Revision 1.2

& '|'C® Randy Rorden
v Software Development Director

PTC, Inc.

Java Garbage Collection

One of the best features of the Java' Virtual Machine is automatic garbage collection. For the most part, Java
programmers don't have to worry about managing memory for objects created by their applications. When the
application no longer has any references to an object, the JVM automatically deletes it and reclaims the memory it
occupied for future allocations. Compare this to C and C++ applications, which must keep track of memory allocated
with malloc or new and return it to the system explicitly using free or delete. Failing to de-allocate memory can
cause the application's memory footprint to increase over time (@ memory leak), resulting in a crash or the process
getting killed by the operating system. The worst kind of memory leak is a small one because it adds just a few bytes
at atime, often under circumstances that are not easily reproduced or noticed during testing. The worst place for a
memory leak is in an embedded system, where the application may run for years without restarting, slowly absorbing
a critical resource, until it fails.

How a Java GC Works

There are many different Garbage Collector (GC) algorithms in use today by Java VMs as well as other language
runtimes such as Python, Go, .NET, and Ruby. The Java 11 VM offers a choice of four different GC algorithms, but they
all perform the same basic tasks:

- |dentify unused (dead) objects in memory
+ Reclaim the memory occupied by the dead objects
- Defragment memory by moving live objects

The most common technique used to identify unused objects and reclaim memory is some form of the Mark and
Sweep algorithm. Starting from a set of “root” pointers to known-live objects in heap memory, such as a list of active
threads and their local variables, the garbage collector scans each object for reference pointers to other objects
and marks the referents as live. Then it scans each of those live objects, and so on, until all live objects have been
reached, scanned and marked. Encountering a previously marked object means it has already been scanned and
no further work on it is required. After scanning, the garbage collector “sweeps” sequentially through heap memory
looking for unmarked objects, reclaiming the memory they occupied.

The last task, defragmenting memory, is typically done by moving live objects to new locations so they are
contiguous to one another, leaving larger free blocks available for new allocations. It is during object relocation
when most delays occur. Imagine you are the garbage collector. You've found and reclaimed all the dead objects
in the heap, but now there are lots of “*holes” in the memory between live objects. If you just left things alone, the
heap would become fragmented over time. Eventually a new object allocation will fail because it can't find a large
enough free block even though the total free space is more than enough. You must move some of the live objects
together in order to coalesce free space. But there's a catch. If you move an object, what about all the other objects

! Oracle and Java are registered trademarks of Oracle Corporation

1

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

S ptc

that reference it? Those pointers need to be updated
to the new location. You will have to go back and fix
those stale references. What if a Java thread happens
to use a stale reference while you are moving objects
and fixing pointers? Boom. Crash. Traditional Java
garbage collectors “stop the world" during critical
phases by pausing all Java threads while objects in
heap memory are being modified.

Tricks of the Trade

There are some tricks that can be used to minimize
pause times. One is to move fewer objects at a time,
letting Java threads run between moves. Of course,
if objects are allocated and de-allocated rapidly,
fragmentation may overwhelm the system and the
garbage collector must run longer with Java threads
paused to catch up.

Another trick is to segment the heap into generations,
where objects are first allocated in a young generation
area and migrated to an old generation area after they
survive one or more garbage collection passes. Since
most Java objects are short lived, it pays to collect
from the young generation more frequently. The JVM
or the user must decide how big the young generation
should be for optimal performance. Figure 1 shows
how a generational heap is organized.

Today three of the four garbage collectors in Oracle
Java and OpenJDK are generational collectors,
although the underlying structures in which the
generations are stored may differ. Collecting dead
objects from the young generation is called a minor
collection, while collecting from the old generation
is called a major collection. Minor collections are
more frequent. Heuristics monitor heap usage and
fragmentation to determine when a major collection
is required.

2

. T TRl Survivors Promoted to Old Generation

8 5
2 2

Old Generation

& 4
: :
T

Object 5
Object 6
Object 7
Object 3
Object 4
Object 5

Object 6
Object 1
Object 2

Young Generation

*~% Minor Collection "7 == Major Collection

Fig. 1

One more trick adds load and/or store barriers. A
barrier is a snippet of code that is executed by Java
programs on the way to reading (a load) or writing (a
store) through a reference to an object in heap. The
barrier examines the reference to see if the referent is
waiting to be moved by the garbage collector. If so, the
barrier may perform the object move itself and return
the updated pointer. This can help reduce pauses by
allowing Java threads and garbage collector threads
to run concurrently more often. A barrier may also
help mark live objects. The actions of the barrier will
depend on the phase of the garbage collector. Barriers
reduce the performance of Java applications by
adding more instructions to read or write operations,
so they must be designed to be as fast and efficient

as possible.

Traditional Java Garbage
Collectors

As mentioned above, the Java 11 Virtual Machine has
four garbage collection algorithms from which to
choose. One is experimental and a fifth is present but
deprecated. Each algorithm is optimized for different
hardware features (i.e. single vs. multicore), heap sizes,
application behavior, and sensitivity to delay.

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

S ptc

3

- The Serial Collector is the simplest and most

efficient. It runs in a single garbage collector
thread and all Java threads are paused while

it performs a collection, either on the young or
old generation. It is a compacting collector - it
compacts live objects at the front of the old
generation area and moves them from a young
‘Eden’ area to a young “Survivor” area and
from there to the old generation. Compacting
allows faster allocation of new objects from a
contiguous free block. The Serial Collector is
recommended when CPU resources are limited,
and applications aren't sensitive to delays.

- The Parallel Collector runs multiple garbage

collector threads coordinating with each other

to speed up collection of the young generation.
By default, the old generation is collected using
a single thread, but an option is available to do
parallel collection there too. All collections pause
all Java threads, but minor collections go faster
using multiple threads and major collections

are expected to be less frequent. The Parallel
Collector is recommended when there are plenty
of available CPU resources. It is the default
collector in Java 8.

+ The Gl or Garbage First Collector divides heap

into equal sized regions, some of which are
designated for the young generation (Eden and
Survivor) and others for the old generation. It
uses multiple threads like the Parallel Collector,
but they can do much of their work concurrently
with Java threads. To accomplish this feat, the G1
Collector introduces a store barrier. When Java
threads write to an object, the action may be
recorded to help the garbage collector identify
references between regions. The G1 Collector
focuses on meeting a pause time target. If it
completes a minor collection of the young

regions within the pause time, it may proceed

to collect one or more old regions as well. Live
objects in collected old regions are compacted
to contiguous space in other old regions. This
provides shorter pauses than the Parallel
Collector, which must collect and compact the
entire old generation for each major collection.
Gl is better for very large heaps. Figure 2 shows a
Gl region map.

E-Eden S=Survivor 0O=0ld Generation

Fig. 2

+ The Z Garbage Collector (ZGC) is experimental

in Java 11 through 14. It has a single generation
for all objects and has three region sizes (2MB,
32MB, and 2MB x n variable). It uses a load
barrier instead of a store barrier for Java threads
to help the collector keep track of referenced
objects. ZGC keeps some extra status bits in
each reference. It can do this by using full 64-bit
addresses into virtual memory and limiting the
maximum heap size to 4 TB of memory (42 bits).
Four of the remaining bits, called metadata bits,
track references to finalizable objects, track

if the reference has been remapped to a new
object location, and track reachable objects with
a pair of mark bits. If the reference hasn't been
remapped and the object is in a region being
relocated, the load barrier itself will move the

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

S ptc

object and set the remap bit. Requiring 64-bit
references means ZGC is only available on 64-bit
systems. Note that ZGC has some stop-the-
world pauses, such as to scan local variables

for threads, so large numbers of threads can
increase pause times.

There are vast numbers of technical articles, how-tos,
YouTube videos, and conference presentations
dedicated to selecting and tuning Java garbage
collectors. A google search for “tuning Java garbage
collection” yields over 850,000 results. You can
spend a career learning how to optimize garbage
collection for your application. Most developers

and IT professionals pick settings that someone
else recommended and if they experience
excessive delays they often “throw memory" at the
problem, increasing heap memory 2x or more to
see if that helps. Unfortunately, sometimes there
isn't that much memory to spare, as in the case of
embedded systems,

A Real-Time Garbage
Collector

The first Java Virtual Machine was publicly released
by Sun Microsystems in 1996. That same year, an
lowa State University professor, Dr. Kelvin Nilsen,
founded NewMonics, Inc. and began developing a
clean-room JVM based on his research in real-time
garbage collection. That work resulted in the Perc?
Virtual Machine. Perc has been used by customers
worldwide since 1998. Since then, new releases
have improved performance, supported new Java
versions and operating systems, new compilers, and
new processors. Today, PTC Perc supports Java SE
8 on Linux for both 32 and 64-bit Intel x86 and ARM
multicore processors. While much has changed in

2 Percis aregistered trademark of PTC Inc.

4

Current “From” Region

the implementation of the Perc garbage collector,
the basic design continues to follow Dr. Nilsen's
original patent.

The Perc garbage collector is region-based, like Java's
Gl and ZGC collectors. Region size is selectable by
the user (default IMB). Objects larger than a region
use Special regions that are a multiple of the region
size. The Perc collector is not generational, but it does
maintain a set of static regions to hold objects larger
than 256 KB as well as long-lived internal objects

for Java classes, methods, and Just-in-Time (JIT)
compiled code. Unlike traditional Java, JIT code is
kept in the heap rather than in a separate code cache.
Static regions are garbage collected, but they are not
defragmented. The remaining “Normal" regions are
garbage collected and defragmented. Figure 3 shows
a region map for Perc.

Static Static
Region O Region 1

Region 2 Region 3 Current “To" Region
-

~] Region4 Region 5 Region 6 Region 7
RS

Fig. 3

In addition to the three region types, at the beginning
of each cycle the Perc garbage collector selects

a current “From” and “To" region from among the
Normal regions based on the fragmentation and free
space of each region. These will become the source
and target of the copy phase of the collector in that
cycle. All objects in the "From” region will be copied to
contiguous space in the “To" region, leaving the “From”

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

S ptc

region empty. It often becomes the “To" region of the
next cycle. In this way, at least one empty region will
always be available as a target for copying.

Most of the Perc collector's work is done by parallel
threads running concurrently with Java threads. It
accomplishes this using an “indirect pointer” kept

with each object. During object scanning, when the
collector finds an object in the current “From"” region, it
reserves space in the “To" region for the copy phase. A
barrier allows Java threads to do the same when they
encounter an object that will be copied. The collector
and threads update references to the object to point
to the new reserved location and the indirect pointer in
the reserved location points back to the original object
so that any reads or writes to the object continue to be
made to the original. Once all scanning and updating
of references is complete, the object contents are
copied, and the indirect pointer is “flipped” to the new
location.

What is unique about the Perc collector is that

even during a phase when it is unable to operate
concurrently with Java threads, it can be preempted
by a higher priority Java thread and then continue
operation where it left off. This isn't the case for
traditional Java. This is due to another real-time
feature of Perc, namely explicitly controlled thread
scheduling. When a traditional JVM starts a new
thread, it runs under the scheduling control of the
operating system, not the JVM. The OS decides when
and on what CPU core it should run. If 10 running Java
threads are sharing 4 cores, the JVM has no say about
who runs next, regardless of Java thread priority. There
are some Yjava -XX' options that offer Linux “nice” level
assignments based on Java priority, but these require
root privilege and the OS can choose to override nice
levels anyway. What this means is that in traditional
Java, thread priorities are essentially meaningless.

5

ReadyQ ueues

In Perc, all Java thread scheduling is controlled by the
Perc VM Dispatcher. Only the N highest priority ready-
to-run threads will be allowed to run on N CPU cores.
Threads at the same priority will be scheduled “round
robin" to receive equal amounts of CPU time. The Perc
garbage collector threads have a Java priority and
they participate in the scheduling system alongside
Java threads. The Perc VM can preempt a thread at
any time to schedule a higher priority ready thread.

See Figure 4.
Perc VM Dispatcher

\
\
() N\ N ()
Thread £ |1 4 AN (¥
10 \ Thread E
9 Thread B \
8 Thread C
7 Thread A -i Thread D
6
5
4
1
o 3
)</
o/ 2
B
_ Priority 10/

N VAN J
Core 0 Corel Core 2 Core 3

=
-
\\
(
&

Fig. 4

By default, one collector thread is assigned to each
available core. During a phase when only collector
threads must run, all lower priority Java threads are
preempted until the phase completes. If a higher
priority thread needs to run, all garbage collector
threads are preempted until the high priority Java
thread finishes its task. Then the collector threads
continue. Collector threads maintain state in queues,
allowing a different thread to pick up the work left
behind during preemption.

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

S ptc

To take advantage of Perc's scheduling system,
developers need to carefully select priorities for

their application threads and decide what priority to
assign to the garbage collector threads. If a task can
accommodate some delay, it should run below the
collector. If it must respond to a timer or external event
in real time, it should be assigned a priority above the
collector.

In addition to being able to set the priority of the Perc
collector threads, the user can specify how much CPU
time should be dedicated to background garbage
collection. This is done with two values: a GC period
and a GC timeslice. The period specifies the number
of ticks over which to measure GC CPU usage and
the timeslice specifies the number of ticks within
each period to run the collector threads. A tick is the
resolution of all timing functions in Perc (default 1
millisecond). By default, the GC period is set to the
number of ticks in 250 milliseconds and the timeslice
is set to one tenth of those ticks, for a target of 10%
CPU usage during normal operation. In low memory
conditions, it may use more. The user can change the
period and timeslice on the Perc VM command line.
There is also a GC threshold value that specifies the
percentage of the heap that must be full before the
collector is enabled (default 50%).

Watching Java Garbage
Collection in Action

GC algorithms are wonderful things to talk about,

but at some point, you have to ask how they really
perform. To answer that question, we wrote a
‘GCStress" program, which is available for free and
can be accessed by sending an email to: developer-
tools-support@ptc.com with subject Line “Request
GCStress" You will receive a reply containing a secure
download link to the “gcstressmaster.zip” archive.

6

The archive has a README that explains how to install
it on a Linux/x86_64 host, and run it under Oracle
Java or OpenJDK. You may also request an evaluation
version of PTC Perc to run with GCStress by sending
an email to developer-tools-sales@ptc.com. As
explained in the README, GCStress runs two threads:

- ATimer thread runs at the highest Java priority
and contains a loop that samples System.
nanoTime(), sleeps for 100 milliseconds, and
samples nanoTime() again. The actual sleep
time is compared to the expected time to get a
positive (late) or negative (early) delay. The delay
and the current heap usage are recorded and the
loop repeats for 300 iterations (30 seconds).

- AHammer thread runs at normal Java priority
and creates a cache using a LinkedHashMap
with a capacity of 2,000,000 objects, keyed by
an Integer value. Then it runs a loop, generating
arandom key, checking the cache for an entry
for that key, and if already present, it removes the
entry. Otherwise, a byte array of random size from
O to 255 bytes is created and added to the cache
for that key. The purpose of the Hammer thread
is to cause fragmentation of the heap, forcing the
garbage collector to collect many dead objects
and move many live objects. The Hammer loop
continues until the Timer thread is done.

At the end of 300 samples, the recorded data is
written to a CSV file and a summary printed. A
separate GCDelayGraph program converts the CSV
file into a JPG chart for visualization of all 300 delay
samples in blue and heap usage samples in red.

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo
mailto:developer-tools-support%40ptc.com?subject=
mailto:developer-tools-support%40ptc.com?subject=
mailto:developer-tools-sales%40ptc.com?subject=

S ptc

Figure 5is a chart for OpenJDK 8 running with a 400
MB maximum heap (you need to limit the max size or
the JVM can cheat by allocating more memory):

$ java -Xmx400m -jar ./lib/gcstress.jar
Fig. 5

Remember that OpenJDK 8 uses the Parallel
Collector. Looking first at the red graph showing heap
usage, you can see that it bounces between 200 MB
and 300 MB about once every second. Zooming in
on the top-left corner in Figure 6, you can see each
decrease in memory usage is followed by a spike in
the delay graph in blue. The delay axis is logarithmic
on the right side of the chart. The maximum delay is
657 milliseconds and occurs each time the garbage
collector runs. When the GC isn't running, the delays
are around 200 microseconds.

Fig. 6

7

Figure 7 is OpenJDK 11 with the G1 collector enabled:

$ java -XX:+4UseGlGC -Xmx400m -jar ./lib/gcstress.jar
Fig.7

Notice the memory usage graph peaks roughly every
2-3 seconds, and there are three distinct delay levels:
one at about 200 microseconds as with OpenJDK 8,
another at about 10 milliseconds, and a third at around
500 milliseconds that no doubt corresponds to major
collections. We can speculate that the 10 millisecond
delays are for minor collections and only after the
heap became overly fragmented did it resort to a
major collection. Either way, the worst-case delay is
like the Parallel Collector in OpenJDK 8.

Now let's look at PTC Perc running GCStress.

If you would like to run this yourself, you

may request an evaluation via email to
developer-tools-sales@ptc.com. The results,

using Perc command-line options to limit maximum
heap to 400 MB, are shown in Figure 8:

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo
mailto:developer-tools-sales%40ptc.com?subject=

S ptc

$ pvm-gcstress .. gcstress.gc.GCStress
Fig. 8

Note the maximum delay measured by the Timer
thread is 157 microseconds and many samples are
at or near zero. The heap usage graph rises to the
available memory and stays steady. There are no big
decreases because the Hammer thread is allocating
faster than the collector is reclaiming memory in
the background. When the Hammer thread hits the
maximum heap memory, it gives up scheduling
timeslices to the collector until it can complete the
allocation. Thus, memory usage “bounces” a few
megabytes below the 400 MB ceiling.

Figure 9 shows the same Perc VM running with 25%
CPU allocation to the garbage collector:

$ pvm-gcstress .. gcstress.gc.GCStress

Fig.9
8

Now memory usage is rising and falling between
collection cycles like OpenJDK. Note the reduction in
the number of delays above zero because the Timer
thread doesn't have to preempt garbage collector
threads when the collector is quiescent.

What Did | Learn?

A real-time Java Virtual Machine can make a big
difference if you have a Java application that needs
fast, deterministic response for timed events or
external inputs. While traditional JVMs have reduced
pause times, they still suffer from stop-the-world
collection phases. PTC Perc allows high priority
threads to preempt the garbage collector to run
critical tasks. There are additional features of Perc that
are required for real time, such as priority inheritance,
jitter-free timing APIs, ahead-of-time compilation, and
memory page locking.

If you would like to learn more or evaluate Perc for
your real-time application needs, feel free to go to the

PTC Perc homepage:

https.//www.ptc.com/en/products/developer-tools/perc

Then click on the “Contact Us" button. An account
representative will get in touch with you to set it up.
We look forward to discussing how Perc can help you
build Java-based mission-critical systems with sub-
millisecond response times.

© 2025, PTC Inc. (PTC). All rights reserved. Information described herein is
furnished for informational use only, is subject to change without notice, and
should not be taken as a guarantee, commitment, or offer by PTC. PTC, the

PTC logo, and all PTC product names and logos are trademarks or registered
trademarks of PTC and/or its subsidiaries in the United States and other countries.
All other product or company names are property of their respective owners. The
timing of any product release, including any features or functionality, is subject to
change at PTC's discretion.

0 @ @ o ptc.com

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo
https://www.ptc.com/en/products/developer-tools/perc

