
Profile Library Plug-In

© 2024 PTC Inc. All Rights Reserved.



Profile Library Plug-In

Table of Contents

Profile Library Plug-In 1

Table of Contents 2

Profile Library Plug-In 3

Overview 3

Architecture 3

Profile Types 4

Creating and Configuring Profiles 5

Profile Properties — General 5

Profile Properties — Profiles 5

Creating a Profile Script 5

Bulk Tags 10

Provided Functions 11

Using the Configuration API 12

Index 14

www. ptc.com

2



Profile Library Plug-In

Profile Library Plug-In
Help version 1.026

CONTENTS

Overview
What is the Profile Library Plug-In?
What can the plug-in do?

Architecture
How does the Profile Library Plug-In interact with the driver and server?

What is a Profile?
How do I configure a profile?

Using the Configuration API Service
How do I create an Ethernet-based profile?

Overview
The Profile Library Plug-In allows a user to create script-based profiles to use in conjunction with the Univer-
sal Device Driver to communicate with a wide variety of Ethernet devices. Make use of the Profile Library
Plug-In to implement custom profiles in cases when there is no native driver for a particular protocol or
device. The Profile Library Plug-In offers the following features:

l Ability to customize profiles to meet specific connectivity needs
l Script-based interface which gives users flexibility in what functionality to implement
l Ability to edit a profile once and push edits to all instances of that profile

Architecture
The Profile Library Plug-in is used to configure and maintain profiles that are consumed by the Universal
Device Driver. These profiles contain a script that implements business logic for device communication. The
script defines the interface and implementation required for a specific protocol that the device uses to com-
municate.

Universal Device Driver channels require a linked profile that must be assigned during channel creation.
This process is called linking the profile to the channel. Once a profile is linked and a device is created on the
channel, the profile’s script is registered with the server's script engine, which prepares the server and
driver for communication using the profile’s script. At this point all communication happens between the
script engine, driver, and device.

If the profile is updated or modified, the active script is un-registered and the updated script from the mod-
ified profile registered with the script engine. Once this process is complete, all driver communication uses
the updated script.

Important Concepts

l Client / Server: This references the type of Ethernet connection established with a device. In client
mode, a TCP/IP socket connection is initiated by the Universal Device Driver to the specified IP

www. ptc.com

3



Profile Library Plug-In

address using the defined port number. In server mode, the Universal Device Driver listens for an
incoming connection on the specified IP address and port number.

l Solicited: This refers to a communication mode in which the Universal Device Driver requests data
from a device.

l Unsolicited: This refers to a communication mode in which data is sent to the Universal Device
Driver from a device without any corresponding request.

l Data Cache: A built-in cache library is provided to enable asynchronous communications, allowing
the script to internally store tag data until it is needed for a read or write operation.

l Transaction: A discrete set of I/O operations with a device to perform some action, such as reading
or writing data, starting a subscription, or completing a handshake.

l Completing a Tag: Tags can be Read or Write and need to be “completed” by the driver. When tags
are requested, it is the responsibility of the script to perform the necessary steps to complete that
request. Only when active tags are completed (successfully or unsuccessfully) are the next tags
requested.

l Bulk Tags: Tags that share the same bulkId are blocked together and provided to the onTag-
sRequest and onData functions, allowing the script to complete all the tags in the block. This feature
is typically used to improve driver efficiency.

See Also: Profile Types

Profile Types
The Universal Device Driver provides a flexible framework for implementing communication protocols.
Most protocol types fall into one of the following four broad categories, independent of the underlying trans-
port mechanism. Each category provides general design guidance, but choosing one does not restrict its
functionality.

l Simple Solicited: In Simple Solicited, tags are fulfilled using synchronous data requests as needed.
No messages are expected from the device when there is no outstanding request.

l Simple Unsolicited: In Simple Unsolicited, the script never requests data. The device determines
what data to send and when to send it. Tags are fulfilled from a cache populated by the script as data
becomes available.

l Mixed Mode: In Mixed Mode, some tags are fulfilled synchronously and others populated asyn-
chronously. The script determines that based on user-defined criteria for how to process each tag
request.

l Pub / Sub: In Pub / Sub, tags are fulfilled asynchronously only after a request is made to the device
that enables data publication. The script must have a mechanism for tracking if a subscription
already exists for tags as they are requested.

Tip: Examples and templates can be found in the install directory \<product>\Examples\Universal Device
Sample Profiles and at https://github.com/PTCInc/Universal-Device-Driver-Examples.

www. ptc.com

4

https://github.com/PTCInc/Universal-Device-Driver-Examples


Profile Library Plug-In

Creating and Configuring Profiles
The Profile Library Plug-In provides the ability to create profiles via the server configuration interface and
the Configuration API Service.

Note: For communication to occur, a channel must be linked to a valid profile.

What is a profile? 
A Profile is a collection of properties that together provide all the information that the Universal Device
Driver needs to communicate with a device. Properties on the profile include the Name, Description, ID, and
Script. Of these the script and ID are the most important. The script here defines all the instructions
required by the driver to communicate over a specific protocol. The script interface is defined in more depth
in the script section.

Tip: The profile ID property is a unique identifier that is used to link the profile to a Universal Device
Driver channel and is in a GUID format.

Profile Properties — General
These profile properties are specific to the Profile Library Plug-In and are associated with every profile.

l Name: This property specifies a name for the profile.
l Description: User-defined information about this profile.

Profile Properties — Profiles
These profile properties are specific to the Profile Library Plug-In and are associated with every
profile. Default values are automatically generated for each property.

l ID: This property is a unique identifier in the form of a GUID which links Universal Device Driver chan-
nels to profiles defined in the Profile Library Plug-In.

l Script: This property contains the JavaScript code that implements the required event handlers and
business logic for the Universal Device Driver to communicate with a device. To load a script file,
select the browse ellipses (...) on the right side of the text box and choose a JavaScript source file
from disk.
Notes:

l Script files must be UTF-8 encoded and can be created and edited offline in any editor.
l If changes are made to the script, the file must be uploaded again.
l If there are any channels linked to a profile, it is necessary to reinitialize the server after

uploading the script.

Creating a Profile Script
The profile script is a property of the profile that contains the JavaScript to execute functions required to val-
idate tags and communicate with a device. The script can be created and edited offline in any editor.

Required Functions
For Universal Device Driver to perform basic IO operations with a device the script must contain the fol-
lowing functions to handle events. The user can add additional functions, classes, variables, and global state
as desired to simplify complex operations.

www. ptc.com

5



Profile Library Plug-In

l onProfileLoad
l onValidateTag
l onTagsRequest
l onData

onProfileLoad
The onProfileLoad function defines the interface contract between the profile and the driver.

Input
None

Output
onProfileLoad must return a JavaScript object with the following fields:

l version – (string) Version string, with format <Major.Minor> (for example, “2.0”).

Note: The only currently supported version is “2.0”. Any other value is rejected by the driver, lead-
ing to failure of all subsequent script functions.

l mode – (string) The communication mode of the port. Valid values are Client and Server. In Client
mode, the Universal Device Driver acts as a client and opens a connection to the device. In Server
mode, the Universal Device Driver acts as a server and the port is set to listen. This field is optional
and defaults to Client.

onValidateTag
This function is called when the address, data type, and read-only mode of a tag must be validated. The func-
tion can correct or modify a tag address, data type and read-only mode if necessary. For example, it can
change the format slightly to enforce consistency among tag addresses, such as ‘k01’ adjusted to ‘k0001’.
Similarly, the onValidateTag function can correct or modify the data type and read-only tag properties. Addi-
tionally, this function can assign a bulk ID to each tag. The Universal Device Driver groups the tags with the
same bulk ID together when providing tags to the onTagsRequest or onData functions.

Input
onValidateTag has a single input argument. The argument is a JavaScript object with the following fields:

l tag – (object) Represents the tag to be validated. It has the following fields:
l address – (string) Tag address.
l dataType – (string) server data type (see Data Types section for valid values).
l readOnly – (Boolean) true for read only, false for read/write tags.

Output
onValidateTag must return a JavaScript Object with the following fields:

l address – (string) Tag address. Can be modified if necessary, e.g. expanding ‘k01’ to ‘k0001’ (optional).
l dataType – (string) server data type, modified if necessary (see Data Types section for valid values)

(optional).
Note: A return value of Default is invalid; a data type must be specified if the input value is Default.

l readOnly – (Boolean) true for read only, false for read/write tags, modified if necessary (optional).
l bulkId – (number) Integer value that identifies the group into which to bulk the tag with other tags. If

no bulkId is provided, the Universal Device Driver assigns a unique value. The bulkId assigned is per-
manent and cannot be altered during this runtime session (see Bulk Tags section for more
information) (optional).

www. ptc.com

6



Profile Library Plug-In

Tip: If the script defines a bulkId for one tag, it must define the bulkId for every tag. Otherwise, the
default value chosen by the Universal Device Driver may conflict with a value previously chosen by
the script.

l valid – (Boolean) true if the tag is valid, false if the tag is invalid (required).

onTagsRequest
This function is called when tag values need to be read or written. It is up to the script to determine what
action is taken next to execute the read or write and complete the tags. Depending on the protocol being
implemented, the tags may be completed right away, additional device I/O may be required, or there may
be no way to complete the tags at this time.

Input
onTagsRequest has a single input argument. The argument is a JavaScript Object with the following fields:

l type – (string) the type of operation to perform. The value is Read or Write (optional).
l tags – (Array of Objects) Array of tags being read or written. The tag object has the following fields:

o address – (string) tag address (optional).
o value – (*) desired value of the tag. This field is only populated when type is Write (optional).
o dataType – (string) server data type (see Data Types section for valid values) (optional).
o readOnly – (Boolean) true for read only; false for read/write tags (optional).
o bulkId – (number) integer value that identifies the group to which the tag belongs (optional).

The bulkId is assigned in OnValidateTag and cannot be altered during this runtime session
(see Bulk Tags for more information).

Output
onTagsRequest must return a JavaScript object with the following fields:

l action – (string) This driver's next action. Valid return actions are Receive, Complete, or Fail (optional).
o Receive – Indicates that the current transaction is not complete and that data is expected

imminently from the device.
o Complete – Indicates that the transaction is complete and no further I/O with the device is

needed. If tags were being read, any tags returned with values are completed at this time.
o Fail – Indicates a serious failure has occurred. All other return fields are ignored, any tags

that were requested failed, and the device is in error state.

l data – (Array of numbers) Data to send to the device (optional). If data field is undefined then no
data is sent. Values must be between 0 and 255 (optional).

l tags – (Array of Objects) Completed tags (optional). If the action is Complete, tags returned in this
array will be completed. This field is only required when type is Read. Each Array element has the fol-
lowing fields:

o address – (string) Tag address
o value – (*) New value of the tag (optional). If this field is undefined then the tag will be com-

pleted with bad quality. Additionally, all tags that are bulked with this tag will be completed
with bad quality (see Bulk Tags for more information). If value is defined and the quality field
is undefined, then the tag will be completed with good quality.

o quality – (string) Tag quality (optional). Valid quality strings are Good, Bad, or Uncertain.
l Good – Indicates the quality of the tag value is good. If quality is Good, then the

value field must be defined. If the quality field is undefined and the value field is
defined, then Good is the default quality.

www. ptc.com

7



Profile Library Plug-In

l Bad – Indicates the tag value is not useful. A tag value is not required or expected. If
the value field is undefined, then Bad is the default quality.

l Uncertain – Indicates the quality of the value of the tag is uncertain. This quality is
available to allow the script writer to indicate an issue with the validity, staleness, or
out of range state of the value being provided. The value field must also be defined.

onData
This function is called whenever the Universal Device Driver receives data from the device. If there are any
uncompleted tags when onData is called, the tags and type (Read or Write) are included along with the data
received. If the Universal Device Driver receives data and there are no uncompleted tags, then only the data
input field is populated.
See Also: Script Utility Functions

Input
onData has a single input argument. The argument is a JavaScript Object with the following fields:

l data – (Array of numbers) Data that was received by the Universal Device Driver (optional).
l type – (string) Type of operation. The value is Read or Write. This field is undefined if there are no

uncompleted tags (optional).
l tags – (Array of Objects) Array of tags being read or written (optional). This field is undefined if there

are no uncompleted tags. The tag Object has the following fields:
o address – (string) Tag address
o value – (*) Desired value of the tag. This field only exists when type is Write.
o dataType – (string) server data type (see Data Types section for valid values).
o readOnly – (Boolean) true for read only; false for read/write tags.
o bulkId – (number) integer value that identifies the group to which the tag belongs (optional).

The bulkId is assigned in OnValidateTag and cannot be altered during this runtime session
(see Bulk Tags section for more information).

Output
onData must return a JavaScript object with the following fields:

l action – (string) The driver's next action. Valid return actions are Receive, Complete, or Fail (optional).
o Receive – Indicates that the current transaction is not complete and that more data is expec-

ted imminently from the device.
o Complete – Indicates that the transaction is complete and no further I/O with the device is

needed. If tags were being read, then any tags returned with values are completed at this
time.

o Fail – Indicates a serious failure has occurred. All other return fields are ignored, any uncom-
pleted tags fail, and the device is in error state.

l data – (Array of numbers) Data to send to the device (optional). If data field is undefined, no data is
sent. Values must be between 0 and 255.

l tags – (Array of Objects) Completed tags (optional). If the action is Complete, tags returned in this
array are completed. This field is only required when type is Read. Each Array element has the fol-
lowing fields:

o address – (string) Tag address.
o value – (*) New value of the tag (optional). If this field is undefined then the tag will be com-

pleted with bad quality. Additionally, all tags that are bulked with this tag will be completed

www. ptc.com

8



Profile Library Plug-In

with bad quality (see Bulk Tags for more information). If value is defined and the quality field
is undefined, then the tag will be completed with good quality.

o quality – (string) Tag quality (optional). Valid quality strings are Good, Bad, or Uncertain.
o Good – Indicates the quality of the tag value is good. If quality is Good, then the

value field must be defined. If the quality field is undefined and the value field is
defined, then Good is the default quality.

o Bad – Indicates the tag value is not useful. A tag value is not required or expected. If
the value field is undefined, then Bad is the default quality.

o Uncertain – Indicates the quality of the value of the tag is uncertain. This quality is
available to allow the script writer to indicate an issue with the validity, staleness, or
out of range state of the value being provided. The value field must also be defined.

See Also: Script Utility Functions, Logging Functions, Bulk Tags

Additional Script Information
The script is a collection of functions called and executed when needed. The user can add as many extra
functions as desired to simplify complex operations.

See Also: Profile Library Modbus Tutorial (contact support)

Script Writing Best Practices

l Use short meaningful variable and function names:
o string xyz; // this variable name does not describe what it is
o string tagAddress; // this variable is clearly used to hold the tag address value

l Comment thoroughly and remember that good code explains itself
l Create functions that do one thing

o ConvertStringToByteArrayAndCreateMessage(){} // This function is responsible for too many
tasks. This also makes the function hard to read.

l Avoid using Global variables as much as possible; use local variables instead. Global state is saved
between function calls so global variables retain their value.

l Be careful of while loops. If while loops are done improperly, they can loop forever and the server
can timeout and fail the operation.

See Also: Script Utility Functions

www. ptc.com

9



Profile Library Plug-In

Data Type
The dataType strings used by the profile are derived from the data types supported by the server. The valid
values for dataType are:

l Default
Note: This is not a valid return value; Defaults only appear as an input.

l String
l Boolean
l Char
l Byte
l Short
l Word
l Long
l DWord
l Float
l Double
l BCD
l LBCD
l LLong
l QWord

Bulk Tags
To reduce requests to the device, improve throughput from a device, process tags faster, or obtain similar
data at the same time, the script can define the bulkId field in the result of the onValidateTag function for
each tag. Tags that share the same bulkId are blocked together and provided to the onTagsRequest and
onData functions allowing the script to complete all the tags in the block.

If script defines one bulkId, it must define a bulkId for all tags
If the bulkId is not defined in the onValidateTag function, then the Universal Device Driver will assign a
unique value to each tag.
Caution: If the script defines the bulkId of one tag, it must define a bulkId for every tag. Otherwise, the

value chosen by the Universal Device Driver may conflict with a value previously chosen by the script.

Block Size Performance vs. CPU Usage
The onValidateTag function will not limit the number of tags defined with the same bulkId. However, to pre-
vent unnecessary strain on the script engine, the Universal Device Driver will fail Read requests if more than
8000 tags are in the same block.
Caution: The script writer should monitor the performance and CPU usage of the server runtime and

script engine processes to ensure that the size of the block is optimal for the use case.

Example with Modbus Protocol
Modbus devices allow requests to specify a certain number of registers starting with a particular address.
The script could assign the same bulkId to those tags that could be included in the same request to the
device. This reduces the number of transactions required over the wire and improves performance.

Example with MQTT Pub / Sub Protocol

www. ptc.com

10



Profile Library Plug-In

The script could assign the same bulkId to all the tags in the same topic to allow updating them at the same
time. This would allow the entire transaction to be processed together, improving performance.

Example with Structure
The tags in a structure often represent the state of the device cycle at a given moment in time. If the tags
are updated one at a time, there is no guarantee that the data in one tag was related to the data in another
tag. Assigning the same bulkId to those related tags allows the script to issue the necessary requests to the
device, save the results, and ultimately update the tags at the same time, ensuring the data is related. For
example, if a tag holds the temperature from a temperature sensor and another tag holds the time that was
taken, in a non-bulked configuration, the temperature tag could be from a previous read from the time tag.
This is dependent on how many tags are in the project and how quickly they are scanned. But if only pro-
cessing one tag at a time, there is no guarantee of the relationship of the data to other tag data. However, if
the tags were assigned the same bulkId, then the script can control the update of the data and ensure that
relationship.

Provided Functions
To aid the script writer in writing the profile scripts, the script engine environment (Script Engine SDK)
provides the following helper functions and classes:

l Log: allows users to log messages to the server event log
l Cache utility: a cache implementation that stores tag data

Logging Functions
The log() function can be used to log messages to the server event log. When an error is encountered, it is
considered best practice to log a message with helpful information about what happened and return a
status of failure rather than throwing an exception.

Utility Functions
In addition to the required functions, a user can create as many additional functions as desired to simplify
complex operations. The sample profiles provide examples of helper functions that can assist with con-
verting data types or determining the validity of the data returned from a device.

Caching Functions
For unsolicited communications it is necessary to manage a cache so OPC clients can retrieve and update
tag data. To help facilitate this there are three caching functions designed to be used in the script: init-
alizeCache, writeToCache, and readFromCache.

initalizeCache
Initializes the cache. Calling this function allows users to set the maximum cache size.

Input
initalizeCache has one input argument:

l maxSize – (number) the maximum size of the cache (10,000 maximum)

Output
None

writeToCache

www. ptc.com

11



Profile Library Plug-In

Inserts or overwrites a key-value pair in the cache.

Input
writeToCache has two input arguments:

l key – (string) The tag address
l value – (*) The value of the tag. Maximum length of 4096 characters

Output
writeToCache returns a string indicating if the cache was updated successfully. Possible return values are
success and error.
Possible causes of an error include the following:

l Any of the arguments passed to the function are undefined or of the wrong type
l The cache size limit has been reached
l The value argument has exceeded its maximum length limit of 4096 characters

readFromCache
Retrieves a key-value pair stored in the cache. If the key-vale pair is not found, the return object’s value prop-
erty has a value of undefined.

Input
readFromCache has one input argument:

l key – (string) The tag address to retrieve data from

Output
readFromCache returns an object that contains the following properties:

l key – (string) The tag address
l value – (*) The last known value of the tag. Undefined if the key is not found in the cache. See below

for possible reasons this could occur.

Reasons the value property could be undefined:

l If a key-value pair has not been entered into the cache at the time the readFromCache is called.
l If the cache is full and a key-value pair needs to be added, the cache ages out the first key-value

pair updated more than 24 hours prior. Because of this, it is possible that the key being read from
the cache is aged out and no longer exists in the cache.

Using the Configuration API
This section describes the process to create a profile using the Configuration API Service. The steps shown
here can be used to create any of the profile types. For a template of functions required for a specific profile
type, create a new profile with no script defined in the request body, then send a GET API request.
Tip: This documentation assumes the user is on the same machine as the server and is using the default

HTTP port. Therefore, localhost:57412 is used as the address for all API calls. Change the IP address and
port as needed.

Sending API Requests
The API is accessible through a REST interface that can act on HTTP requests.
See the Configuration API Service help documentation in server help under Configuration API Service section for

more information about interfacing with the server over the API.

www. ptc.com

12



Profile Library Plug-In

Creating a Profile
To create a profile using the API, send a POST to the following endpoint:
POST http://localhost:57412/config/v1/project/_profile_library/profiles

with a body:
{
"common.ALLTYPES_NAME": "Profile_Name_Here"
}

If the profile is created with only its name defined in the POST request, the server populates the Script and
ProfileID fields. The Script field then contains a template script that can be retrieved with a GET request (see
View an existing Profile) as a starting point.

The user can optionally specify a description; the JavaScript that makes up the “driver logic” and a reference
ID in the form of a UUID. The body of a POST including these properties should look like:
{
"common.ALLTYPES_NAME": "Profile_Name_Here"
"common.ALLTYPES_DESCRIPTION": "description_here",
"libudcommon.LIBUDCOMMON_PROFILE_JAVASCRIPT": "<javascript>",
"libudcommon.LIBUDCOMMON_PROFILE_ID": "<UUID>"
}

Updating a Profile
To update a profile, send a PUT request to the endpoint, and append "/profiles/" and the profile name, in
the form of:
PUT http://localhost:57412/config/v1/project/_profile_library/profiles/<profile_name>

It is not recommended to update profiles with an active client reference. When a linked profile is updated,
tags on any linked channels report "bad quality" until the new script or profile configuration is propagated
to each of the linked channels. At that point, assuming that the profile is valid and works correctly with the
existing channel configurations, those tags restart communication and begin reporting "good" quality data
again.

Updating a profile can cause linked channels to become invalid. For example, if the onValidateTag function
changes and the static tag or dynamic client tag addresses no longer fit the address schema in the new func-
tion; those tags that no longer pass validation remain in "bad" quality until the profile and or link is updated
or modified again.

Tip: Once a profile is updated, reinitialize to apply the changes.

View an Existing Profile
To view the contents in an existing profile, send a GET request to the endpoint and append "/profiles/" and
the profile name, in the form of:
GET http://localhost:57412/config/v1/project/_profile_library/profiles/<profile_name>

Note: If some of the properties of the profile were generated by the server (properties that were omitted
from the POST request to create the profile), they can be viewed in the GET response.

www. ptc.com

13



Profile Library Plug-In

Index

A

Architecture 3

B

BCD 10

Best Practices 9

Boolean 10

Bulk 4

bulkId 10

Byte 10

C

Cache 11

Caching Functions 11

Char 10

Client / Server 3

Comment 9

Completing 4

Configuration API Service 5

CONTENTS 3

ConvertStringToByteArrayAndCreateMessage(){} 9

Creating a Profile 13

Creating and Configuring Profiles 5

D

Data Cache 4

Default 10

Description 5

Double 10

DWord 10

www. ptc.com

14



Profile Library Plug-In

F

Float 10

G

GUID 5

I

ID 5

initalizeCache 11

L

LBCD 10

LLong 10

Log 11

Logging Functions 11

Long 10

M

Mixed Mode 4

Modbus Protocol 10

N

Name 5

O

onData 8

onProfileLoad 6

onTagsRequest 7

onValidateTag 6

Overview 3

www. ptc.com

15



Profile Library Plug-In

P

Performance 10

profile ID 5

Profile Properties — General 5

Profile Properties — Profiles 5

Profile Types 4

Provided Functions 11

Pub / Sub 4, 10

Q

QWord 10

R

readFromCache 12

Required 5

S

Script 5, 9

Script Engine SDK 11

Sending API Requests 12

Short 10

Simple Solicited 4

Simple Unsolicited 4

Solicited 4

String 10

Structure 11

T

Transaction 4

www. ptc.com

16



Profile Library Plug-In

U

Unsolicited 4

Updating a Profile 13

Using the Configuration API 12

UTF-8 encoded 5

Utility Functions 11

V

View an Existing Profile 13

W

What is a profile? 5

Word 10

writeToCache 11

www. ptc.com

17

#What%20is%20a%20profile?

	Profile Library Plug-In
	Table of Contents
	Profile Library Plug-In
	Overview
	Architecture
	Profile Types

	Creating and Configuring Profiles
	Profile Properties — General
	Profile Properties — Profiles
	Creating a Profile Script
	Bulk Tags
	Provided Functions
	Using the Configuration API


	Index

