
1

Title Goes Here

1

Testing and Simulation with PTC Perc®
Real-Time Java®

Introduction

This White Paper describes the benefits of using PTC Perc real-time Java for Testing and Simulation of complex
software-defined products.

Testing Complex Software-Defined Products

Today’s high-technology products, from smartphones to automobiles to unmanned aircraft, are increasingly
“software defined.” Their capabilities and features are determined largely by software rather than physical hardware.
Even when additions and improvements are made to hardware, the end-user experience of those changes is often
shaped by software. Higher resolution cameras are added to smartphones with each new model, but the “wow
factor” comes from improved sensitivity, noise reduction, and other enhancements performed by software during
image post-processing. Advanced Driver Assistance Systems (ADAS) use sensors to detect obstacles and identify
driver errors but the AI-based decision making is done in software.

More software means more lines of code, which means more chances for programming errors to sneak past quality
assurance processes and into the hands of a potentially unhappy customer. And in the case of safety critical systems,
the customer’s happiness is not the only concern.

When tens of thousands or millions of lines of code are involved, traditional quality assurance methodologies fall
short. It takes too long to test all possible operational conditions, failure modes, edge cases, and rare events with

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

22

human-driven testing. Some conditions can be
difficult to reproduce in a lab (anyone have an altitude
chamber?). The sheer volume of test cases requires
an automated process. In other words, we must use
software to test software.

Automated Software Testing
Methodologies

Automated testing is most effective when it begins
with Model-Based Design (MBD). Before mechanical,
electronic, or software designs begin, MBD helps
developers conceive and visualize the product, codify
system requirements, and analyze implementation
trade-offs. The models created become the
foundational “source of truth” for subsequent planning,
architecture, design, implementation, testing, and
production phases of a product.

Testing via Model Simulation

An important advantage of Model-Based Design is
the “divide and conquer” approach that arises from
it. Modeling the system allows developers to think
about how to partition it into components and define
internal states and data within each component as
well as interactions among them. From this approach,
hardware and software architecture can begin
to emerge.

Many MBD tools provide simulated execution of
models while logging results for analysis. “Model-
in-the-Loop” (MiL) testing is a major feature of these
tools. Developers can validate and refine their models
long before hardware or software prototypes are
designed and built.

Code Generation and Software
Simulation

After a period of MiL development to refine models
and create test cases, MBD tools such as PTC’s
Modeler and Codebeamer products can generate
code from models. This allows developers to
move from pure model-based simulation to
running software that implements those models
in a programming language like Java. The benefits
of using high-level Java rather than C or C++ are
productivity and portability across platforms. Test
Engineers can quickly build and run Java-based
“Software-in-the-Loop” (SiL) simulations on desktops,
servers, or embedded computers before target
hardware becomes available. Communications
with simulated or physical sensors, actuators, and
other model components are exchanged over a
network using low-level protocols or a publish/
subscribe messaging system such as Data
Distribution Service (DDS).

When a physical component of the system
becomes available, developers can integrate with
SiL components for “Hardware-in-the-Loop” (HiL)
testing. This facilitates realistic stress testing of
mechanical and electrical components before final
down-selections.

The evolution of an automated simulation and testing
environment from MiL to SiL to HiL and combinations
thereof provide developers with opportunities
to identify and correct errors and deficiencies in

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

33

requirements, models, architecture, hardware, and
software early in the life cycle rather than postponing
that effort until prototypes are available. It also
provides time to create a comprehensive library
of test cases and verification data to apply to the
final product.

Where Traditional Java Runs
Out of Steam

While the Java language and ecosystem make
for a highly productive and portable environment,
traditional Java Virtual Machines have a weakness
when it comes to simulated testing: they can’t do
real time. From unpredictable pauses for garbage
collection and Just-in-Time (JIT) compilation to
uncontrolled thread scheduling and page faults, there
is no way a traditional JVM can guarantee it will meet
timing deadlines. While running test cases that would
normally fail if a software-simulated component
doesn’t respond within a deadline, traditional Java
misses the mark. Developers are forced to settle for
low-level C/C++ with its incumbent longer coding and
debugging cycles, memory safety problems, and
portability issues. This slows the process of building
and maintaining a robust simulation and testing
environment. But it doesn’t have to be that way.

Where PTC Perc Shines

PTC Perc is a Java Virtual Machine and developer tool
chain purpose-built to bring all the benefits of the Java
language to systems with sub-millisecond real-time
latency requirements. It runs power plants, robotic
oil rigs, and weapons control systems. And it can run
Java-based Software-in-the-Loop simulations with
deterministic timing.

How is that possible? A common belief among
software developers is that Java cannot do real time.
Just because Oracle Java and OpenJDK suffer from
unpredictable pauses caused by garbage collection,
JIT compilation, and non-deterministic thread
scheduling doesn’t mean every Java Virtual Machine
must behave that way.

PTC Perc is designed for applications that require
deterministic behavior. Always. Automatic garbage
collection (GC) is key to Java’s memory safety and
Perc’s GC can reclaim memory held by dead objects
and compact live objects to make room for new
allocations even while Java threads continue running.
Perc’s GC parallel worker threads run concurrently
with Java threads and high-priority Java threads can
preempt a GC worker at any time.

But there’s more. Traditional JVMs interrupt Java
programs to JIT-compile or optimize code at
unpredictable times, delaying execution of that code.
PTC Perc allows developers to compile Java code to
native instructions Ahead-of-Time (AOT), bypassing
the JIT compiler entirely and improving application
startup time.

Traditional JVMs let the Operating System decide
when to run Java threads. Yes, the Java libraries allow
setting thread priority, but this is little more than a hint
for scheduling. Operating System schedulers differ
greatly and often attempt to “fairly” allocate CPU
time based on a thread’s usage history. This violates

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

44

fundamental real-time design principles where thread
priority is sacrosanct. PTC Perc, on the other hand,
has a built-in dispatcher that assigns Linux real-time
scheduling policies, priorities, and CPU core affinities
to running threads. It allocates available cores to
threads on a strict priority basis. It also implements
priority inheritance protocol to eliminate priority
inversions among Java threads.

It’s Time to Consider
a Better Way

Are you tired of chasing bugs and crashes in your
C/C++ simulations when you could have spent that
time running them? Isn’t it time to build a modern
testing and simulation environment using a memory
safe, modular, scalable, and deterministic Java Virtual
Machine? If you would like to learn more about what
PTC Perc can offer, check us out at ptc.com/perc

© 2025, PTC Inc. (PTC). All rights reserved. Information described herein is furnished for informational use only, is subject to change without notice, and should not be taken
as a guarantee, commitment, or offer by PTC. PTC, the PTC logo, and all PTC product names and logos are trademarks or registered trademarks of PTC and/or its subsidiaries
in the United States and other countries. All other product or company names are property of their respective owners. The timing of any product release, including any
features or functionality, is subject to change at PTC’s discretion.

695902_Testing_and_Simulation_with_PTC_Perc_Real-Time_ Java_Whitepaper_05_25

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo
http://www.ptc.com/perc

