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Who Stopped the World?
A Tale of Java Garbage Collector Delays

Java Garbage Collection

One of the best features of the Java1 Virtual Machine is automatic garbage collection. For the most part, Java 
programmers don’t have to worry about managing memory for objects created by their applications. When the 
application no longer has any references to an object, the JVM automatically deletes it and reclaims the memory it 
occupied for future allocations. Compare this to C and C++ applications, which must keep track of memory allocated 
with malloc or new and return it to the system explicitly using free or delete.  Failing to de-allocate memory can 
cause the application’s memory footprint to increase over time (a memory leak), resulting in a crash or the process 
getting killed by the operating system. The worst kind of memory leak is a small one because it adds just a few bytes 
at a time, often under circumstances that are not easily reproduced or noticed during testing. The worst place for a 
memory leak is in an embedded system, where the application may run for years without restarting, slowly absorbing 
a critical resource, until it fails.

How a Java GC Works

There are many different Garbage Collector (GC) algorithms in use today by Java VMs as well as other language 
runtimes such as Python, Go, .NET, and Ruby. The Java 11 VM offers a choice of four different GC algorithms, but they 
all perform the same basic tasks:

•	 Identify unused (dead) objects in memory
•	 Reclaim the memory occupied by the dead objects
•	 Defragment memory by moving live objects

The most common technique used to identify unused objects and reclaim memory is some form of the Mark and 
Sweep algorithm. Starting from a set of “root” pointers to known-live objects in heap memory, such as a list of active 
threads and their local variables, the garbage collector scans each object for reference pointers to other objects 
and marks the referents as live. Then it scans each of those live objects, and so on, until all live objects have been 
reached, scanned and marked. Encountering a previously marked object means it has already been scanned and 
no further work on it is required. After scanning, the garbage collector “sweeps” sequentially through heap memory 
looking for unmarked objects, reclaiming the memory they occupied.

The last task, defragmenting memory, is typically done by moving live objects to new locations so they are 
contiguous to one another, leaving larger free blocks available for new allocations. It is during object relocation 
when most delays occur. Imagine you are the garbage collector. You’ve found and reclaimed all the dead objects 
in the heap, but now there are lots of “holes” in the memory between live objects. If you just left things alone, the 
heap would become fragmented over time. Eventually a new object allocation will fail because it can’t find a large 
enough free block even though the total free space is more than enough. You must move some of the live objects 
together in order to coalesce free space. But there’s a catch. If you move an object, what about all the other objects 
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that reference it? Those pointers need to be updated 
to the new location. You will have to go back and fix 
those stale references. What if a Java thread happens 
to use a stale reference while you are moving objects 
and fixing pointers? Boom. Crash. Traditional Java 
garbage collectors “stop the world” during critical 
phases by pausing all Java threads while objects in 
heap memory are being modified.

Tricks of the Trade

There are some tricks that can be used to minimize 
pause times. One is to move fewer objects at a time, 
letting Java threads run between moves. Of course, 
if objects are allocated and de-allocated rapidly, 
fragmentation may overwhelm the system and the 
garbage collector must run longer with Java threads 
paused to catch up.

Another trick is to segment the heap into generations, 
where objects are first allocated in a young generation 
area and migrated to an old generation area after they 
survive one or more garbage collection passes. Since 
most Java objects are short lived, it pays to collect 
from the young generation more frequently. The JVM 
or the user must decide how big the young generation 
should be for optimal performance. Figure 1 shows 
how a generational heap is organized.

Today three of the four garbage collectors in Oracle 
Java and OpenJDK are generational collectors, 
although the underlying structures in which the 
generations are stored may differ. Collecting dead 
objects from the young generation is called a minor 
collection, while collecting from the old generation 
is called a major collection. Minor collections are 
more frequent. Heuristics monitor heap usage and 
fragmentation to determine when a major collection 
is required. 

One more trick adds load and/or store barriers. A 
barrier is a snippet of code that is executed by Java 
programs on the way to reading (a load) or writing (a 
store) through a reference to an object in heap. The 
barrier examines the reference to see if the referent is 
waiting to be moved by the garbage collector. If so, the 
barrier may perform the object move itself and return 
the updated pointer. This can help reduce pauses by 
allowing Java threads and garbage collector threads 
to run concurrently more often. A barrier may also 
help mark live objects. The actions of the barrier will 
depend on the phase of the garbage collector. Barriers 
reduce the performance of Java applications by 
adding more instructions to read or write operations, 
so they must be designed to be as fast and efficient 
as possible.

Traditional Java Garbage 
Collectors

As mentioned above, the Java 11 Virtual Machine has 
four garbage collection algorithms from which to 
choose. One is experimental and a fifth is present but 
deprecated. Each algorithm is optimized for different 
hardware features (i.e. single vs. multicore), heap sizes, 
application behavior, and sensitivity to delay. 

Fig. 1
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•	 The Serial Collector is the simplest and most 
efficient. It runs in a single garbage collector 
thread and all Java threads are paused while 
it performs a collection, either on the young or 
old generation. It is a compacting collector - it 
compacts live objects at the front of the old 
generation area and moves them from a young 
“Eden” area to a young “Survivor” area and 
from there to the old generation. Compacting 
allows faster allocation of new objects from a 
contiguous free block. The Serial Collector is 
recommended when CPU resources are limited, 
and applications aren’t sensitive to delays. 

•	 The Parallel Collector runs multiple garbage 
collector threads coordinating with each other 
to speed up collection of the young generation. 
By default, the old generation is collected using 
a single thread, but an option is available to do 
parallel collection there too. All collections pause 
all Java threads, but minor collections go faster 
using multiple threads and major collections 
are expected to be less frequent. The Parallel 
Collector is recommended when there are plenty 
of available CPU resources. It is the default 
collector in Java 8.

•	 The G1 or Garbage First Collector divides heap 
into equal sized regions, some of which are 
designated for the young generation (Eden and 
Survivor) and others for the old generation. It 
uses multiple threads like the Parallel Collector, 
but they can do much of their work concurrently 
with Java threads. To accomplish this feat, the G1 
Collector introduces a store barrier. When Java 
threads write to an object, the action may be 
recorded to help the garbage collector identify 
references between regions. The G1 Collector 
focuses on meeting a pause time target. If it 
completes a minor collection of the young 

regions within the pause time, it may proceed 
to collect one or more old regions as well. Live 
objects in collected old regions are compacted 
to contiguous space in other old regions. This 
provides shorter pauses than the Parallel 
Collector, which must collect and compact the 
entire old generation for each major collection.  
G1 is better for very large heaps. Figure 2 shows a 
G1 region map.

•	 The Z Garbage Collector (ZGC) is experimental 
in Java 11 through 14. It has a single generation 
for all objects and has three region sizes (2MB, 
32MB, and 2MB x n variable). It uses a load 
barrier instead of a store barrier for Java threads 
to help the collector keep track of referenced 
objects. ZGC keeps some extra status bits in 
each reference. It can do this by using full 64-bit 
addresses into virtual memory and limiting the 
maximum heap size to 4 TB of memory (42 bits). 
Four of the remaining bits, called metadata bits, 
track references to finalizable objects, track 
if the reference has been remapped to a new 
object location, and track reachable objects with 
a pair of mark bits. If the reference hasn’t been 
remapped and the object is in a region being 
relocated, the load barrier itself will move the 
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object and set the remap bit. Requiring 64-bit 
references means ZGC is only available on 64-bit 
systems. Note that ZGC has some stop-the-
world pauses, such as to scan local variables 
for threads, so large numbers of threads can 
increase pause times. 

There are vast numbers of technical articles, how-tos, 
YouTube videos, and conference presentations 
dedicated to selecting and tuning Java garbage 
collectors. A google search for “tuning Java garbage 
collection” yields over 850,000 results. You can 
spend a career learning how to optimize garbage 
collection for your application. Most developers 
and IT professionals pick settings that someone 
else recommended and if they experience 
excessive delays they often “throw memory” at the 
problem, increasing heap memory 2x or more to 
see if that helps. Unfortunately, sometimes there 
isn’t that much memory to spare, as in the case of 
embedded systems. 

A Real-Time Garbage 
Collector

The first Java Virtual Machine was publicly released 
by Sun Microsystems in 1996. That same year, an 
Iowa State University professor, Dr. Kelvin Nilsen, 
founded NewMonics, Inc. and began developing a 
clean-room JVM based on his research in real-time 
garbage collection. That work resulted in the Perc2 
Virtual Machine. Perc has been used by customers 
worldwide since 1998. Since then, new releases 
have improved performance, supported new Java 
versions and operating systems, new compilers, and 
new processors. Today, PTC Perc supports Java SE 
8 on Linux for both 32 and 64-bit Intel x86 and ARM 
multicore processors. While much has changed in 

the implementation of the Perc garbage collector, 
the basic design continues to follow Dr. Nilsen’s 
original patent.

The Perc garbage collector is region-based, like Java’s 
G1 and ZGC collectors. Region size is selectable by 
the user (default 1MB). Objects larger than a region 
use Special regions that are a multiple of the region 
size. The Perc collector is not generational, but it does 
maintain a set of static regions to hold objects larger 
than 256 KB as well as long-lived internal objects 
for Java classes, methods, and Just-in-Time (JIT) 
compiled code. Unlike traditional Java, JIT code is 
kept in the heap rather than in a separate code cache. 
Static regions are garbage collected, but they are not 
defragmented. The remaining “Normal” regions are 
garbage collected and defragmented. Figure 3 shows 
a region map for Perc. 

In addition to the three region types, at the beginning 
of each cycle the Perc garbage collector selects 
a current “From” and “To” region from among the 
Normal regions based on the fragmentation and free 
space of each region. These will become the source 
and target of the copy phase of the collector in that 
cycle. All objects in the “From” region will be copied to 
contiguous space in the “To” region, leaving the “From” 

2 Perc is a registered trademark of PTC Inc.
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region empty. It often becomes the “To” region of the 
next cycle. In this way, at least one empty region will 
always be available as a target for copying. 

Most of the Perc collector’s work is done by parallel 
threads running concurrently with Java threads. It 
accomplishes this using an “indirect pointer” kept 
with each object. During object scanning, when the 
collector finds an object in the current “From” region, it 
reserves space in the “To” region for the copy phase. A 
barrier allows Java threads to do the same when they 
encounter an object that will be copied. The collector 
and threads update references to the object to point 
to the new reserved location and the indirect pointer in 
the reserved location points back to the original object 
so that any reads or writes to the object continue to be 
made to the original. Once all scanning and updating 
of references is complete, the object contents are 
copied, and the indirect pointer is “flipped” to the new 
location. 

What is unique about the Perc collector is that 
even during a phase when it is unable to operate 
concurrently with Java threads, it can be preempted 
by a higher priority Java thread and then continue 
operation where it left off. This isn’t the case for 
traditional Java. This is due to another real-time 
feature of Perc, namely explicitly controlled thread 
scheduling. When a traditional JVM starts a new 
thread, it runs under the scheduling control of the 
operating system, not the JVM. The OS decides when 
and on what CPU core it should run. If 10 running Java 
threads are sharing 4 cores, the JVM has no say about 
who runs next, regardless of Java thread priority. There 
are some ‘java -XX’ options that offer Linux “nice” level 
assignments based on Java priority, but these require 
root privilege and the OS can choose to override nice 
levels anyway. What this means is that in traditional 
Java, thread priorities are essentially meaningless.

In Perc, all Java thread scheduling is controlled by the 
Perc VM Dispatcher. Only the N highest priority ready-
to-run threads will be allowed to run on N CPU cores. 
Threads at the same priority will be scheduled “round 
robin” to receive equal amounts of CPU time. The Perc 
garbage collector threads have a Java priority and 
they participate in the scheduling system alongside 
Java threads. The Perc VM can preempt a thread at 
any time to schedule a higher priority ready thread. 
See Figure 4.

By default, one collector thread is assigned to each 
available core. During a phase when only collector 
threads must run, all lower priority Java threads are 
preempted until the phase completes. If a higher 
priority thread needs to run, all garbage collector 
threads are preempted until the high priority Java 
thread finishes its task. Then the collector threads 
continue. Collector threads maintain state in queues, 
allowing a different thread to pick up the work left 
behind during preemption.

Fig. 4
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To take advantage of Perc’s scheduling system, 
developers need to carefully select priorities for 
their application threads and decide what priority to 
assign to the garbage collector threads. If a task can 
accommodate some delay, it should run below the 
collector. If it must respond to a timer or external event 
in real time, it should be assigned a priority above the 
collector. 

In addition to being able to set the priority of the Perc 
collector threads, the user can specify how much CPU 
time should be dedicated to background garbage 
collection. This is done with two values: a GC period 
and a GC timeslice. The period specifies the number 
of ticks over which to measure GC CPU usage and 
the timeslice specifies the number of ticks within 
each period to run the collector threads. A tick is the 
resolution of all timing functions in Perc (default 1 
millisecond). By default, the GC period is set to the 
number of ticks in 250 milliseconds and the timeslice 
is set to one tenth of those ticks, for a target of 10% 
CPU usage during normal operation. In low memory 
conditions, it may use more. The user can change the 
period and timeslice on the Perc VM command line. 
There is also a GC threshold value that specifies the 
percentage of the heap that must be full before the 
collector is enabled (default 50%).

Watching Java Garbage 
Collection in Action

GC algorithms are wonderful things to talk about, 
but at some point, you have to ask how they really 
perform. To answer that question, we wrote a 
“GCStress” program, which is available for free and 
can be accessed by sending an email to: developer-
tools-support@ptc.com with subject Line “Request 
GCStress”. You will receive a reply containing a secure 
download link to the “gcstressmaster.zip” archive.

The archive has a README that explains how to install 
it on a Linux/x86_64 host, and run it under Oracle 
Java or OpenJDK. You may also request an evaluation 
version of PTC Perc to run with GCStress by sending 
an email to developer-tools-sales@ptc.com. As 
explained in the README, GCStress runs two threads:

•	 A Timer thread runs at the highest Java priority 
and contains a loop that samples System.
nanoTime(), sleeps for 100 milliseconds, and 
samples nanoTime() again. The actual sleep 
time is compared to the expected time to get a 
positive (late) or negative (early) delay. The delay 
and the current heap usage are recorded and the 
loop repeats for 300 iterations (30 seconds).

•	 A Hammer thread runs at normal Java priority 
and creates a cache using a LinkedHashMap 
with a capacity of 2,000,000 objects, keyed by 
an Integer value. Then it runs a loop, generating 
a random key, checking the cache for an entry 
for that key, and if already present, it removes the 
entry. Otherwise, a byte array of random size from 
0 to 255 bytes is created and added to the cache 
for that key. The purpose of the Hammer thread 
is to cause fragmentation of the heap, forcing the 
garbage collector to collect many dead objects 
and move many live objects. The Hammer loop 
continues until the Timer thread is done.

At the end of 300 samples, the recorded data is 
written to a CSV file and a summary printed. A 
separate GCDelayGraph program converts the CSV 
file into a JPG chart for visualization of all 300 delay 
samples in blue and heap usage samples in red.
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Figure 5 is a chart for OpenJDK 8 running with a 400 
MB maximum heap (you need to limit the max size or 
the JVM can cheat by allocating more memory):

Remember that OpenJDK 8 uses the Parallel 
Collector. Looking first at the red graph showing heap 
usage, you can see that it bounces between 200 MB 
and 300 MB about once every second. Zooming in 
on the top-left corner in Figure 6, you can see each 
decrease in memory usage is followed by a spike in 
the delay graph in blue. The delay axis is logarithmic 
on the right side of the chart. The maximum delay is 
657 milliseconds and occurs each time the garbage 
collector runs. When the GC isn’t running, the delays 
are around 200 microseconds.

Figure 7 is OpenJDK 11 with the G1 collector enabled:

Notice the memory usage graph peaks roughly every 
2-3 seconds, and there are three distinct delay levels: 
one at about 200 microseconds as with OpenJDK 8, 
another at about 10 milliseconds, and a third at around 
500 milliseconds that no doubt corresponds to major 
collections. We can speculate that the 10 millisecond 
delays are for minor collections and only after the 
heap became overly fragmented did it resort to a 
major collection. Either way, the worst-case delay is 
like the Parallel Collector in OpenJDK 8.

Now let’s look at PTC Perc running GCStress. 
If you would like to run this yourself, you 
may request an evaluation via email to 
developer-tools-sales@ptc.com. The results, 
using Perc command-line options to limit maximum 
heap to 400 MB, are shown in Figure 8:

Fig. 5

Fig. 7

Fig. 6
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Note the maximum delay measured by the Timer 
thread is 157 microseconds and many samples are 
at or near zero. The heap usage graph rises to the 
available memory and stays steady. There are no big 
decreases because the Hammer thread is allocating 
faster than the collector is reclaiming memory in 
the background. When the Hammer thread hits the 
maximum heap memory, it gives up scheduling 
timeslices to the collector until it can complete the 
allocation. Thus, memory usage “bounces” a few 
megabytes below the 400 MB ceiling. 

Figure 9 shows the same Perc VM running with 25% 
CPU allocation to the garbage collector:

Now memory usage is rising and falling between 
collection cycles like OpenJDK. Note the reduction in 
the number of delays above zero because the Timer 
thread doesn’t have to preempt garbage collector 
threads when the collector is quiescent.

What Did I Learn?

A real-time Java Virtual Machine can make a big 
difference if you have a Java application that needs 
fast, deterministic response for timed events or 
external inputs. While traditional JVMs have reduced 
pause times, they still suffer from stop-the-world 
collection phases. PTC Perc allows high priority 
threads to preempt the garbage collector to run 
critical tasks. There are additional features of Perc that 
are required for real time, such as priority inheritance, 
jitter-free timing APIs, ahead-of-time compilation, and 
memory page locking.

If you would like to learn more or evaluate Perc for 
your real-time application needs, feel free to go to the 
PTC Perc homepage:

https://www.ptc.com/en/products/developer-tools/perc

Then click on the “Contact Us” button. An account 
representative will get in touch with you to set it up. 
We look forward to discussing how Perc can help you 
build Java-based mission-critical systems with sub-
millisecond response times.
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