURE DROP OPTIMIZATION OF A MOLD CAVITY PRESSURE DISTRIBUTION

PRESSURE DROP OPTIMIZATION OF A MOLD CAVITY

Taxonomy of Lattice Structures

- OptimizationWorkflow
- Simulation-driven lattices in Creo
- Special cases

LATTICE VARIABILITY USING GEOMETRIC REFERENCES

EVOLUTION OF SIMULATION-DRIVEN LATTICE MODELLING CREO CONTINUES TO FOCUS ON INNOVATING LATTICE MODELLING

LATTICE VARIABILITY BASED ON SIMULATION RESULTS. - PROCESS -

results ARRANGE AND A STREET ST imilation Simulation Probe Report Query * Accumulate Data ◎ / 范 言 > ▲ 日 > Saved Analysis Export Numerical Results 1 = 4 **Export Numerical Results** Export result values to a file, using uniformly distributed sampling points Enter number of points to probe [QUIT]: 250 🗸 🗴 New file name VMStress X 250 SIM VORONOI2.CSV Type Creo Simulation Live Data (*.csv)

Export

simulation

OK

Simulate a part

Add lattice with variability based on simulation results

Body Options

P References

C:\Users\jcoronado\Documents\PTC Folders\9 Creo

Properties

Simulation

Weight factor

1.00

Stress Cutoffs

Min: 0.000000

Max: 0.000000

🔁 Refresh

Density

Simulation

Case name

Volume Fraction

Average: 0.50

Min:

Max:

Stress_X_20_4014042_PEDAL.CSV

0.05

0.95

Variability based on:

🚫 Uniform

• Get a smart infill and validate results using simulation

SIMULATION SUPPORT FOR LATTICE

Lattice type	Lattice representation	Creo Simulate	CSL	Ansys Simulation	Creo Flow Analysis
Beams	Full geometry	\checkmark	\checkmark	\checkmark	\checkmark
	Simplified	\checkmark	\checkmark	Х	~
Beams	Homogenized	✓ (static and modal analysis)	X	X	Х
2.5D	Full geometry	✓	\checkmark	\checkmark	\checkmark
	Simplified	\checkmark	\checkmark	Х	\checkmark
Formula Driven	Voxelized	Х	\checkmark	Х	\checkmark
🕤 Custom	Full geometry	\checkmark	\checkmark	\checkmark	\checkmark
	Simplified	Х	\checkmark	Х	\checkmark

Taxonomy of Lattice Structures

- OptimizationWorkflow
- Simulation-driven lattices in Creo
- Special cases

ROCKET NOZZLE WITH COOLING CHANNELS

THE NEW AUXETIC LATTICE, NORMAL TO THE SURFACE

CUSTOM CELL

A Creo model with only straight lines

A model with quilts

CHIRAL. LOOP-LIKE CELL

A Creo Solid Model

A Creo Solid Model

METAMATERIALS WITH CREO LATTICE MODELLING

A metamaterial (from the Greek word μετά meta, meaning "beyond" or "after", and the Latin word materia, meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials.

Please fill out the session survey.

Take your post-session survey(s) either in the event mobile app or via email post-event.

Your feedback provides us with valuable information on how to shape future content strategy for the event!

PROVIDE SESSION FEEDBACK

 mar.eliale
 272413 / Audit

 mar.augut
 033/11/24 / 043/04

 mar.augut
 033/11/24 / 043/04

 mar.augut
 033/11/24 / 043/04

 mar.augut
 03/11/24 / 043/04

 mar.augut
 04/14 / 043/04

THANKYOU

LIVEWORX.COM | #LIVEWORX

ptc.com

