
1

Title Goes Here

1

PTC Perc vs Java

INTRODUCTION

This White Paper explains how the PTC Perc Java platform is different from other popular Java platforms such as
Oracle Java™ and OpenJDK.

WHERE IS PERC USED?

EMBEDDED SYSTEMS

PTC Perc is built for embedded systems rather than general purpose computers. A general-purpose computer
can run many different types of applications, often concurrently, from office apps to databases to client/server to
graphics and AI. They employ powerful CPUs and GPUs with lots of memory and storage to support a wide variety of
potential use cases.

PTC Perc®

Real-Time Java®

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

22

An embedded system is a computer that performs
a dedicated function within a larger mechanical
or electrical system. The CPU, memory, and I/O
resources of embedded systems are sized to meet the
requirements of the system. They may have a Human
Machine Interface (HMI) or they may not require any
human interaction. They are often expected to operate
for months or years without interruption.

Some embedded systems are part of a “system of
systems,” such as in factory automation, energy, or
smart cities where smaller devices collect sensor
data and drive actuators at the “edge” of a network.
These connect to edge gateways to report data and
receive commands. Gateways pass summarized
data to on-premise servers or cloud services. An
edge gateway can analyze data and apply machine
learning and artificial intelligence to make time-
critical decisions, such as shutting down a tool that
reports excessive temperature or vibration. A factory
may have thousands of edge devices and dozens of
edge gateways providing real-time data and control
in a distributed supervisory system. Perc provides
a foundation for edge gateways to perform local
decision-making while responding to critical events.

REAL-TIME SYSTEMS

This brings up a key difference in Perc. It does real-
time Java. A real-time system has timing deadlines.
It must respond to events such as user input, sensor
data, or performing a periodic task within a never-to-
exceed time limit. Missing a deadline means a failure
of the system. One common misconception about
real-time systems is that they must be fast. Real time
isn’t about raw speed. It’s about consistently executing
tasks within a predetermined time frame. The word for
this characteristic is determinism.

WHAT CAN I DO WITH PERC
THAT CAN’T BE DONE WITH
STANDARD JAVA?

First, let’s be clear that Perc can run Java language
programs without any special coding, so in that
sense it is a standard Java platform. Java is a high-
level, object-oriented programming language that
is portable across many processors and operating
systems. It has strong typing and memory safety
to minimize programming errors, avoid security
vulnerabilities, and enhance developer productivity.

With that said, there are some unique capabilities
in Perc that are not found in other Java platforms.
First, a tool called the ROMizer.

THE ROMIZER

The name of this tool was chosen early in the history
of Perc when embedded systems stored code and
data in Read-Only Memory (ROM) chips. Today it
resides on disk or in flash memory, but the purpose
of the ROMizer remains the same – to package
a Java application and the runtime Perc Virtual
Machine (PVM) into a single executable file to simplify
deployment and improve startup time as well as other
benefits to be mentioned later.

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

33

In contrast, a standard Java platform requires a
separate Java Runtime Environment (JRE) to be
installed on the target, followed by application code
and supporting libraries, usually in the form of JAR
(Java ARchive) files. The JRE is told where to find the
application JARs and the name of a class to initially
load and execute. As the application runs, the JRE
can “just-in-time” compile Java “bytecode” to native
instructions for faster execution.

While Perc is perfectly capable of loading, compiling,
and running from JARs in the same way, the ROMizer
gives the option of collecting the subset of Java
classes, resources, and data files required by your
application and linking them with the core Perc Virtual
Machine into a standalone binary executable. The
bytecode portion of Java classes can be compiled
“ahead of time” to native instructions just like a C or C++
compiler would do.

Figure 1 shows the inputs and outputs of the ROMizer.
From the left are the application’s Java classes,
resources and data files. From the right are standard
Java system classes and 3rd party library classes
the application depends on. The ROMizer packages
internal representations of the classes, resources,
and files plus the ahead-of-time compiled native
instructions for the method bytecode in each class
into a Linux ELF “Image” file.

Then the ELF Image file is linked with the core PVM
libraries, and any static libraries required by the
application to generate a custom PVM executable.

Why bother doing it this way? One reason is to make
Java programs more deterministic. There are no
unpredictable delays for loading Java classes or
when bytecode is just-in-time compiled. Everything
is present and ready to execute at startup. A second

reason is to avoid potential version mismatches
between JAR files installed on a target. The third
reason is for security. Java bytecode stored in JAR files
can be reverse engineered back to Java source code.
Deploying JARs puts your intellectual property at risk
of malicious actors copying or tampering with it. The
ROMizer removes the need to deploy any JAR files.

THE DISPATCHER

Unlike other Java platforms, PTC Perc provides
deterministic dispatching of Java application
threads. A traditional Java Virtual Machine does little
to influence when the underlying Operating System
(OS) runs a thread. New threads are created and
handed to the OS for scheduling at its discretion.
Perc, on the other hand, can use Linux SCHED_RR or
SCHED_FIFO real-time scheduling policies with Linux
priority levels ranging from 1 to 99 mapped to Java
thread priorities. Linux gives precedence to threads
assigned to a real-time policy over all other processes
in the system and strictly enforces the priority of
threads within real-time policies.

In addition, the Perc dispatcher controls the processor
core assigned to each Java thread. Only one thread
at a time is allowed to run on a given core. At any
moment, the N highest priority runnable threads will

Fig. 1

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

44

be assigned to execute on N available cores. In this
way, Perc overrides any discretionary behavior of the
Linux scheduler.

Another feature of the dispatcher is priority
inheritance. Priority inheritance solves the problem
of a “priority inversion” scenario in which a high
priority thread is blocked from running while it waits
for a low priority thread to release a resource lock it
requires. In Perc, the low priority thread is temporarily
boosted to the high priority until the lock is released.
This happens automatically, without any special
coding by the software developer to assure real-time
determinism.

THE GARBAGE COLLECTOR

A major feature of Java Virtual Machines is automatic
memory management. One of the biggest differences
between Perc and other Java platforms is how it
reclaims memory for objects allocated by programs
but no longer referenced. Garbage Collection (GC)
relieves developers from having to keep track of
allocated objects and deciding when to de-allocate
them. Traditional Java garbage collectors scan “live”
objects referenced by threads, marking them as
reachable from program code and then “sweeps”
memory for any un-marked objects to be reclaimed.
This leaves free blocks in memory to be used for
new objects, but fragmentation over time can make
it impossible to find a block large enough to satisfy
an allocation. The GC must coalesce free memory
by compacting live objects in memory. Traditional
collectors run at random times and prevent Java
threads from running when live objects are being
moved and pointers to them are updated. This results
in unpredictable “stop the world” pauses and thus
non-deterministic behavior.

Perc has a patented real-time garbage collector
that does not suffer from “stop the world” pauses. It
can relocate objects concurrently with running Java
programs. The garbage collector is implemented
with parallel worker threads running at a user-
designated priority and baseline CPU time allocation.
Furthermore, GC worker threads can be preempted by
a higher priority Java thread at any time.

PVM PROTECT

One more unique feature of Perc that’s been
added recently– the PVM Protect tool. As mentioned
earlier, deploying JAR files puts your application
software at risk of reverse engineering. While the
ROMizer and ahead-of-time compiler reduces this risk,
a ROMized binary still contains names of Java classes,
methods, and fields so they can be referenced
by dynamically loaded code or Java reflection
APIs. The Linux ‘strings’ command will show these
names to anyone who has access to the executable.
Furthermore, the contents of Java resource files and
data files are visible within a PVM binary. Developers
of embedded systems for defense, infrastructure,
or other security-sensitive applications may need to
prevent viewing of these items.

The PVM Protect tool fully encrypts and wraps a
PVM binary into a self-decrypting launcher using
strong cryptographic algorithms and Trusted Platform
Module (TPM) 2.0 hardware. TPM 2.0 chips are used
in modern servers and laptops to provide secure boot
and disk encryption. The Perc customer generates
an RSA 2048 key pair, using the public key to encrypt
the binary and provisioning the TPM 2.0 chip in each
target system with the private key to decrypt it. At
execution time, the launcher uses the TPM 2.0 chip
to decrypt itself directly into RAM and launch the

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo

55

application in Linux without storing plaintext on a
hard disk or other persistent storage. The private key
is “sealed” in the chip with a policy that allows it to be
accessed only when the target system has validated
bootstrap, kernel, and related software components.
Any tampering of the boot process renders the RSA
private key inaccessible.

PVM Protect delivers end-to-end encryption. One
can safely transmit and deploy the encrypted
PVM launcher without concern about threat actors
accessing it either in transit or as it resides on media.

CONCLUSION

To summarize, PTC Perc is uniquely designed
for embedded systems running Java language
applications with real-time determinism and
enhanced security. Perc has been deployed in
thousands of real-world systems in industrial control,
energy, transportation, telecom, aerospace, and
defense for over two decades. Learn more about PTC
Perc at:

ptc.com/products/developer-tools/perc

© 2025, PTC Inc. (PTC). All rights reserved. Information described herein is furnished for informational use only, is subject to change without notice, and should not be taken as
a guarantee, commitment, or offer by PTC. PTC, the PTC logo, and all PTC product names and logos are trademarks or registered trademarks of PTC and/or its subsidiaries in
the United States and other countries. All other product or company names are property of their respective owners. The timing of any product release, including any features
or functionality, is subject to change at PTC’s discretion.

547055_Perc Real-Time Java_04_25

https://www.facebook.com/ptc.creo
https://www.linkedin.com/showcase/ptc-creo
https://www.youtube.com/creotv
https://www.ptc.com
https://twitter.com/PTC_Creo
https://www.ptc.com/en/products/developer-tools/perc

