
© 2023 PTC Inc. All Rights Reserved.

ThingWorx Kepware Edge

Table of Contents

Table of Contents 2

Introduction 11

ThingWorx Kepware Edge System Requirements 11

Configuration API Service — Architecture 12

ThingWorx Kepware Edge Installation 12

Application Data 13

ThingWorx Kepware Edge Licensing 14

Command Line Interface — edge_admin 16

Components and Concepts 17

What is a Channel? 17

What is a Device? 17

What is a Tag? 18

Tag Properties — General 18

System Tags 19

Property Tags 31

Statistics Tags 32

Dynamic Tags 34

Tag Properties — Scaling 35

What is a Tag Group? 36

Tag Group Properties 37

What is the Alias Map? 37

Alias Properties 37

What is the Event Log? 37

Properly Name a Channel, Device, Tag, and Tag Group 37

Getting Started 39

Managing ThingWorx Kepware Edge Services 41

Configuration Backup and Restore 41

Configuration API Service — Documentation Endpoint 42

Configuration API Service — Endpoint Mapping 42

Configuration API Service — Health Status Endpoint 44

Enabling Interfaces 45

Interfaces and Connectivity 46

OPC UA Interface 46

OPC UA Certificate Management 47

www. ptc.com

2

ThingWorx Kepware Edge

Configuring the ThingWorx Native Interface 47

ThingWorx Native Interface Certificate Management 49

IoT Gateway — MQTT 49

Configuring the IoT Gateway 50

Configuring Self-Signed Certificates for MQTT Agent 51

Configuration API Service 53

Security 53

Documentation 53

Configuration API Service — Concurrent Clients 53

Configuration API Service — Log Retrieval 54

Configuration API Service — Content Retrieval 56

Configuration API Service — Data 65

Configuration API Service — Invoking Services 69

Configuration API Service — Reinitialize Runtime Service 73

Configuration API Service — Project Example 74

Configuration API Service — Response Codes 75

Project Properties (via API Commands) 75

Project Properties — OPC UA 79

Configuration API Services — Channel Properties 81

Configuration API Service — Creating a Channel 81

Configuration API Service — Updating a Channel 82

Configuration API Service — Removing Channel 83

Configuration API Service — Device Properties 83

Configuration API Service — Creating a Device 84

Configuration API Service — Updating a Device 85

Configuration API Service — Removing a Device 86

Configuration API Service — Creating a Tag 86

Configuration API Service — Updating a Tag 87

Configuration API Service — Removing a Tag 88

Configuration API Service — Creating a Tag Group 88

Configuration API Service — Updating a Tag Group 89

Configuration API Service — Removing a Tag Group 90

Configuration API Service — Property Validation Error Object 90

Configuration API Service — User Management 91

Configuration API Service — Creating a User 95

Configuration API Service — Creating a User Group 95

www. ptc.com

3

ThingWorx Kepware Edge

Configuration API Service — Updating a User 96

Configuration API Service — Updating a User Group 96

Configuration API Service — Configuring User Group Project Permissions 97

Configuration API Service — Configuring Licensing Server 97

Configuration API Service — OPC UA Endpoint 99

Configuration API Service — Creating a UA Endpoint 102

Configuration API Service — Updating a UA Endpoint 102

Configuration API Service — Removing a UA Endpoint 102

Connecting with an OPC UA Client Using UaExpert 104

Event Log Messages 106

The Config API SSL certificate contains a bad signature. 106

The Config API is unable to load the SSL certificate. 106

Unable to start the Config API Service. Possible problem binding to port. 106

The Config API SSL certificate has expired. 106

The Config API SSL certificate is self-signed. 106

The configured version of TLS for the Configuration API is no longer considered secure. It is

recommended that only TLS1.2 or higher is used. 106

Configuration API started without SSL on port <port number>. 106

Configuration API started with SSL on port <port number>. 107

The <name> device driver was not found or could not be loaded. 107

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>').

Remove the conflicting driver and restart the application. 107

Invalid project file. 107

Unable to add channel due to driver-level failure. 108

Unable to add device due to driver-level failure. 108

Version mismatch. 108

Unable to load project <name>: 108

Unable to back up project file to '<path>' [<reason>]. The save operation has been aborted.

Verify the destination file is not locked and has read/write access. To continue to save this pro-

ject without a backup, deselect the backup option under Tools | Options | General and re-save

the project. 109

<feature name> was not found or could not be loaded. 109

Unable to save project file <name>: 109

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range

and try again. 109

<feature name> is required to load this project. 109

Unable to load the project due to a missing object. | Object = '<object>'. 110

Invalid Model encountered while trying to load the project. | Device = '<device>'. 110

Cannot add device. A duplicate device may already exist in this channel. 110

www. ptc.com

4

ThingWorx Kepware Edge

Auto-generated tag '<tag>' already exists and will not be overwritten. 110

Unable to generate a tag database for device '<device>'. The device is not responding. 110

Unable to generate a tag database for device '<device>': 111

Auto generation produced too many overwrites, stopped posting error messages. 111

Failed to add tag '<tag>' because the address is too long. The maximum address length is <num-

ber>. 111

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network

adapter. 111

Rejecting attempt to change model type on a referenced device '<channel device>'. 112

Validation error on '<tag>': <error>. 112

Unable to load driver DLL '<name>'. 112

Validation error on '<tag>': Invalid scaling parameters. 112

Device '<device>' has been automatically demoted. 113

Unable to load plug-in DLL '<name>'. 113

Unable to load driver DLL '<name>'. Reason: 113

Unable to load plug-in DLL '<name>'. Reason: 114

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 114

No tags were created by the tag generation request. See the event log for more information. 114

<Product> device driver loaded successfully. 114

Starting <name> device driver. 114

Stopping <name> device driver. 115

<Product> device driver unloaded from memory. 115

Simulation mode is enabled on device '<device>'. 115

Simulation mode is disabled on device '<device>'. 115

Attempting to automatically generate tags for device '<device>'. 115

Completed automatic tag generation for device '<device>'. 115

A client application has enabled auto-demotion on device '<device>'. 115

Data collection is enabled on device '<device>'. 115

Data collection is disabled on device '<device>'. 115

Object type '<name>' not allowed in project. 116

Created backup of project '<name>' to '<path>'. 116

Device '<device>' has been auto-promoted to determine if communications can be re-estab-

lished. 116

Failed to load library: <name>. 116

Failed to read build manifest resource: <name>. 116

A client application has disabled auto-demotion on device '<device>'. 116

Tag generation results for device '<device>'. | Tags created = <count>. 116

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten =

<count>. 116

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten = 116

www. ptc.com

5

ThingWorx Kepware Edge

<count>.

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 117

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 117

User group has been created. | Group = '<name>'. 117

User added to user group. | User = '<name>', Group = '<name>'. 117

User group has been renamed. | Old name = '<name>', New name = '<name>'. 117

Permissions definition has changed on user group. | Group = '<name>'. 117

User has been renamed. | Old name = '<name>', New name = '<name>'. 117

User has been disabled. | User = '<name>'. 117

User group has been disabled. | Group = '<name>'. 117

User has been enabled. | User = '<name>'. 117

User group has been enabled. | Group = '<name>'. 118

Password for user has been changed. | User = '<name>'. 118

The endpoint '<url>' has been added to the UA Server. 118

The endpoint '<url>' has been removed from the UA Server. 118

The endpoint '<url>' has been disabled. 118

The endpoint '<url>' has been enabled. 118

User has been deleted. | User = '<name>'. 118

Group has been deleted. | Group = '<name>'. 118

Connection to ThingWorx failed. | Platform = <host:port resource>, error = <reason>. 118

Error adding item. | Item name = '<item name>'. 119

Failed to trigger the autobind complete event on the platform. 119

Connection to ThingWorx failed for an unknown reason. | Platform = <host:port resource>,

error = <error>. 119

One or more value change updates lost due to insufficient space in the connection buffer. |

Number of lost updates = <count>. 120

Item failed to publish; multidimensional arrays are not supported. | Item name = '%s'. 120

Store and Forward datastore unable to store data due to full disk. 120

Store and Forward datastore size limit reached. 120

Connection to ThingWorx was closed. | Platform = <host:port resource>. 121

Failed to autobind property. | Name = '<property name>'. 121

Failed to restart Thing. | Name = '<thing name>'. 121

Write to property failed. | Property name = '<name>', reason = <reason>. 121

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 122

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 122

The server is configured to send an update for every scan, but the push type of one or more

properties are set to push on value change only. | Count = <count>. 122

The push type of one or more properties are set to never push an update to the platform. |

Count = <count>. 123

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item123

www. ptc.com

6

ThingWorx Kepware Edge

name = '<name>'.

Write to property failed. | Thing name = '<name>', property name = '<name>', reason =

<reason>. 123

Error pushing property updates to thing. | Thing name = '<name>'. 123

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-

memory store size (updates) = <count>. 124

Store and Forward datastore reset due to file IO error or datastore corruption. 124

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user

name>'. 124

Configuration Transfer to ThingWorx Platform failed. 125

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 125

Failed to delete stored updates in the Store and Forward datastore. 125

Configuration Transfer from ThingWorx Platform failed. 125

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 125

Check that your Application Key is properly formatted and valid. 126

The maximum number of configured Industrial Things has been reached, count = <number>.

Consider increasing the value of the Max Thing Count. 126

Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<name>'. 126

Reinitializing ThingWorx connection due to a project settings change initiated from the platform.126

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 127

Serviced one or more autobind requests. | Count = <count>. 127

Reinitializing ThingWorx connection due to a project settings change initiated from the Con-

figuration API. 127

Resumed pushing property updates to thing: the error condition was resolved. | Thing name =

'<name>'. 127

Configuration transfer from ThingWorx initiated. 127

Configuration transfer from ThingWorx aborted. 127

Initialized Store and Forward datastore. | Datastore location: '<location>'. 128

Successfully deleted stored data from the Store and Forward datastore. 128

Store and Forward mode changed. | Forward Mode = '<mode>'. 128

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location = '<loc-

ation>'. 128

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Man-

ager to reissue the certificate. 128

Failed to import server instance cert: '<cert location>'. Please use the OPC UA Configuration

Manager to reissue the certificate. 128

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue

the certificate. 129

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>',

Error = <error code>, Details = '<description>'. 129

The UA Server failed to register with the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 129

www. ptc.com

7

ThingWorx Kepware Edge

Unable to start the UA server due to certificate load failure. 130

Failed to load the UA Server endpoint configuration. 130

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL: '<endpoint

url>'. 130

The UA Server failed to initialize an endpoint configuration. | Endpoint Name: '<name>'. 131

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL: '<endpoint

url>'. 131

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL: '<end-

point url>'. 131

Com port is in use by another application. | Port = '<port>'. 131

Unable to configure com port with specified parameters. | Port = COM<number>, OSerror =

<error>. 131

Driver failed to initialize. 132

Unable to allocate thread resource. Please check the memory usage of the application. 132

Com port does not exist. | Port = '<port>'. 132

Error opening com port. | Port = '<port>', OSerror = <error>. 132

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 132

Winsock shut down failed. | OSerror = <error>. 133

Winsock initialization failed. | OSerror = <error>. 133

Winsock V1.1 or higher must be installed to use this driver. 133

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 133

Device is not responding. 133

Device is not responding. | ID = '<device>'. 134

Serial communications error on channel. | Error mask = <mask>. 134

Invalid array size detected writing to tag <device name>.<address>. 135

Unable to write to address on device. | Address = '<address>'. 135

Items on this page may not be changed while the driver is processing tags. 135

Specified address is not valid on device. | Invalid address = '<address>'. 135

Address '<address>' is not valid on device '<name>'. 136

This property may not be changed while the driver is processing tags. 136

Unable to write to address '<address>' on device '<name>'. 136

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 136

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 137

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 137

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 137

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 137

%s | 138

<Name> Device Driver '<name>' 138

Could not load item state data. Reason: <reason>. 138

Could not save item state data. Reason: <reason>. 138

www. ptc.com

8

ThingWorx Kepware Edge

Feature '<name>' is not licensed and cannot be used. 139

Failed to load the license interface, possibly due to a missing third-party dependency. Run in

Time Limited mode only. 139

Failed to initialize licensing. Unable to load the demo file license (Error %1!x!). 139

Failed to initialize licensing. Unable to initialize the licensing identity (Error %1!x!). 139

Failed to initialize licensing. Unable to initialize trusted storage (Error %1!x!). 140

Failed to initialize licensing. Unable to initialize the licensing publisher (Error %1!x!). 140

Failed to initialize licensing. Unable to establish system time interface (Error %1!x!). 140

Failed to initialize licensing (Error <error code>) 140

Failed to process the activation response from the license server (Error: %x, Process Codes: %s,

Message Codes: %s) 140

Failed to create an activation request (Error %x) 140

Request failed with license server. 140

Time Limited mode has expired. 140

Maximum device count exceeded for the lite version '<number>' license. Edit project and restart

the server. 141

Maximum runtime tag count exceeded for the lite version '<number>' license. Edit client project

and restart the server. 141

Type <numeric type ID> limit of <maximum count> exceeded on feature '<name>'. 142

<Object type name> limit of <maximum count> exceeded on feature '<name>'. 142

The FlexNet Licensing Service must be enabled to process licenses. Failure to enable the service

results in Time Limited mode. 142

The <name> feature license has been removed. The server will enter Time Limited mode unless

the license is restored before the grace period expires. 143

License for feature <name> cannot be accessed [error=<code>] and must be reactivated. 143

Feature %1 is time limited and will expire at %2. 144

Feature %1 is time limited and will expire at %2. 144

Object count limit has been exceeded on feature <name>. Time limited usage will expire at

<date/time>. 144

Feature count limit exceeded on <name>. Time limited usage will expire at <date/time>. 144

Time limited usage period on feature <name> has expired. 144

Failed to obtain licenses from the license server. 144

The license for this product has expired and will soon stop functioning. Please contact your

sales representative to renew the subscription. 144

Licensing for this system is currently provided by a file-based license. 144

Failed to connect to the license server. 144

Failed to return licenses to the LLS. 145

Maximum driver count exceeded for the lite version '<name>' driver license. Edit project and

restart the server. 145

Connecting to the license server. 145

Successful communication with the license server. Renew interval established at %d seconds. 145

www. ptc.com

9

ThingWorx Kepware Edge

License synchronization required. Initiating request... 146

Performing initial license request to the license server. 146

Connected to license server, no changes. 146

Requesting return of all borrowed licenses... 146

Cannot add item. Requested count of <number> would exceed license limit of <maximum

count>. 146

The version of component <name> (<version>) is required to match that of component <name>

(<version>). 146

Maximum channel count exceeded for the lite version '<name>' driver license. Edit project and

restart the server. 147

%s is now licensed. 147

Appendix — Running ThingWorx Kepware Edge in a Container 148

Appendix — Running ThingWorx Kepware Edge as an Azure IoT Edge Mod-
ule 151

Index 157

www. ptc.com

10

ThingWorx Kepware Edge

Introduction
Version 1.778

ThingWorx Kepware Edge is a connectivity server that enables users to connect diverse automation devices

and sensors to a wide variety of digital solutions. It offers the stability, performance, and security that is

essential for industrial environments. With support for popular and secure Linux operating systems, it sup-

ports distributed architectures that improve reliability and security and reduce cost. Built by the industrial

connectivity experts, ThingWorx Kepware Edge eliminates the interoperability challenges associated with

implementing digital solutions.

ThingWorx Kepware Edge System Requirements
The product has been tested and verified on modern computer hardware running Ubuntu X86_64 version

18.04 LTS. It currently only runs on X86_64 platforms.

If running ThingWorx Kepware Edge in a container, refer to the Running in a Container for information about

system requirements.

This user manual expects the user has a working knowledge of:

l Linux operating system and commands

l Command line interfaces

l Command line or API utilit ies, such as Postman or cURL

l ThingWorx Platform (if used)

l OPC UA configuration and connectivity (if used)

l MQTT Client interfaces and connectivity (if used)

If additional information is required, consult the vendors and websites related to those tools and technologies in

use in your environment.

Prerequisites

l Ubuntu 18.04 LTS

l x86-64 CPU Architecture

l Latest Linux Standard Base (LSB) package

To install the Linux Standard Base components on Ubuntu, open a terminal and run the following

command:
$ sudo apt install lsb

l Java Runtime Environment for MQTT

To install the Java runtime environment on Ubuntu, open a terminal and run the following com-

mand:
$ sudo apt install default-jdk

Note: OpenJDK and Amazon Corretto have been tested and validated for running the MQTT agent.

See Also: The licensing server user manual for related system requirements.

www. ptc.com

11

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/thingworx_kepware_licensing_server.pdf

ThingWorx Kepware Edge

Configuration API Service — Architecture
The diagram below shows the layout of the components. The Configuration API Service is installed on the

same machine with the server.

ThingWorx Kepware Edge Installat ion
Refer to the Running in a Container for information about installing and using ThingWorx Kepware Edge in a

container.

Before installing ThingWorx Kepware Edge, verify the installer hash to ensure it is the official, secure file. To

generate the hash locally, run the following command and compare the results to the hash published

online.

$ sha256sum thingworx_kepware_edge*

ThingWorx Kepware Edge must be installed by a user with root permissions. The installer supports both GUI

and command line installations.

To install, run the following command:

$./thingworx_kepware_edge*.run

For all installation options, run the following command:

$./thingworx_kepware_edge*.run --help

www. ptc.com

12

https://www.ptc.com/en/support/article/CS278624

ThingWorx Kepware Edge

Note: Ubuntu can place a lock on files needed to install software while it is checking for updates. Verify

the system is updated before installing ThingWorx Kepware Edge by running the 'apt update' command.

A password should be set for the ThingWorx Kepware Edge Administrator account during installation. To

skip setting a password significantly reduces the security of the installation. The Administrator account is

specific to the product installation; it is not the general operating system Administrator account.

Administrator passwords must be at least 14 characters and no more than 512 characters. Passwords

should be at least 14 characters and include a mix of uppercase and lowercase letters, numbers, and special

characters. Choose a strong unique password that avoids well-known, easily guessed, or common pass-

words.

The Administrator user account password cannot be reset, but additional administrative users can be

added to the Administrator user group. Best practices suggest each user with administrative access be

assigned unique accounts and passwords to ensure audit integrity and continual access through role and

staff changes.

Once installed, any Linux user accounts administering the ThingWorx Kepware Edge instance must

be added to the user group created during the installat ion, which is tkedge by default . This allows

those accounts to use the edge_admin tool and interact with the local file system to move files in and out of

the secured data directory (<installation_directory>/user_data directory).

Uninstalling ThingWorx Kepware Edge
To uninstall, run the uninstall command from the <installation_directory> as root.

For a complete list of uninstall properties run the command:

$ sudo ./uninstall --help

Note: the uninstall tool leaves the <installation_directory> with the original install log and an uninstall log.

This directory and these files may be removed manually.

See Also: Command Line Interface — edge_admin, Application Data

To access the command line options, run the following command:

$ sudo ./thingworx_kepware_edge*.run --help

Application Data
During installation, user_data and .config directories are created in the <installation_directory> path. The

user_data directory is the relative path where all project files are saved to and loaded from using the Con-

figuration API, as well as where files to support automatic tag generation (ATG) should be placed.
Note: All files in the user_data directory must be world readable or owned by the Linux user and group

that were created during installation, which is tkedge by default.

Any authorized Linux user should be added to the user group that was created during installation to have

the proper permissions to interact locally with this folder. All actions the runtime uses to interact with this

folder use the Linux user configured during installation, which is tkedge by default.
Note: Any directories created in the user_data directory must be writeable by members of the ThingWorx

Kepware Edge group created during installation, tkedge by default. Files in the user_data directory must be

either world readable or owned by the group that was setup during installation, which is tkedge by default.

The .config directory stores currently running configuration data of the runtime, including the currently run-

ning project file, certificate information, and other instance-specific data.

www. ptc.com

13

ThingWorx Kepware Edge

Backing up the .config folder is STRONGLY RECOMMENDED as part of an application backup strategy.
See Configuration Backup and Restore for more information.

ThingWorx Kepware Edge Licensing
Licensing in ThingWorx Kepware Edge is provided on a per-tag basis across the set of supported drivers.

Licensing is provided by a license server. If a license cannot be obtained from the license server, unlicensed

functionality cannot be used.

See Also: ThingWorx Edge License Server User Manual

The following are the available licensing levels:

l 100 Tag Limit

l 750 Tag Limit

l 1500 Tag Limit

l Unlimited

Tag count is measured across all drivers and is determined at the time of tag utilization. A tag is not con-

sidered utilized for the purpose of licensing unless there is an active client reference (a ThingWorx property

binding, an OPC UA client monitored item, or an MQTT Agent Item Reference). Simulator tags and system

tags are not included in the tag limit. Tags can be utilized up to the limit established by the valid license.

Tags beyond this limit may be added to the server and referenced by clients, but not utilized by drivers.

Note: A server license is required for a feature to be licensed. Non-server feature licenses are provided to

a client requesting them even if a server-level license is not available.

Note: Licensing for ThingWorx Kepware Edge setup through an installer or as a container requires the

same process. For container implementations, any command-line functions need to be run locally within

the container.

Installing a Demo License
Demo licenses are time-limited, but fully functional to allow evaluation of the software. They may be

installed directly on an instance of ThingWorx Kepware Edge or distributed with the license server. Below

are instructions for installing a demo license only on a ThingWorx Kepware Edge server.
See Also: ThingWorx Edge License Server User Manual

1. Login using a local Linux user account that is a member of the ThingWorx Kepware Edge user group

configured during installation, tkedge by default.

2. Use the edge_admin tool to install the demo license using the following command:

<installation_directory>/edge_admin manage-licensing -i <file_path>

3. Restart the ThingWorx Kepware Edge runtime service using the following command to complete the

licensing process:

sudo systemctl restart tkedge_runtime.service

Configuring the License Server Connection
The license server connection can be configured using either the edge_admin command line tool or the Con-

figuration API.

www. ptc.com

14

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/thingworx_kepware_licensing_server.pdf
https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/thingworx_kepware_licensing_server.pdf

ThingWorx Kepware Edge

1. Set the IP address or host name of the server where the license server is running:

Using Edge Admin:

<installation_directory>/edge_admin manage-licensing -l <server_address>

Using the Configuration API:

Endpoint: (PUT)

https://<hostname_or_ip>:<port>/config/v1/admin

Body:

{
"libadminsettings.LICENSING_SERVER_NAME": "192.168.1.1"
}

2. Import the license server certificate used when configuring the license server:

Using Edge Admin:

<installation_directory>/edge_admin manage-truststore -i <cert_file> licensing

3. Enable the license server connection:

Using Edge Admin:

<installation_directory>/edge_admin manage-licensing --lls-enable

Using the Configuration API:

Endpoint: (PUT)

https://<hostname_or_ip>:<port>/config/v1/admin

Body:

{
"libadminsettings.LICENSING_SERVER_ENABLE": true
}

Note: The server can be configured to run with a self-signed certificate. This configuration is recom-

mended for testing only.

See Also: Configuration API Service — Configuring Licensing Server

License Recheck
The server periodically checks the license state to verify it is up to date. The server reaches out to the license

server requesting to borrow a license every specified check period when a feature in use requires a license.

To trigger an immediate check of the license state, use the commands below. This feature might be helpful

if new licenses have been added to the license server or if license parameters have changed.
See Also: ThingWorx Edge License Server User Manual

Using Edge Admin:

<installation_directory>/edge_admin manage-licensing --force-recheck

Using the Configuration API:

Endpoint: (PUT)

https://<hostname_or_ip>:<port>/config/v1/project/services/ForceLicenseCheck

www. ptc.com

15

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/thingworx_kepware_licensing_server.pdf

ThingWorx Kepware Edge

Command Line Interface — edge_admin
The edge_admin Command Line Interface (CLI) application is used to manage Configuration API settings and

certificates for the server from the command line. The documentation for the edge_admin CLI may be

obtained using the --help option. The following areas of functionality can be accessed through the com-

mand line.

Certificates

l Trust Store: Import / Delete / List / Trust / Reject certificates for various interfaces.

l Instance Certificate: Import / Export / Reissue instance certificates for various interfaces.

l Configuration API Settings: Enable / Disable the Configuration API and manage the ports it listens on.

Linux user accounts that interact with the edge_admin must be members of the ThingWorx Kepware Edge

group that was created during installation. The edge_admin can be found at the installation location and

run from the command line.

Examples

Obtain general help information and list the areas of the product that can be managed using the CLI:

<installation_directory>/edge_admin --help

View commands related to managing the configuration API:

<installation_directory>/edge_admin manage-cfgapi --help

View commands related to managing the certificates:

<installation_directory>/edge_admin manage-certificate --help

View commands related to managing the trust store:

<installation_directory>/edge_admin manage-truststore --help

To import an OPC UA certificate into the trust store:

<installation_directory>/edge_admin manage-truststore -i MyCertificateName.der uaserver

See Also:
OPC UA Certificate Management
ThingWorx Native Interface Certificate Management

www. ptc.com

16

ThingWorx Kepware Edge

Components and Concepts
For more information on a specific server component, select a link from the list below.

What is a Channel?

What is a Device?

What is a Tag?

What is a Tag Group?

What is the Alias Map?

What is the Event Log?

What is a Channel?
A channel represents a communication medium from the PC to one or more external devices. A channel is

used to represent an Ethernet-based path to target equipment.

Before adding devices to a project, users must define the channel to be used when communicating with

devices. A channel and a device driver are closely tied. After creating a channel, only devices that the selec-

ted driver supports can be added to this channel.

Creating a Channel
Channels are defined by a set of properties based on the communication methods. Channels are created

through the Configuration API service.

Channel names must be unique among all channels and devices defined in the project. For information on

reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.

Removing a Channel
To remove a channel from the project, use the Configuration API Service.

Displaying Channel Properties
To review the channel properties of a specific channel via the Configuration API, access the documentation

channel endpoint .
See Also: Channel Properties — General

What is a Device?
Devices represent the PLCs, controllers, or other hardware with which the server communicates. The device

driver that the channel is using restricts device selection.

Adding a Device
Devices are defined by a set of properties based on the protocol, make, and model. Devices are created

through the Configuration API Service.

Device names are user-defined and should be logical for the device. This is the browser branch name used

in links to access the device's assigned tags.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Device
To remove a device from the project, use the Configuration API Service.

www. ptc.com

17

Channel_Properties_General.htm

ThingWorx Kepware Edge

Displaying Device Properties
To review the channel properties of a specific channel via the Configuration API, access the documentation

channel endpoint .
 For more information, refer to Device Properties.

What is a Tag?
A tag represents addresses within the device with which the server communicates. The server allows both

Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify

device data addresses. User-defined Static tags are created and stored in the server. Static tags function as

pointers to device data addresses and can be browsed from clients that support tag browsing.
For more information, refer to Dynamic Tags and Static User-Defined Tags.

Adding a Tag
Tags are defined by a set of properties based on the data. Tags are defined through the Configuration

API Service.

Tag names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag
To remove a tag from the project; use the Configuration API Service.

Displaying Tag Properties
To review the tag properties of a specific channel via the Configuration API, access the documentation

channel endpoint .

Tag Properties — General
A tag represents addresses within the device with which the server communicates. The server allows both

Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify

device data addresses. User-defined Static tags are created and stored in the server. Static tags function as

pointers to device data addresses and can be browsed from clients that support tag browsing.
For more information, refer to Dynamic Tags and Static User-Defined Tags.

Name: Enter a string to represent this tag. The tag name can be up to 256 characters in length. For inform-

ation on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.
Tip: If the application is best suited for using blocks of tags with the same names, use tag groups to sep-

arate the tags. For more information, refer to Tag Group Properties.

Description: Add context to the tag. A string of up to 255 characters can be entered for the description.

Address: Enter the target tag's driver address. The address's format is based on the driver protocol.

Data Type: Specify the format of this tag's data as it is found in the physical device. In most cases, this is

also the format of the data as it returned to the client. The data type setting is an important part of how a

communication driver reads and writes data to a device. For many drivers, the data type of a particular

piece of data is rigidly fixed and the driver knows what format needs to be used when reading the device's

data. In some cases, however, the interpretation of device data is largely in the user's hands. An example

www. ptc.com

18

Device_Properties_General.htm
Static_Tags.htm
Static_Tags.htm

ThingWorx Kepware Edge

would be a device that uses 16-bit data registers. Normally this would indicate that the data is either a Short

or Word. Many register-based devices also support values that span two registers. In these cases, the

double register values could be a Long, DWord or 32-bit Float. When the driver being used supports this

level of flexibility, users must tell it how to read data for this tag. By selecting the appropriate data type, the

driver is being directed to request one or more registers.

l Default - Uses the driver default data type

l Boolean - Binary value of true or false

l Char - Signed 8-bit integer data

l Byte - Unsigned 8-bit integer data

l Short - Signed 16-bit integer data

l Word - Unsigned 16-bit integer data

l Long - Signed 32-bit integer data

l DWord - Unsigned 32-bit integer data

l LLong - Signed 64-bit integer data

l QWord - Unsigned 64-bit integer data

l Float - 32-bit real value IEEE-754 standard definition

l Double - 64-bit real value IEEE-754 standard definition

l String - Null-terminated Unicode string

l BCD - Two byte-packed BCD value range is 0-9999

l LBCD - Four byte-packed BCD value range is 0-99999999

l Date - 8-byte floating point number

Client Access: Specify whether the tag is Read Only or Read / Write. By selecting Read Only, users can pre-

vent client applications from changing the data contained in this tag. By selecting Read / Write, users allow

client applications to change this tag's value as needed. The Client Access selection also affects how the tag

appears in the browse space of an OPC UA client. Many client applications allow filtering tags based on

attributes. Changing the access method of this tag may change how and when the tag appears in the

browse space of the client.

Scan Rate: Specify the update interval for this tag when using the Scan Mode option of Respect Tag-Spe-

cified Scan Rate within Device Properties. The server specifies an update rate on a tag per tag basis. Using

the scan rate, users can tailor the bandwidth requirements of the server to suit the needs of the application.

If, for example, data that changes very slowly needs to be read, there is no reason to read the value very

often. Using the scan rate this tag can be forced to read at a slower rate reducing the demand on the com-

munications channel. The valid range is 10 to 99999990 milliseconds (ms), with a 10 ms increment. The

default is 100 milliseconds.

With the server's online full-time operation, these properties can be changed at any time. Changes made

to tag properties take effect immediately; however, client applications that have already connected to this

tag are not affected until they release and attempt to reacquire it. Utilize the User Manager to restrict access

rights to server features and prevent operators from changing the properties.

System Tags
System tags provide general error feedback to client applications, allow operational control when a device is

actively collecting data, and allow a channel or device's standard properties to be changed by a client applic-

ation when needed.

www. ptc.com

19

ThingWorx Kepware Edge

The number of system tags available at both the channel level and device level depends on the nature of

the driver being used. In addition, application-level system tags allow client applications to monitor the

server's status. System tags can also be grouped according to their purpose as both status and control or

property manipulation. Descriptions are as follows:

l Status Tags Status tags are read-only tags that provide data on server operation.

l Parameter Control Tags: Parameter control tags can be used to modify the server application's

operational characteristics. This provides a great deal of flexibility in the client applications. By using

the property control tags, users can implement redundancy by switching communications links or

changing the device ID of a target device. Users can also provide access to the tags through special

supervisory screens that allow a plant engineer to make changes to the communication parameters

of the server if needed.

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has

the appropriate permissions.

The tables below include descriptions of the following:

Application-Level System Tags

Channel-Level System Tags for Ethernet Drivers

Device-Level System Tags for both Serial and Ethernet Drivers

Application-Level System Tags

Syntax Example: <Channel Name>.<Device Name>._System._ActiveTagCount

Tag Class Description

_ActiveTagCount Status Tag The _ActiveTagCount tag indicates the

number of tags that are currently active

in the server.

This is a read-only tag.

_ClientCount Status Tag The _ClientCount tag indicates the num-

ber of clients that are currently con-

nected to the server.

This is a read-only tag.

_Date Status Tag The _Date tag indicates the current date

of the system that the server is running

on. The format of this string is defined by

the operating system date / time settings.

This is a read-only tag.

_DateTime Status Tag The _DateTime tag indicates the GMT

date and time of the system that the

server is running on. The format of the

string is '2004-05-21T20:39:07.000'.

This is a read-only tag.

www. ptc.com

20

ThingWorx Kepware Edge

Tag Class Description

_DateTimeLocal Status Tag The _DateTimeLocal tag indicates the loc-

alized date and time of the system that

the server is running on. The format of

the string is '2004-05-21T16:39:07.000'.

This is a read-only tag.

_Date_Day Status Tag The _Date_Day tag indicates the current

day of the month of the system on which

the server is running.

This is a read-only tag.

_Date_DayOfWeek Status Tag The _Date_DayOfWeek tag indicates the

current day of the week of the system on

which the server is running. The format

of the string is a number from 0 (Sunday)

to 6 (Saturday).

This is a read-only tag.

_Date_Month Status Tag The _Date_Month tag indicates the cur-

rent month of the system on which the

server is running. The format of the

string is a number (such as "9" instead of

"September").

This is a read-only tag.

_Date_Year2 Status Tag The _Date_Year2 tag indicates the last

two digits of the current year of the sys-

tem on which the server is running.

This is a read-only tag.

_Date_Year4 Status Tag The _Date_Year4 tag indicates the current

year of the system on which the server is

running.

This is a read-only tag.

_ExpiredFeatures Status Tag The _ExpiredFeatures tag provides a list

of all server features whose time-limited

usage has expired. These features are no

longer operational.

This is a read-only tag.

_FullProjectName Status Tag The _FullProjectName tag indicates the

fully qualified path and file name to the

currently loaded project.

This is a read-only tag.

_IsDemo Status Tag The _IsDemo tag is no longer available as

www. ptc.com

21

ThingWorx Kepware Edge

Tag Class Description

the runtime does not enter Time Limited

mode in version 1.3 or higher. See the _

TimeLimitedFeatures, _LicensedFeatures,

and _ExpiredFeatures tags to monitor the

status of server features.

_License_BorrowExpirationDate Status Tag The _License_BorrowExpirationDate tag

shows the date when licenses obtained

from the License Server will need to be

renewed. Licenses not able to renew by

this date will cease to be available on the

system.

This is a read-only tag.

_License_FeaturesInGrace Status Tag The _License_FeaturesInGrace tag shows

licensed features which are past their

expiration date. The licenses will soon

expire permanently.

This is a read-only tag.

_License_LastRequestState Status Tag The _License_LastRequestState tag shows

the status of the last license request

made to the License Server. Possible

states include "Failure", "NoChanges",

and "Success".

This is a read-only tag.

_License_LastServerConnection Status Tag The _License_LastServerConnection tag

shows the result of the last connection

attempt the License Server. This is a

Boolean tag. 1 (True) indicates a suc-

cessful connection and 0 (False) indicates

a failed connection.

This is a read-only tag.

_LicensedFeatures Status Tag The _LicensedFeatures tag provides a list

of all server features in use that have a

valid license. If the license expires, fea-

tures function through a grace period to

allow users to get licensing into com-

pliance.

This is a read-only tag.

_ProductName Status Tag The _ProductName tag indicates the

name of the underlying communication

server.

This is a read-only tag.

www. ptc.com

22

ThingWorx Kepware Edge

Tag Class Description

_ProductVersion Status Tag The _ProductVersion tag indicates the ver-

sion of the underlying communication

server.

This is a read-only tag.

_ProjectName Status Tag The _ProjectName tag indicates the cur-

rently loaded project file name and does

not include path information.

This is a read-only tag.

_ProjectTitle Status Tag The _ProjectTitle tag is a String tag that

indicates the title of the project that is cur-

rently loaded.

This is a read-only tag.

_Time Status Tag The _Time tag indicates the current time

of the system that the server is running

on. The format of this string is defined by

the operating system date / time settings.

This is a read-only tag.

_Time_Hour Status Tag The _Time_Hour tag indicates the current

hour of the system on which the server is

running.

This is a read-only tag.

_Time_Hour24 Status Tag The _Time_Hour24 tag indicates the cur-

rent hour of the system on which the

server is running in a 24-hour format.

This is a read-only tag.

_Time_Minute Status Tag The _Time_Minute tag indicates the cur-

rent minute of the system on which the

server is running.

This is a read-only tag.

_Time_PM Status Tag The _Time_PM tag indicates the current

AM/PM status of the system on which the

server is running. This is a Boolean tag: 0

(False) indicates AM, and 1

(True) indicates PM.

This is a read-only tag.

_Time_Second Status Tag The _Time_Second tag indicates the cur-

rent second of the system on which the

server is running.

www. ptc.com

23

ThingWorx Kepware Edge

Tag Class Description

This is a read-only tag.

_TimeLimitedFeatures Status Tag The _TimeLimitedFeatures tag provides a

list of all server features that are in unli-

censed demo. When the time remaining

expires, the feature ceases operation.

This is a read-only tag.

_TotalTagCount Status Tag The _TotalTagCount tag indicates the

total number of tags that are currently

being accessed. These tags can be active

or inactive.

Note: This count does not represent

the number of tags configured in the pro-

ject.

This is a read-only tag.

Channel-Level System Tags for Ethernet Drivers

Syntax Example: <Channel name>._System._NetworkAdapter

Tag Class Description

_AvailableNetworkAdapters Status Tag The _AvailableNetworkAdapters tag lists

the available NICs and includes both

unique NIC cards and NICs that have mul-

tiple IPs assigned to them. This tag also

displays any WAN connections that are

active, such as a dial-up connection. This

tag is provided as a string tag and can be

used to determine the network adapters

available for use on this PC. The string

returned contains all of the NIC names

and their IP assignments. A semicolon

separates each unique NIC to allow the

names to be parsed within an OPC applic-

ation. For a serial driver, this tag is only

used if Ethernet Encapsulation is selec-

ted.

This is a read-only tag.

_Description Status Tag The _Description tag indicates the current

user-defined text description for the

channel it is referencing.

This is a read-only tag.

_EnableDiagnostics Parameter Control Tag The _EnableDiagnostics tag allows the dia-

www. ptc.com

24

ThingWorx Kepware Edge

Tag Class Description

gnostic system of the driver to be

enabled and disabled. The diagnostic sys-

tem places a little additional burden on

the driver while enabled. As such the

server allows diagnostics to be enabled

or disabled to improve the driver's per-

formance. When disabled, the Dia-

gnostics tags will not be available. For

more information, refer to Statistics Tags.

This is a read / write tag.

_FloatHandlingType Parameter Control Tag The _FloatHandlingType tag allows the

current channel-level float handling to be

changed. It exists in the channel-level _

System folder. For more information, refer

to Channel Properties — Advanced.

This is a read / write tag.

_InterDeviceDelayMS Parameter Control Tag The _InterDeviceDelayMStag specifies

the amount of time that the channel

delays sending a request to the next

device after the data has been received

from the current device on the same

channel. The valid range is 0 to 60000 mil-

liseconds. The default setting is 0.

Note: This tag is only available on

channels that use protocols that utilize

the Inter-Device Delay.

This tag is a read / write tag.

_NetworkAdapter Parameter Control Tag The _NetworkAdapter tag allows the cur-

rent NIC adapter in use by the driver to

be changed at will. As a string tag, the

name of the newly desired NIC adapter

must be written to this tag in string

format. The string written must match

the exact description to take effect. NIC

names can be obtained from the ableNet-

workAdapters tag listed above. For a

serial driver, this tag is only used if Eth-

ernet Encapsulation is selected.

Note: When changing the NIC selec-

tion, the driver is forced to break all cur-

rent device connections and reconnect.

This is a read / write tag.

www. ptc.com

25

Channel_Properties_Advanced.htm

ThingWorx Kepware Edge

Tag Class Description

_WriteOptimizationDutyCycle Parameter Control Tag The _WriteOptimizationDutyCycle tag

allows the duty cycle of the write to read

ratio to be changed at will. The duty cycle

controls how many writes the driver

attempts for each read it performs. The _

WriteOptimizationDutyCycle is defined as

an unsigned long value. The valid range is

1 to 10 write per read. For more inform-

ation, refer to Channel Properties —

Write Optimizations.

This is a read / write tag.

Device-Level System Tags for both Serial and Ethernet Drivers

Syntax Example: <Channel Name>.<Device Name>._System._Error

Tag Class Description

_AutoCreateTagDatabase Parameter Control Tag The _AutoCreateTagDatabase tag is a

Boolean tag that is used to initiate the

automatic tag database functions of this

driver for the device to which this tag is

attached. When this tag is set True, the

communications driver attempts to auto-

matically generate a tag database for this

device. This tag does not appear for

drivers that do not support Automatic

Tag Database Generation.

This is a read / write tag.

_AutoDemoted Status Tag The _AutoDemoted tag is a Boolean tag

that returns the current auto-demoted

state of the device. When False, the

device is not demoted and is being

scanned by the driver. When set True, the

device is in demoted and not being

scanned by the driver.

This is a read-only tag.

_AutoDemotionDiscardWrites Parameter Control Tag The _AutoDemotionDiscardWrites tag is a

Boolean tag that specifies whether or not

write requests should be discarded dur-

ing the demotion period. When this tag is

set to False, all writes requests are per-

formed regardless of the _AutoDemoted

state. When this tag is set to True, all

writes are discarded during the demotion

www. ptc.com

26

Channel_Properties_Write_Optimizations.htm
Channel_Properties_Write_Optimizations.htm

ThingWorx Kepware Edge

Tag Class Description

period.

This is a read / write tag.

_AutoDemotionEnabled Parameter Control Tag The _AutoDemotionEnabled tag is a

Boolean tag that allows the device to be

automatically demoted for a specific time

period when the device is unresponsive.

When this tag is set False, the device is

never demoted. When this tag is set True,

the device is demoted when the _AutoDe-

motedFailureCount has been reached.

This is a read / write tag.

_AutoDemotedFailureCount Parameter Control Tag The _AutoDemotedFailureCount tag spe-

cifies how many successive failures it

takes to demote a device. The _AutoDe-

motedFailureCount is defined as a long

data type. The valid range is 1 to 30. This

tag can only be written to if _AutoDe-

motionEnabled is set to True.

This is a read / write tag.

_AutoDemotionIntervalMS Parameter Control Tag The _AutoDemotionIntervalMStag spe-

cifics how long, in milliseconds, a device

is demoted before re-attempting to com-

municate with the device. The _AutoDe-

motionIntervalMS is defined as a long

data type. The valid range is 100 to

3600000 milliseconds. This tag can only

be written to if _AutoDemotionEnabled is

set to True.

This is a read / write tag.

_ConnectTimeout Parameter Control Tag The _ConnectTimeout tag allows the

timeout associated with making an IP con-

nection to a device to be changed at will.

This tag is available when either a native

Ethernet driver is in use or a serial driver

is in Ethernet Encapsulation mode. The _

ConnectTimeout is defined as a Long

data type. The valid range is 1 to 30

seconds.

This is a read / write tag.

_DemandPoll Status / Control Tag The _DemandPoll tag issues a device

read to all the active client items asso-

ciated with the device. This is the equi-

www. ptc.com

27

ThingWorx Kepware Edge

Tag Class Description

valent of a client performing an asyn-

chronous device read for those items. It

takes priority over any scheduled reads

that are supposed to occur for items that

are being actively scanned.

The _DemandPoll tag becomes True (1)

when written to. It returns to False (0)

when the final active tag signals that the

read requests have completed. Sub-

sequent writes to the _DemandPoll tag

fails until the tag value returns to False.

The demand poll respects the read /

write duty cycle for the channel.

This is a read / write tag.

_Description Status Tag The _Description tag indicates the current

user-defined text description for the

device it is referencing.

This is a read-only tag.

_DeviceId Parameter Control Tag The _DeviceId tag allows the ID of the

device to be changed at will. The data

format of the _DeviceId depends on the

type of device. For most serial devices

this tag is a Long data type. For Ethernet

drivers the _DeviceId is formatted as a

string tag, allowing the entry of an IP

address. In either case, writing a new

device ID to this tag causes the driver to

change the target field device. This only

occurs if the device ID written to this tag

is correctly formatted and within the valid

range for the given driver.

This is a read / write tag.

_Enabled Parameter Control Tag The _Enabled tag provides a very flexible

means of controlling the server applic-

ation. In some cases, specifically in

modem applications, it can be convenient

to disable all devices except the device

currently connected to the modem. Addi-

tionally, using the _Enabled tag to allow

the application to turn a particular device

off while the physical device is being ser-

viced can eliminate harmless but

unwanted communications errors in the

Event Log.

www. ptc.com

28

ThingWorx Kepware Edge

Tag Class Description

This is a read / write tag.

Note: Write requests to device con-

figuration system tags like _Enabled

require editing the Project Modification

permissions of the Kepware User Group

associated with the client’s incoming con-

nection protocol and chosen authen-

tication method. . OPC UA clients and

other interfaces may authenticate with

custom user groups and modifications

should be made to those user groups as

required.

_Error Status Tag The _Error tag is a Boolean tag that

returns the current error state of the

device. When False, the device is oper-

ating properly. When set True, the driver

has detected an error when com-

municating with this device. A device

enters an error state if it has completed

the cycle of request timeouts and retries

without a response.

This is a read-only tag.

_FailedConnection Status Tag The _FailedConnection tag specifies that

the connection failed. It is only available

to specific drivers.

This is a read-only tag.

Tip: The _FailedConnection system tag

is supported by the following drivers:

l Allen-Bradley ControlLogix Eth-

ernet

l IEC 60870-5-101 Client

l IEC 60870-5-104 Client

l Lufkin Modbus

l Modbus RTU Server Serial

l Omron NJEthernet

l Weatherford 8500

_InterRequestDelay Parameter Control Tag The _InterRequestDelay tag allows the

time interval between device transactions

to be changed at will. The _Inter-

RequestDelay is defined as a Long data

www. ptc.com

29

ThingWorx Kepware Edge

Tag Class Description

type. The valid range is 0 to 30000 mil-

liseconds. This tag only applies to drivers

that support this feature.

This is a read / write tag.

_RequestAttempts Parameter Control Tag The _RequestAttempts tag allows the

number of communication attempts to

be changed. The _RequestAttempts is

defined as a Long value. The valid range

is 1 to 10 attempts. This tag applies to all

drivers equally.

This is a read / write tag.

_RequestTimeout Parameter Control Tag The _RequestTimeout tag allows the

timeout associated with a data request to

be changed at will. The _RequestTimeout

tag is defined as a Long value. The valid

range is 100 to 30000 milliseconds. This

tag applies to all drivers equally.

This is a read / write tag.

_NoError Status Tag The _NoError tag is a Boolean tag that

returns the current error state of the

device. When True, the device is oper-

ating properly. When False, the driver has

detected an error when communicating

with this device. A device enters an error

state if it has completed the cycle of

request timeouts and retries without a

response.

This is a read-only tag.

_ScanMode Status Tag The _ScanMode tag allows clients to dic-

tate the method used for updates. It is

defined as a String value, and cor-

responds to the user-specified

Scan Mode setting (located in device prop-

erties). "Respect client specified scan

rate" has a value of "UseClientRate,"

"Request data no faster than x" has a

value of "UseFloorRate," and "Request all

data at x" has a value of "For-

ceAllToFloorRate." The default setting is

"Respect client specified scan rate."

This is a read-only tag.

_ScanRateMs Status Tag The _ScanRateMs tag corresponds to the

www. ptc.com

30

ThingWorx Kepware Edge

Tag Class Description

_ScanMode tag, and is used when the

Scan Mode is set to Request Data No

Faster than Scan Rate or Request All Data

at Scan Rate. This tag is defined as a

DWord tag. The default setting is 1000

milliseconds.

This is a read-only tag.

_SecondsInError Status Tag The _SecondsInError tag is a DWord tag

that displays the number of seconds

since the device entered an error state.

This tag displays 0 when the device is not

in an error state.

This is a read-only tag.

_Simulated Parameter Control Tag The _Simulated tag is a Boolean tag that

provides feedback about the simulation

state of the current device. When read as

True, this device is in a simulation mode.

While in simulation mode, the server

returns good data for this device, but

does not attempt to communicate with

the actual physical device. When tag is

read as False, communication with the

physical device is active. Changing the tag

value allows clients to enable / disable

simulated mode.

This is a read / write tag.

The _System branch found under the DeviceName branch is always available. If referencing a system tag

from a DDE application given the above example and the DDE defaults, the link would appear as "<DDE ser-

vice name>| _ddedata!Channel1.Device1._System._Error".

See Also:
Property Tags
Statist ics Tags

Property Tags
Property tags are used to provide read-only access to tag properties for client applications. To access a tag

property, append the property name to the fully qualified tag address that has been defined in the server's

tag database. For more information, refer to Tag Properties — General.

If the fully qualified tag address is "Channel1.Device1.Tag1," its description can be accessed by appending

the description property as "Channel1.Device1.Tag1._Description".

Supported Property Tag Names

www. ptc.com

31

ThingWorx Kepware Edge

Tag Name Description

_Name The _Name property tag indicates the current name for the tag it is referencing.

_Address The _Address property tag indicates the current address for the tag it is ref-

erencing.

_Description The _Description property tag indicates the current description for the tag it is

referencing.

_RawDataType The _RawDataType property tag indicates the raw data type for the tag it is ref-

erencing.

_ScalingType The _ScalingType property tag indicates the scaling type (None, Linear or

Square Root) for the tag it is referencing.

_ScalingRawLow The _ScalingRawLow property tag indicates the raw low range for the tag it is

referencing. If scaling is set to none this value contains the default value if scal-

ing was applied.

_ScalingRawHigh The _ScalingRawHigh property tag indicates the raw high range for the tag it is

referencing. If scaling is set to none this value contains the default value if scal-

ing was applied.

_Scal-

ingScaledDataType

The _ScalingScaledDataType property tag indicates the scaled to data type for

the tag it is referencing. If scaling is set to none this value contains the default

value if scaling was applied.

_ScalingScaledLow The _ScalingScaledLow property tag indicates the scaled low range for the tag it

is referencing. If scaling is set to none this value contains the default value if

scaling was applied.

_ScalingScaledHigh The _ScalingScaledHigh property tag indicates the scaled high range for the tag

it is referencing. If scaling is set to none this value contains the default value if

scaling was applied.

_ScalingClampLow The _ScalingClampLow property tag indicates whether the scaled low value

should be clamped for the tag it is referencing. If scaling is set to none this

value contains the default value if scaling was applied.

_ScalingClampHigh The _ScalingClampHigh property tag indicates whether the scaled high value

should be clamped for the tag it is referencing. If scaling is set to none this

value contains the default value if scaling was applied.

_ScalingUnits The _ScalingUnits property tag indicates the scaling units for the tag it is ref-

erencing. If scaling is set to none this value contains the default value if scaling

was applied.

See Also:

Statist ics Tags

System Tags

Statist ics Tags
Statistics tags are used to provide feedback to client applications regarding the operation of the channel

communications in the server. Statistics tags are only available when diagnostics are enabled. For more

information, refer to Channel Diagnostics

Syntax Example: <Channel Name>._Statistics._FailedReads

Supported Statist ics Tag Names

www. ptc.com

32

ThingWorx Kepware Edge

Tag Name Description

_SuccessfulReads The _SuccessfulReads tag contains a count of the number of reads this channel has

completed successfully since the start of the application or since the last time the _

Reset tag was invoked. This tag is formatted as unsigned 32-bit integer and will

eventually rollover. This tag is read only.

_SuccessfulWrites The _SuccessfulWrites tag contains a count of the number of writes this channel has

completed successfully since the start of the application or since the last time the _

Reset tag was invoked. This tag is formatted as an unsigned 32-bit integer and will

eventually rollover. This tag is read only.

_FailedReads The _FailedReads tag contains a count of the number of reads this channel has

failed to complete since the start of the application or since the last time the _Reset

tag was invoked. This count is only incremented after the channel has failed the

request based on the configured timeout and retry count for the device. This tag is

formatted as an unsigned 32-bit integer and will eventually rollover. This tag is read

only.

_FailedWrites The _FailedWrites tag contains a count of the number of writes this channel has

failed to complete since the start of the application or since the last time the _Reset

tag was invoked. This count is only incremented after the channel has failed the

request based on the configured timeout and retry count for the device. This tag is

formatted as unsigned 32-bit integer and will eventually rollover. This tag is read

only.

_RxBytes* The _RxBytes tag contains a count of the number of bytes the channel has received

from connected devices since the start of the application or since the last time the _

Reset tag was invoked. This tag is formatted as unsigned 32-bit integer and will

eventually rollover. This tag is read only.

_TxBytes The _TxBytes tag contains a count of the number of bytes the channel has sent to

connected devices since the start of the application or since the last time the _Reset

tag was invoked. This tag is formatted as unsigned 32-bit integer and will eventually

rollover. This tag is read only.

_Reset The _Reset tag can be used to reset all diagnostic counters. The _Reset tag is format-

ted as a Boolean tag. Writing a non-zero value to the _Reset tag will cause the dia-

gnostic counters to be reset. This tag is read / write.

_MaxPend-

ingReads

The _MaxPendingReads tag contains a count of the maximum number of pending

read requests for the channel since the start of the application (or the _Reset tag)

was invoked. This tag is formatted as an unsigned 32-bit integer. The tag is read

only.

_MaxPend-

ingWrites

The _MaxPendingWrites tag contains a count of the maximum number of pending

write requests for the channel since the start of the application (or the _Reset tag)

was invoked. This tag is formatted as an unsigned 32-bit integer. The tag is read

only.

_NextReadPriority

The _NextReadPriority is a channel-level system tag that reflects the priority level of

the next read in the channel's pending read queue. Possible values are -1: No

pending reads. 0: The next read is a result of a schedule-level demand poll or expli-

cit read from a client. 1 - n: The next read is a result of scheduled read. This tag is

read only.

_PendingReads

The _PendingReads tag contains a count of the current pending read requests for

the channel. This tag is formatted as an unsigned 32-bit integer. The tag is read

only.

www. ptc.com

33

ThingWorx Kepware Edge

Tag Name Description

_PendingWrites

The _PendingWrites tag contains a count of the current pending write requests for

the channel. This tag is formatted as an unsigned 32-bit integer. This tag is read

only.

* This statistical item is not updated in simulation mode (See Device Properties).

The _Statistics branch (located beneath the channel branch) only appears when diagnostics are enabled for

the channel. To reference a Diagnostics tag from a DDE application, given the above example and the DDE

defaults, the link would appear as: "<DDE service name>| _ddedata!Channel1._Statistics._SuccessfulReads".

See Also:

System Tags

Property Tags

Dynamic Tags
Dynamic tag addressing is a second method of defining tags that allows users to define tags only in the cli-

ent application. As such, instead of creating a tag item in the client that addresses another tag item created

in the server, users only need to create tag items in the client that directly accesses the device driver's

addresses. On client connect, the server creates a virtual tag for that location and starts scanning for data

automatically.

To specify an optional data type, append one of the following strings after the '@' symbol:

l BCD

l Boolean

l Byte

l Char

l Double

l DWord

l Float

l LBCD

l LLong

l Long

l QWord

l Short

l String

l Word

If the data type is omitted, the driver chooses a default data type based on the device and address being ref-

erenced. The default data types for all locations are documented in each individual driver's help doc-

umentation. If the data type specified is not valid for the device location, the server rejects the tag and an

error posts in the Event Log.

Client Using Dynamic Addressing Example
Scan the 16-bit location "R0001" on the Simulator device. The following Dynamic tag examples assume that

the project created is part of the example.

www. ptc.com

34

Device_Properties_Operating_Mode.htm

ThingWorx Kepware Edge

1. Start the client application and connect to the server.

2. Using the Simulator Driver, create a channel and name it Channel1. Then, make a device and name it

Device1.

3. In the client application, define an item name as "Channel1.Device1.R0001@Short."

4. The client project automatically starts receiving data. The default data type for address R0001 in the

Simulator device is Word. To override this, the @Short has been appended to select a data type of

Short.

Note: When utilizing Dynamic tags in a client application, the use of the @[Data Type] modifier is not nor-

mally required. Clients can specify the desired data type as part of the request when registering a link for a

specific data item. The data type specified by the Client is used if it is supported by the communications

driver. The @[Data Type] modifier can be useful when ensuring that a communications driver interprets a

piece of data exactly as needed.

Clients can also override the update rate on a per-tag basis by appending @[Update Rate].

For example, appending:

<DDE service name>| _ddedata!Device1.R0001@500 overrides just the update rate.

<DDE service name>| _ddedata!Device1.R0001@500,Short overrides both update rate and data type.

Tips:

1. The server creates a special Boolean tag for every device in a project that can be used by a client to

determine whether a device is functioning properly. To use this tag, specify the item in the link as

"Error." If the device is communicating properly, the tag's value is zero; otherwise, it is one.

2. If the device address is used as the item of a link such that the address matches the name of a user-

defined tag in the server, the link references the address pointed to by the user-defined tag.

3. Static tags must be used to scale data in the server.

See Also:
Static Tags (User-Defined)
Designing a Project: Adding User-Defined Tags

Tag Properties — Scaling
This server supports tag Scaling, which allows raw data from the device to be scaled to an appropriate range

for the application.

Type: Specify the method of scaling raw values: Linear, Square Root , or None to disable. The formulas for

scaling types are shown below.

Type Formula for Scaled Value

Linear (((ScaledHigh - ScaledLow)/(RawHigh - RawLow))* (RawValue - RawLow)) + ScaledLow

Square

root

(Square root ((RawValue - RawLow)/(RawHigh - RawLow))* (ScaledHigh - ScaledLow)) +

ScaledLow

Raw Low: Specify the lower end of the range of data from the device. The valid range depends on the raw

tag data type. For example, if the raw value is Short, the valid range of the raw value would be from -32768

to 32767.

www. ptc.com

35

Static_Tags.htm

ThingWorx Kepware Edge

Raw High: Specify the upper end of the range of data from the device. The Raw High value must be greater

than the Raw Low value. The valid range depends on the raw tag data type.

Scaled Data Type: Specify the data type for the tag being scaled. The data type can be set to any valid OPC

data type, including a raw data type, such as Short, to an engineering value with a data type of Long. The

default scaled data type is Double.

Scaled Low: Specify the lower end of the range of valid resulting scaled data values. The valid range

depends on the tag data type.

Scaled High: Specify the upper end of the range of valid resulting scaled data values. The valid range

depends on the tag data type.

Clamp Low: Specify Yes to prevent resulting data from exceeding the lower end of the range specified. Spe-

cify No to allow data to fall outside of the established range.

Clamp High: Specify Yes to prevent resulting data from exceeding the upper end of the range specified.

Specify No to allow data to fall outside of the established range.

Negate Value: Specify Yes to force the resulting value to be negated before being passed to the client. Spe-

cify No to pass the value to the client unmodified.

A client can automatically configure the range of objects (such as user input objects or displays) using the

Scaling settings by accessing / changing the property tag values associated with the tag. Utilize the User

Manager to restrict access rights to server features to prevent any unauthorized operator from changing

these properties.

What is a Tag Group?
This server allows tag groups to be added to the project. Tag groups are used to tailor the layout of OPC

data into logical groupings that fit the application's needs. Tag groups allow multiple sets of identical tags to

be added under the same device: this can be convenient when a single device handles a number of similar

machine segments.

Adding a Tag Group
Tag groups are defined by the set of tags contained. Tag groups are defined through the Configuration

API Service.

Tag group names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag Group
To remove a tag from the project; use the Configuration API Service.

Displaying Tag Group Properties
To review the tag group properties of a specific tag group via the Configuration API, access the doc-

umentation channel endpoint .

www. ptc.com

36

ThingWorx Kepware Edge

Tag Group Properties
From a client standpoint, tag groups allow users to separate data into smaller tag lists, making finding spe-

cific tags easier.

Tag groups can be added at any level from the device-level down, and multiple tag groups can be nested

together to fit the application's needs.

Note: With the server's online full-time operation, these properties can be changed at any time. Any

changes made to the tag groups take effect immediately. If the name is changed, Clients that have already

used that tag group as part of an item request are not affected until they release the item and attempt to

reacquire it. New tag groups added to the project immediately allows browsing from a client. Utilize the

User Manager to restrict access rights to server features to prevent operators from changing the properties.

What is the Alias Map?
The Alias Map provides both a mechanism for backwards compatibility with legacy server applications as

well as a way to assign simple alias names to complex tag references. This is especially useful in client applic-

ations that limit the size of tag address paths. Although the latest version of the server automatically creates

the alias map, users can add their own alias map entries to compliment those created by the server. Users

can also filter the server created aliases so that the only ones visible are their own.

Alias Properties
The Alias Map allows a way to assign alias names to complex tag references that can be used in client applic-

ations.

Name: Specify the alias name, which can be up to 256 characters long. It must be unique in the alias map.

For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Description: Enter a description of this alias to clarify data sources and reports (optional).

Mapped to: Specify the location of the alias.

Scan Rate Override: Specify an update rate to be applied to all non-OPC tags accessed using this alias map

entry. The valid range is 0 to 99999990 milliseconds. The default is 0 milliseconds.
Note: When set to 0 milliseconds, the server observes the scan rate set at the individual tag level.
See Also: Configuration API Service — Endpoints

What is the Event Log?
The Event Log provides the date, time, and source of an error, warning, information, or security event. For

more information, select a link from the list below.

Event Log Settings

Properly Name a Channel, Device, Tag, and Tag Group
When naming a channel, device, tag, or tag group, the following characters are reserved or restricted:

l Periods

l Double quotation marks

www. ptc.com

37

Runtime_Settings_Event_Log.htm

ThingWorx Kepware Edge

l Leading underscores

l Leading or trailing spaces

Note: Some of the restricted characters can be used in specific situations. For more information, refer

to the list below.

1. Periods are used in aliases to separate the original channel name and the device name. For example,

a valid name is "Channel1.Device1".

2. Underscores can be used after the first character. For example, a valid name is "Tag_1".

3. Spaces may be used within the name. For example, a valid name is "Tag 1".

www. ptc.com

38

ThingWorx Kepware Edge

Getting Started
ThingWorx Kepware Edge does not have a graphical user interface. Configuration of the server is performed

using the Configuration API accessed via a REST client application / tool (not included), and the edge_admin

command line interface tool. The Configuration API is used to modify all project settings and most admin-

istrative settings. The edge_admin is used to manage certificates and configure the Configuration API admin-

istrative settings.

Refer to the Running in a Container for information about using ThingWorx Kepware Edge in a container.

 Additional help for the edge_admin tool may be found by running the tool with the ‘--help’ option:

$ <installation_directory>/edge_admin --help

Additional help for the Configuration API may be accessed by a browser at the following URL:

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/doc

Tip: The default port numbers are below.
Note: This version includes support for JSON-formatted documentation.
The initial API login credentials use the Administrator username and password configured during install-

ation. For best security, a new group and user should be created via the Configuration API with only the

appropriate permissions enabled.

Services:

l tkedge_configapi.service

l tkedge_eventlog.service

l tkedge_iotgateway.service

l tkedge_runtime.service

Tip: Once ThingWorx Kepware Edge is installed, verify the processes are running using the following com-

mand:

$ systemctl | grep tkedge

Ports:

l Configuration API HTTPS interface (Enabled): 57513

l Configuration API HTTP interface (Disabled by default): 57413

l OPC UA interface (Enabled by default): 49330

l Server Runtime service to IoT Gateway service (localhost only): 57213

l Server Runtime service to Configuration API service (localhost only): 32403

l Event Log service (localhost only): 56221

Service Logs
ThingWorx Kepware Edge services log information to the system journal. To view log information, run:

$ journalctl –u <service_name>

All service logs may be viewed together by running:

$ journalctl –u tkedge*

To save the log files to disk, can run the following command:

$ journalctl –u tkedge* >> ~/tkedgelog.txt

www. ptc.com

39

ThingWorx Kepware Edge

REST Configuration API Server Sett ings

l Endpoint: https://<hostname_or_ip>:<port>/config/

l Port: 57513 for HTTPS(57413 for HTTP)

l Authentication: Username and password of the Administrator account created during installation

A password should be set for the ThingWorx Kepware Edge Administrator account during installation. To

skip setting a password significantly reduces the security of the installation. The Administrator account is

specific to the product installation; it is not the general operating system Administrator account.

The Administrator user account password cannot be reset, but additional administrative users can be

added to the Administrator user group. Best practices suggest each user with administrative access be

assigned unique accounts and passwords to ensure audit integrity and continual access through role and

staff changes.

Administrator passwords must be at least 14 characters and no more than 512 characters. Passwords

should be at least 14 characters and include a mix of uppercase and lowercase letters, numbers, and special

characters. Choose a strong unique password that avoids well-known, easily guessed, or common pass-

words.

Setting up a Project
During installation, there is an option to load a sample project. If that option was not chosen, the default

project file is blank. To configure a project, use the API commands in this section to create new channels,

devices, and tags. If a baseline project is helpful, the example project may be loaded after installation using

these steps:

Reloading the Sample Project

1. Ensure the services are running.

2. Login using a local Linux user account that is a member of the ThingWorx Kepware Edge user group

configured during installation, tkedge by default.

3. Copy the example project from <installation_directory>/examples/tke_simdemo.lpf to the <install-

ation_directory>/user_data directory.

4. Use the configuration API to load the project using the instructions below.

Project Load Example
Load the project by performing a PUT command from a REST client to invoke request on the ProjectLoad

endpoint. The name of the project file is included in the body of the request. Use basic authentication for

the request. The response should include the message “Accepted” to indicate the project has been loaded.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

Body:

{
 "common.ALLTYPES_NAME": "ProjectLoad",
 "servermain.PROJECT_FILENAME":"tke_simdemo.lpf"
}

Authentication:

www. ptc.com

40

ThingWorx Kepware Edge

Basic Authentication with a username of administrator and the password created during installation.

Do not try to load a JSON project file generated from a server other than ThingWorx Kepware Edge as

unsupported features in the project file may prevent the project from loading.

Managing ThingWorx Kepware Edge Services
ThingWorx Kepware Edge is comprised of four services:

l Runtime: The Runtime is the main server process. This service hosts the current project, com-

municates with edge devices, and provides access to data over interfaces such as OPC UA, or

ThingWorx Native Interface.

l Event Log: The Event Log aggregates and manages log entries created by the other services.

l Configuration API: The Configuration API service provides a REST web service used to interact with

and configure the Runtime. It also provides the ability to retrieve logs from the Event Log service.

l IoT Gateway: The IoT Gateway service manages MQTT agents that publish data updates from the

Runtime to a MQTT broker.

Start ing Each Service
The table below lists each service and the required arguments to start that service. These services all

require that the working directory of the process be set to directory where the product was installed.

By default, the installer installs the services as system daemons to launch at system startup. Information

below is only necessary if an alternate service invoke method is used.

Service Command to Invoke (Shell)

Event Log ./server_eventlog

Runtime ./server_runtime

Configuration API ./config_api_service

IoT Gateway*

java -cp <installdir>/ iotg/server-1.0.-

jar:<installdir>/ iotg/ lib:<installdir>/.config/IoTGateway com.Kepware.Main -port

57213

* Note: The IoT Gateway must be started with port 57213. Using an alternative port number is not sup-

ported at this time.

Configuration Backup and Restore
The <installation directory>/.config directory stores currently running configuration data of the runtime,

including the currently running project file, certificate information, and other instance specific data. This

data can be backed up and used to restore the configuration of ThingWorx Kepware Edge if a failure occurs,

such has a hardware failure to the host.

Refer to the Running in a Container for information about configuration management using ThingWorx Kepware

Edge in a container.

Backing up the .config folder is STRONGLY RECOMMENDED as part of an application backup strategy.

Backing Up a Configuration

www. ptc.com

41

ThingWorx Kepware Edge

It is recommended when backing up the folder and files to maintain the ownership and access permissions

that are present for the files. Errors may occur when restoring the configuration if the files and folders are

not accessible by the ThingWorx Kepware Edge services. Files in this folder are owned by the Linux user and

have read and write permissions for the user group configured during installation, which is “tkedge” by

default for both user and group.

An example to quickly use the “cp” command to back up the .config folder:

sudo cp -pr /opt/tkedge/v1/.config <destination_folder>

Restoring a Configuration
If it is necessary to restore a configuration, the ThingWorx Kepware Edge services need to be stopped prior

to copying over any files. Once ThingWorx Kepware Edge is installed, follow the steps below:

1. Stop all ThingWorx Kepware Edge services using the command:

sudo systemctl stop tkedge*.

2. Delete previously stored .config folder and files.

3. Copy the backup .config folder and data to <installation_directory> (default location is /op-

t/ tkedge/<version>).

4. Restart all ThingWorx Kepware Edge services using the commands:

sudo systemctl start <service name>.

Configuration API Service — Documentation Endpoint
The documentation endpoint can be used to retrieve information about the various endpoints, including:

l Supported properties of the endpoint

l Child nodes of the endpoint

l Property meta data (default values, state, data ranges, etc.)

l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.

Supported Actions

HTTP(S) Verb Action

GET Retrieves the current server properties

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/doc

Accessing the documentation endpoint URL via a browser prompts for authentication. User credentials

must be used to access the documentation.

Configuration API Service — Endpoint Mapping
The Configuration API allows uses the following endpoint mapping scheme:

Documentation Endpoints
/config
/config/{version}/doc
/config/{version}/doc/drivers/{driver_name}/channels
/config/{version}/doc/drivers/{driver_name}/devices

www. ptc.com

42

ThingWorx Kepware Edge

/config/{version}/doc/drivers/{driver_name}/models
/config/{version}/doc/drivers

Tip: The /config/{version}/doc endpoint provides a list of all endpoints for configuration objects and the

documentation endpoints for the specific object. This can be used to find definitions for all objects in the

API.

Project Connectivity Elements
/config/{version}/project
/config/{version}/project/aliases
/config/{version}/project/aliases/{alias_name}
/config/{version}/project/channels
/config/{version}/project/channels/{channel_name}
/config/{version}/project/channels/{channel_name}/devices
/config/{version}/project/channels/{channel_name}/devices/{device_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags/{tag_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags/{tag_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags/{tag_name}

Server Administration Endpoints
/config/{version}/admin
/config/{version}/admin/server_usergroups
/config/{version}/admin/server_users
/config/{version}/admin/ua_endpoints

Log Endpoints
/config/{version}/log
/config/{version}/event_log
/config/{version}/transaction_log

Health Status Endpoint
/config/{version}/status

About Endpoint
/config/{version}/about

Plug-in Endpoints
Plug-ins are considered project extensions and are managed under the Project endpoint:
/config/{version}/project/{namespace}
/config/{version}/project/{namespace}/{collection}
/config/{version}/project/{namespace}/{collection}/{object_name}

www. ptc.com

43

ThingWorx Kepware Edge

Configuration API Service — Health Status Endpoint
The health status endpoint is used to retrieve information about the Configuration API REST service status.

The two values returned from a successful Health Status check are "Name" and "Healthy". Name represents

the name of the server being checked and Healthy represents if the service is running or not. The Con-

figuration API REST Service is "healthy" if the value returned is true. If the Configuration API service is

unhealthy, no response is returned.

l Supported properties of the endpoint

l Child nodes of the endpoint

l Property meta data (default values, state, data ranges, etc.)

l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.
 Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

Supported Actions

HTTP(S) Verb Action

GET Retrieves the status of the Config API REST Service

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/status

Accessing the status endpoint URL requires no authentication. Passing in credentials will have the same

effect as its unauthenticated use.

Response Body:

[
{

 “Name”: “ConfigAPI REST service”,
 “Healthy”: true
 }
]

www. ptc.com

44

ThingWorx Kepware Edge

Enabling Interfaces
For security reasons, only the HTTPSConfiguration API endpoint and a secured OPC UA endpoint are

enabled by default. The ThingWorx Native Interface and MQTT Agent are disabled by default. Interfaces are

enabled or disabled using the Configuration API.

Performing a GET on the project endpoint returns a unique project ID necessary to perform a PUT suc-

cessfully without using the “FORCE_UPDATE” override.

See Also:

Connecting with an OPC UA Client

Configuring the ThingWorx Native Interface

Configuring the IoT Gateway

www. ptc.com

45

ThingWorx Kepware Edge

Interfaces and Connectivity
This communications server simultaneously supports the client / server technologies listed below.

Server - a software application designed to bridge the communication between a device, controller, or data

source with a client application. Servers can only respond to requests made by a client.

Client - a software program that is used to contact and obtain data from a server (either on the same com-

puter or on another computer). A client makes a request and the server fulfills the request. An example of a

client would be an e-mail program connecting to a mail server or an Internet browser client connecting to a

web server.

Human Machine Interface (HMI) - a software application (typically a Graphical User Interface or GUI) that

presents information to the operator about the state of a process and to accept and implement the oper-

ator control instructions. It may also interpret the plant information and guide the interaction of the oper-

ator with the system.

Man Machine Interface (MMI) - a software application (typically a Graphical User Interface or GUI) that

presents information to the operator about the state of a process and to accept and implement the oper-

ator control instructions. It may also interpret the plant information and guide the interaction of the oper-

ator with the system.

For more information on a specific interface, select a link from the list below.

OPC UA Interface

IoT Gateway — MQTT

OPC UA Interface

Supported Version
1.02 optimized binary TCP

Overview
OPC Unified Architecture (UA) is an open standard created by the OPC Foundation with help from dozens of

member organizations. It provides an additional way to share factory floor data to business systems (from

shop floor to top floor). UA also offers a secure method for remote client-to-server connectivity without

depending on Microsoft DCOM. It has the ability to connect securely through firewalls and over VPN con-

nections. This implementation of the UA server supports optimized binary TCP and the DA data model.

OPC UA Profiles
OPC UA is a multi-part specification that defines a number of services and information models referred to

as features. Features are grouped into profiles, which are then used to describe the functionality supported

by a UA server or client.
For a full list and a description of each OPCUA profile, refer to https:/ / www.op-

cfoundation.org/ profilereporting/ index.htm.

Fully Supported OPC UA Profiles

l Standard UA Server Profile

l Core Server Facet

l Data Access Server Facet

l SecurityPolicy - Basic128Rsa15 (Deprecated)

www. ptc.com

46

https://www.opcfoundation.org/profilereporting/index.htm
https://www.opcfoundation.org/profilereporting/index.htm

ThingWorx Kepware Edge

l SecurityPolicy - Basic256 (Deprecated)

l SecurityPolicy - Basic256Sha256

l SecurityPolicy - None (Insecure)

l UA-TCP UA-SC UA Binary

CAUTION : Security policies Basic128Rsa15 and Basic256 have been deprecated by the OPC Foundation as

of OPC UA specification version 1.04. The encryption provided by these policies is considered less secure

and usage should be limited to providing backward compatibility.

Partially Supported OPC UA Profiles

l Base Server Behavior Facet

Note: This profile does not support the Security Administrator – XML Schema.

OPC UA Certificate Management
UA servers require a certificate to establish a trusted connection with each UA client. For the server to

accept secure connections from a client, the client's certificate must be imported into the trusted certificate

store used by the OPC UA server interface. Management of the UA certificates can be done either using the

edge_admin CLI application or by saving the certificates to the configuration data folder.

Using the edge_admin CLI

To import an OPC UA certificate into the trust store:

./edge_admin manage-truststore -i MyCertificateName.der uaserver

To view the UA server trust store and the thumbprints of the certificates:

./edge_admin manage-truststore --list uaserver

Using the .config Data Folder

UA certificates can also be managed directly through .config data folder. Certificates for the UA server to use

are maintained in the following directory: <installation_directory>/.config/UA/Server

Trusted certificates are located in the following directory:

<installation_directory>/.config/UA/Server/cert

Rejected certificates are located in the following directory:

<installation_directory>/.config/UA/Server/RejectedCertificates

To trust a certificate, copy the client instance certificate file into the trusted certificates directory. If a rejec-

ted certificate needs to be trusted, move the client instance certificate in the rejected certificate directory to

the trusted certificates directory.

Note: The certificate files need to have read access by the installed user account, tkedge by default, for

the server application to access the certificate for validation.

Configuring the ThingWorx Native Interface
To configure the ThingWorx Native Interface connection, collect the following information from the

ThingWorx Platform instance to connect:

www. ptc.com

47

ThingWorx Kepware Edge

l HOSTNAME: Hostname or IP of machine running ThingWorx

l PORT: Port configured to run ThingWorx, typically port 80 for HTTP and 443 for HTTPS

l APPKEY: Application key configured in ThingWorx

l THING_NAME: Name of the Industrial Connection defined in the platform.

Tip: If a name that does not yet exist on the platform is specified, an ephemeral thing will be cre-

ated. To complete the connection, navigate to the new Thing in the platform and save.

For a list of ThingWorx interface definitions and enumerations, access the following endpoints with the REST

client:

Project definit ions:

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project

Tip: Enabling ThingWorx and configuring the connection settings can be done at the same time.

Enable ThingWorx Interface

Tip: This is already enabled if the instructions in the Quick Start Guide have been followed.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/

Body:

{
 "project_id": <project_ID_from_GET>,
 "thingworxinterface.ENABLED": true
}

Configure ThingWorx Test Connection Example

Note: This is a testing configuration and the use of certificates and other security measures are suggested

for production systems.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project

Body:

{
 "project_id": <project_ID_from_GET>,
 "thingworxinterface.ENABLED": true,
 "thingworxinterface.HOSTNAME": "<hostname or IP>",
 "thingworxinterface.PORT": <Port Number>,
 "thingworxinterface.RESOURCE": "/ThingWorx/WS",
 "thingworxinterface.APPKEY": "<App Key>",
 "thingworxinterface.ALLOW_SELF_SIGNED_CERTIFICATE": false,
 "thingworxinterface.TRUST_ALL_CERTIFICATES": true,
 "thingworxinterface.DISABLE_ENCRYPTION": true,
 "thingworxinterface.THING_NAME": "<ThingName>"
}

www. ptc.com

48

ThingWorx Kepware Edge

ThingWorx Native Interface Certificate Management
ThingWorx Native Interface requires a certificate to establish a trusted connection between ThingWorx Kep-

ware Edge and ThingWorx Platform. To create a secure connection, the ThingWorx Platform server cer-

tificate or the CA root certificate must be imported into the trusted certificate store. Management of these

certificates can be accomplished using the edge_admin CLI application.

To import a the ThingWorx Platform server certificate or the CA root certificate into the trust store:

./edge_admin manage-truststore -i MyCertificateName.der thingworx

To view the ThingWorx Native Interface trust store and the thumbprints of the certificates:

./edge_admin manage-truststore –list thingworx

IoT Gateway — MQTT

Overview
The "Internet of Things" (IoT) Gateway is a built-in feature within ThingWorx Kepware Edge that allows sys-

tem and device tags to be published to third-party endpoints through industry standard IP-based protocols.

When the value for a configured tag changes or when a publish rate is met, an update is sent to the cor-

responding third-party endpoint with a configurable payload of tag ID, value, quality, and timestamp in a

standard JSON format.

The IoT Gateway within ThingWorx Kepware Edge offers the following features:

l Ability to publish data consisting of a name, value, quality, and timestamp from any data source in

the server (e.g. drivers, plug-ins, or system tags)

l Standard human readable JSON data format with advanced format customization options

l Support for publishing via MQTT (Message Queue Telemetry Transport) versions 3.1 and 3.1.1

l Support for MQTT subscriptions for the purpose of accepting write operations

l Configurable data collection rate, as frequent as 10 milliseconds up to once per 27.77 hours

(99999990 milliseconds)

l Configurable data publish rate, as frequent as 10 milliseconds up to once per 27.77 hours (99999990

milliseconds)

l Support for authentication and TLS / SSL encryption with or without client-side certificates

l Support for user-level access based on the User Manager and Security Policies Plug-In

l Configurable payload information for integration with different third-party endpoints

Architectural Summary
The IoT Gateway is closely tied to the server’s core “tkedge_runtime.service” process, however the feature

uses its own executable – “tkedge_iotgateway.service” - to manage the following functionality:

l Configuration of the MQTT client agents

l Data collection from the server runtime

l Configuration of the Gateway settings

l License enforcement

l Connection management to each third-party endpoint

www. ptc.com

49

ThingWorx Kepware Edge

l In-memory data buffering of up to 100,000 data updates buffered per agent

l Authentication and encryption management

What is MQTT?
MQTT stands for MQ Telemetry Transport. It is a publish / subscribe, extremely simple, and lightweight mes-

saging protocol designed for constrained devices and low-bandwidth, high-latency, or unreliable networks.

The design principles are to minimize network bandwidth and device resource requirements whilst also

attempting to ensure reliability and some degree of assurance of delivery. These principles also turn out to

make the protocol ideal of the emerging “machine-to-machine” (M2M) or “Internet of Things” world of con-

nected devices and for mobile applications where bandwidth and battery power are at a premium (source:

www.mqtt.org).

See Also:
Configuring the IoT Gateway

Configuring the IoT Gateway
The IoT Gateway allows information to be conveyed to an MQTT agent. The section below describes how to

configure the IoT Gateway.

IoT Gateway MQTT Agent Prerequisites
Caution: For the most secure configuration, enable ONLY those features that are being used or tested. As

such, if MQTT is not being used, this section should be skipped.

1. Install a Java JRE on the machine (if this has not already been installed):
apt install default-jdk

Tip: OpenJDK and Amazon Corretto have been tested.

2. Once installed, verify the Java JRE version using the terminal command:
java –version

3. Stop and restart all the ThingWorx Kepware Edge services.

MQTT Examples

Create MQTT Agent

Endpoint: (POST)

https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients

Body:

{
 "common.ALLTYPES_NAME": "NewMqttClient",
 "common.ALLTYPES_DESCRIPTION": "",
 "iot_gateway.AGENTTYPES_TYPE": "MQTT Client",
 "iot_gateway.AGENTTYPES_ENABLED": true
}

View MQTT Agents

Endpoint: (GET)

www. ptc.com

50

http://www.mqtt.org/

ThingWorx Kepware Edge

https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients

Create MQTT Agent Tag

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_cli-
ents/NewMqttClient/iot_items

Body:

{
 "common.ALLTYPES_NAME": "Simulator_Word1",
 "iot_gateway.IOT_ITEM_SERVER_TAG": "Simulator.SimulatorDevice.Registers.Word1",
 "iot_gateway.IOT_ITEM_ENABLED": true
}

View MQTT Agent Tags

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_cli-
ents/NewMqttClient/iot_items

Update MQTT Agent

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients/NewMqttClient

Body:

{
 "project_id": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "NewMqttClient_updated",
 "common.ALLTYPES_DESCRIPTION": "Update test"
}

Delete MQTT Agent

Endpoint (DEL):

https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients/NewMqttClient_
updated

Configuring Self-Signed Certificates for MQTT Agent

The IoT Gateway supports self-signed certificates with the MQTT agent. These agents use the Java KeyStore

to manage these certificates. Use the commands below to import, list, or delete a certificate from the

KeyStore.

These instructions assume the Java keytool is installed.

The default Java cacerts truststore password is “changeit”

Import certificate into the java store

sudo keytool -import -trustcacerts -keystore /usr/lib/jvm/<java_ver-
sion>/lib/security/cacerts -alias <alias> -file <certificate>

www. ptc.com

51

ThingWorx Kepware Edge

List the contents of the certificate

keytool -list -keystore /usr/lib/jvm/<java_version>/lib/security/cacerts -alias <alias>

Delete the certificate

sudo keytool -delete -keystore /usr/lib/jvm/<java_version>/lib/security/cacerets -alias
<alias>

The location of the Java Key Store used in the above commands may vary. Use the location appropriate

for the local Java installation.

For more information about working with certificates using the Java keytool, consult the documentation found

on the Oracle Java website.

www. ptc.com

52

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

ThingWorx Kepware Edge

Configuration API Service
The Configuration API allows an HTTPSRESTful client to add, edit, read, and delete objects such as channels,

devices, and tags in the server. The Configuration API offers the following features:

l Object definition in standard human-readable JSON data format

l Support for triggering and monitoring actions on some objects within the server

l Security via HTTP basic authentication and HTTP over SSL (HTTPS)

l Support for user-level access based on the User Manager and Security Policies Plug-In

l Transaction logging with configurable levels of verbosity and retention

Note: This document assumes familiarity with HTTPScommunication and REST concepts.

Init ialization - The Configuration API is installed as a daemon and starts automatically with the system.
Operation - The Configuration API supports connections and commands between the server and REST cli-

ents.
If the Configuration API must be stopped, use the systemctl to stop the service.

Security
REST clients to the Configuration API must use HTTPSBasic Authentication. The user credentials are defined

in the server User Group. Initial login to the Configuration API uses the Administrator username and the

password set during installation. Additional users and groups should be created to allow the appropriate

access.

The product Administrator password must be at least 14 characters and no more than 512 characters.

Passwords should be at least 14 characters and include a mix of uppercase and lowercase letters, numbers,

and special characters. Choose a strong unique password that avoids well-known, easily guessed, or com-

mon passwords.

The Administrator user account password cannot be reset, but additional administrative users can be

added to the Administrator user group. Best practices suggest each user with administrative access be

assigned unique accounts and passwords to ensure audit integrity and continual access through role and

staff changes.

Individual user accounts are locked for 10 minutes after 10 successive login attempts with different, incor-

rect passwords.

Documentation
Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable

actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-

port>/config/ (for default configurations).

Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

Configuration API Service — Concurrent Clients
The Configuration API can serve multiple REST clients at the same time. To prevent a client from editing

stale configurations, the Server Runtime maintains a numeric project ID. Each time an object is edited

through the Configuration API or the local Configuration client, the Project ID changes. The current project

ID is returned in each GET response. PUT, POST, and DELETE requests will return a new Project ID in the

response HTTPSheader if the update to the project is successful. The current project ID must be specified

by the client in all PUT requests.

www. ptc.com

53

ThingWorx Kepware Edge

The best practice is to issue a GET request, save the current project ID, and use that ID for the following PUT

request. If only one client is used, the client may put the property “FORCE_UPDATE”: true in the PUT request

body to force the Configuration API server to ignore the project ID.

Configuration API Service — Log Retrieval
Messages from the event log service can be read from a REST client by sending a GET to https://<host-

name>:<port>/config/v1/event_log. Messages from the API transaction log service can be read from a REST

client by sending a GET to https://<hostname>:<port>/config/v1/transaction_log. The response contains

comma-separated entries.

Refer to the Running in a Container for information about additional features and using ThingWorx Kepware

Edge in a container.

Event Log

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/event_log

Example Return:

[
{

 "timestamp": "2018-11-13T16:34:57.966",
 "event": "Security",
 "source": "ThingWorxKepwareEdge\\Runtime",
 "message": "Configuration session started by admin as Default User (R/W)."
},
{

 "timestamp": "2018-11-13T16:35:08.729",
 "event": "Warning",
 "source": "Licensing",
 "message": "Feature Modbus TCP/IP Ethernet is time limited and will expire at
11/13/2019 12:00 AM."
}

…
]

Filtering

Filtering: The Configuration API Event Log endpoint allows log items to be sorted or limited using filter para-

meters specified in the URI. The filters, which can be combined or used individually, allow the results of the

log query to be restricted to a specific event type (Information, Warning, Error, Security) or time period (e.g.

events which occurred since a given date, events which occurred before a given date, or events that

occurred between two dates). Example filtered log query:

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/event_log?event-
t=Warning,Error&limit=10&start=2016-01-01T00:00:00.000&end=2016-01-02T20:00:00.000

where:

1. event = Event type to filter. Multiple event types can be provided as comma-separated list. For

instance, event=Information,Warning,Error,Security. Selects all event types.

www. ptc.com

54

ThingWorx Kepware Edge

2. limit = Maximum number of log entries to return. The default setting is 100 entries.

3. start = Earliest time to be returned in YYYY-MM-DDTHH:mm:ss.sss (UTC) format.

4. end = Latest time to be returned in YYYY-MM-DDTHH:mm:ss.sss (UTC) format.

Note: The Limit filter overrides the result of the specified time period. If there are more log entries in the

time period than the Limit filter allows, only the newest specified quantity of records that match the filter cri-

teria are displayed.

Sorting

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/event_log?sortProperty=event&sortOrder=ascending

where:

l sortProperty: The property to sort by (timestamp, event, source, message)

l sortOrder: The sort order (ascending or descending)

Pagination

l pageNumber: Represents the page index being accessed from a paginated response. The page

number must be an integer value between 1 and 2147483647. If this parameter is not specified but

pageSize is, the first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The

page size must be an integer value between 1 and 2147483647. If this parameter is not specified

but pageNumber is, 10 items per page are returned by default.

Below is an example of adding the pagination parameters to the eventlog endpoint:

l Requesting both pageSize and pageNumber:

https://<hostname_or_ip>:<port>/config/v1/event_log?pageNumber=1&pageSize=10

Note: Sorting and pagination of the eventlog is limited to the first 100,000 records. This means in Exten-

ded Data Store persistence mode, records beyond 100,000 are not considered for sorting and pagination.

www. ptc.com

55

ThingWorx Kepware Edge

Configuration API Service — Content Retrieval
Content is retrieved from the server by issuing an HTTP(S) GET request. The URI specified in the request can

target one of the following areas:

1. Online documentation (ex. https://<hostname_or_ip>:<port>/config/v1/doc or /config/v1/doc/drivers)

2. Event log entries (ex. https://<hostname_or_ip>:<port>/config/v1/event_log)

3. Transaction log entries (ex. https://<hostname_or_ip>:<port>/config/v1/transaction_log)

4. Project configuration (ex. https://<hostname_or_ip>:<port>/config/v1/project or /con-

fig/v1/project/channels/Channel1)

When targeting project configuration, a REST client can specify the type(s) of content that should be

returned. In this context the word “content” refers to a category or categories of data about a collection or

object instance.

By default, when a GET request is issued using an endpoint that identifies a collection, the server will return

a JSON array that contains one value for each instance in the collection where each value is a JSON object

that contains the properties of the instance.

By default, when a GET request is made using an endpoint that identifies an object instance, the server will

return a JSON object that contains the properties of that instance.

The default behavior of these requests can be altered by specifying one or more “content” query para-

meters appended to the URL as in https://<hostname>:<port>/config/v1/project?content=children. The fol-

lowing table shows the available content types and their applicability to each endpoint type:

Content Type Collection Endpoint Object Instance Endpoint

properties yes yes

property_definitions no yes

property_states no yes

type_definition yes yes

children yes yes

The following table shows the structure of the JSON response for a given content type:

GET Request URI JSON Response Structure

https://<hostname_or_ip>:<-
port>/config/v1/project?content=properties

{
<property name>: <value>,
<property name>: <value>,
...
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_definitions

[
{<property definition>},
{<property definition>},
...
]

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_states

{
“allow”:
{

www. ptc.com

56

ThingWorx Kepware Edge

GET Request URI JSON Response Structure

<property name>: true/false,

<property name>: true/false,

...
},
“enable”:
{
<property name>: true/false,

<property name>: true/false,

...
}
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=type_definition

{
"name": <type name>,
"collection": <collection
name>,
"namespace": <namespace
name>,
"can_create": true/false,
"can_delete": true/false,
"can_modify": true/false,
"auto_generated": true/-
false,
"requires_driver": true/-
false,
"access_controlled": true/-
false,
"child_collections": [<col-
lection names>]
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=children

{
<collection name>: [
{
“name”: <object instance
name>,
“href”: <object instance
uri>
},
...
],
<collection name>: [
{
“name”: <object instance
name>,
“href”: <object instance
uri>
},
...
],
...
}

www. ptc.com

57

ThingWorx Kepware Edge

Multiple content types can be specified in the same request by separating with a comma. For example,

https://<hostname>:<port>/config/v1/project?content=children,type_definition. When multiple types are

specified, the JSON response will contain a single object with a member for each requested content type as

in:

{
 “properties”: <properties response structure>,
 “property_definitions”: <property definitions response structure>,
 “property_states”: <property states response structure>,
 “type_definition”: <type definition response structure>,
 “children”: <children response structure>
}

Type Definit ions
The following table describes the members of the type definition JSON object.

Member Type Description

name string Object type name.

collection string
Collection name. Identifies the collection in which objects of this type will exist. This

name constitutes a valid endpoint that can be addressed using the REST interface.

namespace string

Namespace that implements the object type. Objects that are implemented by the

server exist in the “servermain” namespace. Other namespaces are defined by

optional components such as drivers, plug-ins and client interfaces.

can_create bool

Indicates whether or not instances of this type can be created by an end user. For

example, this is false for the “Project” type because it’s not something that can be

created.

can_delete bool
Indicates whether or not instances of this type can be deleted by an end user.

Again, the “Project” type is not something that can be deleted.

can_modify bool

Indicates whether or not instances of this type can be modified by an end user. For

example, the server has some auto-generated objects that exist to create a child col-

lection only and do not themselves have any modifiable properties.

auto_gen-

erated
bool

If true, instances of this type are auto-generated by the server. Typically objects of

this type will have the previous three members defined as “false”.

requires_

driver
bool

True if instances of this type cannot be created without supplying the name of an

installed driver.

access_con-

trolled
bool

True if the server provides group-level access control over the CRUD operations

that can be executed against an instance of this type (see User Manager in server

help).

child_col-

lections
array

An array of collection names that are supported as children under an object of this

type. For example, if a type includes “devices” in “child_collections”, then object

instances of that type will support one or more “Device” instance as a child.

Property Definit ions
A property definition identifies the characteristics of a given property, including the type of data it supports,

applicable ranges, default value, etc. The JSON structure of a property definition object is defined as follows:

Member Type Description

symbolic_

name
string

Identifies the property by canonical name in the form <namespace>.<-

property name>.

display_ localized The name the property would have if shown in the Server Configuration

www. ptc.com

58

User_Manager.htm

ThingWorx Kepware Edge

Member Type Description

name string
property editor. Value will be returned in the language the server is cur-

rently configured to use.

display_

description

localized

string

The description the property would have if shown in the Server Con-

figuration property editor. Value will be returned in the language the

server is currently configured to use.

group_name
localized

string

The name of the property group in which this property belongs in the

Server Configuration property editor. The group represents the high-level

category to which the property belongs. Some objects may have only a

single group.

section_

namey

localized

string

The name of the collapsible section to which this property belongs in the

Server Configuration property editor. This name would appear right

above the property in the property editor.

read_only Boolean
True if the property is informational, not expected to change once initially

defined.

type string
Determines the data type of the property value (see “Property Types”

below).

minimum_

value

number or

null (applies

to numeric

types)

Minimum value the property can have to be considered valid. If null,

there is no minimum.

maximum_

value

number or

null (applies

to numeric

types)

Maximum value the property can have to be considered valid. If null,

there is no maximum.

minimum_

length

number

(applies to

strings only)

Minimum length a string value may have. 0 means no minimum.

maximum_

length

number

(applies to

strings only)

Maximum length a string value may have. -1 means no maximum.

hints

arrays of

strings

(applies to

strings only)

An array of possible choices that may be assigned to the property value.

This member not included if no hints exist.

enumeration

object

(applies to

enumerations

only)

For enumeration properties, this object identifies the valid name / value

pairs the enumeration can have. Structure is as follows:

{
<name>: number,
<name>: number,
...
}

allow
array of

objects

Defines a conditional dependency on one or more other properties that

determines whether this property is relevant. Properties that are not

allowed are not shown in the Server Configuration property editor (see

“Allow and Enable Conditions” below).

enable array of Defines a conditional dependency on one or more other properties that

www. ptc.com

59

ThingWorx Kepware Edge

Member Type Description

objects

determines whether this property should be enabled for the client to

change. Properties that are not enabled are grayed out in the Server Con-

fig property editor (see “Allow and Enable Conditions” below).

To get specific information about the property definitions of a specific endpoint, add "?content=property_

definitions" to the end of the URL of a GET request.

For example, to get the property definitions for a channel named Channel1 with the server running on the

local host, the GET request would be sent to:

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1?content=property_defin-
itions

The returned JSON block would look something like the following:

[
{

 "symbolic_name": "common.ALLTYPES_NAME",
 "display_name": "Name",
 "display_description": "Specify the identity of this object.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 1,
 "maximum_length": 256
 },

{
 "symbolic_name": "common.ALLTYPES_DESCRIPTION",
 "display_name": "Description",
 "display_description": "Provide a brief summary of this object or its use.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 0,
 "maximum_length": 255
 },
…

Property Types
The following table describes the different values that a property definition may contain for the “type” mem-

ber. The “Value Type” identifies what JSON type the property value should have.

Type Name Value Type Description

AllowDeny bool
Describes a property that contains the choices “Allow”=true and

“Deny”= false.

EnableDisable bool
Describes a property that contains the choices “Enable”=true and

“Disable”= false.

www. ptc.com

60

ThingWorx Kepware Edge

Type Name Value Type Description

YesNo bool
Describes a property that contains the choices “Yes”=true and

“No”= false.

String string
Generic string. Properties of this type include minimum_length

and maximum_length specifiers.

StringArray array

Array of strings. Properties of this type include minimum_length

and maximum_length specifiers that apply to the strings them-

selves, not the length of the array.

Password string

Obfuscated string that contains a password. When changing the

value of a property of this type, a plain-text password is expected.

Password values should only be changed over a secure con-

nection.

The Administrator password must be at least 14 characters and

no more than 512 characters.

LocalFileSpec string A fully qualified file specification in the local file system.

UncFileSpec string A fully qualified file specification in a network location.

LocalPathSpec string A fully qualified path specification in the local file system.

UncPathSpec string A fully qualified path specification to a network location.

StringWithBrowser string
Describes a property that has a string value (normally chosen

from a collection of dynamically generated strings).

Integer number Unsigned 32-bit integer value.

Hex number
Unsigned 32-bit integer value intended to be displayed / edited in

hexadecimal notation.

Octal number
Unsigned 32-bit integer value intended to be displayed / edited in

octal notation.

SignedInteger number Signed 32-bit integer value.

Real4 number Single precision floating point value.

Real8 number Double precision floating point value.

Enumeration number
One of the possible numeric values from the “enumeration” mem-

ber of the property definition.

PropArray object
Describes a structure containing members that each have a fixed-

length array of values.

TimeOfDay number
Integer value containing the number seconds since midnight that

would define a specific time of day.

Date number Unix time value that specifies midnight on a given date.

DateAndTime number Unix time value that specifies a specific time on a given date.

Blob array

Array of byte values that represents an opaque collection of data.

Data of this type originates in the server and is hashed to prevent

modification.

Allow and Enable Condit ions
For definitions that contain allow and/or enable conditions, this is the structure they would have in the

JSON:

<condition>:
[

{

www. ptc.com

61

ThingWorx Kepware Edge

 “depends_on”: <property name>
 “operation”: “==” or “!=”
 “value”: <value>
 },
...
]

Each condition identifies another property that is a dependent and how it depends as equal or not equal to

the value of that property. More than one dependency can exist, either on the same property or different

ones. If multiple exist, the “operation” will always be the same. Evaluation of the expression to determine

the state of the condition when multiple dependencies exist is a logical “or” for “==” and a logical “and” for

“!=”.

When using “content=property_states”, the returned JSON describes the outcome of the evaluation of these

conditions (if they exist) for each property.

Filtering
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be

filtered by providing a filter query parameter on the URL. If a filter value is specified, the query returns only

those objects that contain the filter value. The collection can be filtered by the Name or Description prop-

erty. The request only returns those objects where the Name or Description property contains the filter

value. The following example demonstrates the filter query parameter:

Filter channel list by channels that contain the text "_Siemens" through:

https://<hostname_or_ip>:<port>/config/v1/project/channels?filter=_Siemens

This only returns channel objects that include the string “_Siemens” in the name or description field.

Sorting
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be

sorted by any property. To request sorting, specify a property name and the sort order (ascending or des-

cending). The following examples demonstrate the query parameters for sorting.

Sort channels by description, ascending:

https://<hostname_or_ip>:<-
port>/config/v1/project/channels?sortOrder=ascending&sortProperty&=common.ALLTYPES_
DESCRIPTION)

Sort devices by tag count, descending:

https://<hostname_or_ip>:<-
port>/-
con-
fig/v1/-
project/channels/Simulator/devices?sortOrder=descending&sortProperty=servermain.DEVICE_
STATIC_TAG_COUNT)

Tip: Sorting by a string type property value, such as common.ALLTYPES_NAME, sorts objects by number

ordering (e.g. “A1”, “A10”, “A11”, “A100”). Sorting by a numeric type property value, such as server-

main.CHANNEL_UNIQUE_ID, sorts objects by numeric value (e.g. 1, 2, 10, 20).

Pagination Parameters

www. ptc.com

62

ThingWorx Kepware Edge

During content retrieval (GET requests) on project configuration endpoints, collections can be paginated to

break up a response into multiple pages. Pagination is enabled when supplying the pageNumber and / or

pageSize parameters:

l pageNumber: Represents the page index being accessed from a paginated response. The page num-

ber must be an integer value between 1 and 2147483647. If this parameter is not specified but

pageSize is, the first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The

page size must be an integer value between 1 and 2147483647. If this parameter is not specified but

pageNumber is, 10 items per page are returned by default.

Below are examples of adding the pagination parameters to a Project Configuration endpoint:

l Requesting both pageSize and pageNumber:

https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=1&pageSize=1
l Requesting the specified number of items with only the pageSize parameter:

https://<hostname_or_ip>:<port>/config/v1/channels/?pageSize=1

Note: without specifying the pageNumber parameter, the first page of results is returned.

l Requesting the specified page with only the pageNumber parameter:

https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=2

Note: without specifying the pageSize parameter, up to 10 items are returned for the specified

page.

When information is paginated, an additional object is appended to the body of the collection being

retrieved. Here is an example of pagination information returned with the body of a paginated response:

“pageIndex”: 1,
“totalPages”: 1,
“totalCount”: 1,
“hasPreviousPage”: false,
“hasNextPage”: false

Definitions for the returned pagination information:

l pageIndex: An integer representing page being accessed. This page contains a subset of content

returned from an unpaginated request. The pageIndex value is the same as the pageNumber para-

meter.

l totalPages: The total integer number of pages used to present the collection content

l totalCount: The number of objects within the entire collection.

l hasPreviouPage: A Boolean value returning true if there are any prior pages with content before the

page being accessed and false otherwise.

l hasNextPage: A Boolean value returning true if there is another page containing objects after the

page being accessed and false otherwise.

The table below describes the pagination behavior based on the parameters supplied in the request:

pageNumber pageSize Paginated? Page Index Returned Items Per Page

N/A N/A False N/A Total

x y True x Up to y

x N/A True x 10

www. ptc.com

63

ThingWorx Kepware Edge

N/A y True 1 Up to y

If no pagination parameters are specified, requests return the entire JSON response body and no pagination

information. Below is an example of a non-paginated request and response:

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/project/channels/

Example JSON response where collection of object size N=2:

[
{

 Object Information
 },

{
 Object Information
 }
]

If the pageNumber and/or pageSize pagination parameters are specified, requests return a subset of the

entire JSON response body with pagination information. Below is an example of a paginated request and

response.

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

Example JSON response where collection of object size N=2:

[
{

 Object Information
 },

{
 "pageIndex": 1,
 "totalPages": 2,
 "totalCount": 2,
 "hasPreviousPage": false,
 "hasNextPage": true
 }
]

If a collection is empty and pagination is specified, only the pagination information is returned in the JSON

response body:

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

Example JSON response where collection of object size N=0:

[
{

 "pageIndex": 1,
 "totalPages": 0,
 "totalCount": 0,
 "hasPreviousPage": false,
 "hasNextPage": false
 }
]

www. ptc.com

64

ThingWorx Kepware Edge

Pagination only works for collections of objects. If the JSON payload contains a single object instance, pagin-

ation information is not appended to the response.

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>? pageNum-
ber=1&pageSize=1

Note: there is only one channel created in this instance.

Example JSON response where Just an object Instance is returned:

[
{

 Object Information
 }
]

Configuration API Service — Data
The Configuration API Service receives requests in standard JSON format from the REST client. These

requests are consumed by the server and broken down into create, read, update, or delete commands.

Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable

actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-

port>/config/ (for default configurations).

Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

 Object names containing spaces, or other characters disallowed in URL formatting, must be percent-

encoded to be correctly interpreted by the Configuration API. Percent encoding involves replacing dis-

allowed characters with their hexadecimal representation. For example, an object named 'default object' is

percent-encoded as default%20object. The following characters are not permitted in a URL and must be

encoded:

* spac-

e*
! # $ & ' () * + , / : ; = ? @ []

%20
%2-

1

%2-

3

%2-

4

%2-

6

%2-

7

%2-

8

%2-

9

%2-

A

%2-

B

%2-

C

%2-

F

%3-

A

%3-

B

%3-

D

%3-

F

%4-

0

%5-

B

%5-

D

All leading and trailing spaces are removed from object names before the server validates them. This can

create a discrepancy between the object name in the server and the object name a user provides via the

Configuration API. Users can send a GET on the parent object after sending a PUT/POST to verify the new or

modified object name in the server matches what was sent via the API.

An attempt to perform a POST/PUT/DELETE with the API as a non-admin user fails if a user has the server

configuration open at the same time. The error is a 401 status code (unauthorized). Only one user can write

to the runtime at a time; the API cannot take permissions from the server configuration if it has insufficient

credentials.

Create an Object
An object can be created by sending an HTTPSPOST request to the Configuration API. When creating a new

object, the JSON must include required properties for the object (ex. each object must have a name), but

doesn’t require all properties. All properties not included in the JSON are set to the default value on cre-

ation.

www. ptc.com

65

ThingWorx Kepware Edge

Example POST JSON body:

{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
}

Create Mult iple Objects
Multiple objects may be added to a given collection by including the JSON property objects in an array.

Example POST JSON body:

[
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 },
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 }
]

When a POST includes multiple objects, if one or more cannot be processed due to a parsing failure or

some other non-property validation error, the HTTPSstatus code 207 (Multi-Status) will be returned along

with a JSON object array containing the status for each object in the request.

For example, if two objects are included in the request and the second one specifies a non-validation error

(in this case a parsing error), two objects are output. One is a success, and the other is an error:

[
{

 “code”: 201,
 “message”: “Created”
 },
{

 “code”: 400,
 “message”: "Failed to parse JSON document at line 21: Property servermain.CHANNEL_
WRITE_OPTIMIZATIONS_DUTY_CYCLE cannot be converted to the expected type."
 }
]

If the error is a property validation error, the same HTTPSstatus code 207 is returned, but two error objects

are returned rather than one per property validation error. The basic error object contains the error code

and error message (such as above). The more comprehensive error message returns the property that

caused the error, the error description, the line of input that caused the error, the error code, and error mes-

sage.
Tip: When there is a property validation error on multi-object requests, the order of the objects returned

maintains the sequential order of the input.

For example, if two objects are included in the request and the second one specifies the same name as the

first, this is a property validation error:

{
 “property”: “common.ALLTYPES_NAME”,

www. ptc.com

66

ThingWorx Kepware Edge

 “description”: “The name “Channel1” is already used.”,
 “error_line”: 7,
 “code”: 400,
 “message”: "Validation failed on property common.ALLTYPES_NAME in object definition at
line 7: The name 'Channel1' is already used."
}

The first object returned is a response to successful creation of Channel1, while the second and third

response objects correspond to the property validation error.

Create an Object with Child Hierarchy
An object may be created with a full child object hierarchy beneath it. To do this, include that hierarchy in

the POST request just as it would appear when saved in a JSON project file.

For example, to create a channel with a device underneath it, the following JSON could be used:

{
"common.ALLTYPES_NAME": "Channel1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"devices":
[
{
"common.ALLTYPES_NAME": "Device1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"servermain.DEVICE_MODEL": 0
}
]

}

There is no response body when a child object is created unless there is an error during creation (such as a

parsing error or property validation error). A response header with the Project_ID is returned with a suc-

cessful request. That response header includes the Project_ID value, which is a new Project_ID after suc-

cessful object creation.

Header Information

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Read an Object
An object can be read by sending an HTTPSGET request to the Configuration API. All object properties are

returned on every GET request and each object includes a Project_ID. The Project_ID property is used to

track changes in the configuration and is updated on any change from the Configuration API or a server con-

figuration client. This property should be saved and used in all PUT requests to prevent stale data manip-

ulations.

Example response body:

{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678
}

www. ptc.com

67

ThingWorx Kepware Edge

The header of a successful GET request contains the Project_ID.

Header Information

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

 See Also: Content Retrieval

Edit an Object
An object can be edited by sending an HTTPSPUT request to the Configuration API. PUT requests require

the Project_ID or Force_Update property in the JSON body. Setting Force_Update to True ignores Project_ID

validation.

Example PUT body:

{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678,
 "FORCE_UPDATE": true
}

Normally, when a PUT request succeeds and all properties are assigned successfully, there is no response

body returned to the client; there is only a 200 status code to indicate success. There can be cases where a

property is included in a PUT request that is not assigned to the object instance by the Server Runtime. In

these cases, a response body will be generated as follows:

The header of a successful PUT request contains the new Project_ID that changed.

Header Information

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Body:

{,
 "not_applied":,

{,
 "servermain.CHANNEL_UNIQUE_ID": 2466304381
 },
 "code": 200,
 "message": "Not all properties were applied. This could be due to active client ref-
erence or property is disallowed/disabled/read-only."
}

The response indicates which property or properties were not applied to the object instance where each

contains the value that is actually in use. There are several possible reasons why the property value could

not be applied, such as:

www. ptc.com

68

ThingWorx Kepware Edge

l The property is read-only and cannot be changed.

l There is a client reference on the object that restricts what properties can be updated.

l The property is not allowed based on the values of other properties on which this condition

depends.

l The property is not enabled based on the values of other properties on which this condition

depends.

l The value was transformed in some way (ex. rounded or truncated).

Delete an Object
An object can be deleted by sending an HTTPSDELETE request to the Configuration API. The Configuration

API does not allow deleting multiple items on the same level with a single request (such as deleting all of the

devices in a channel), but can delete an entire tree (such as deleting a device deletes all its child tags).

The header of a successful DELETE request contains the new Project_ID that changed.

Header Information

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Errors
All Configuration API Service requests return errors in JSON format.

Example:

{
 "code": 400,
 "message": "Invalid property: 'NAME'."
}

See Also: Troubleshooting

Configuration API Service — Invoking Services
Objects may provide services if there are actions that can be invoked on the object beyond the standard

CRUD (Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic inter-

face through which remote clients can trigger and monitor these actions. Services can be found in a col-

lection called ‘services’ underneath the object on which they operate. For example, the project load service

is located at the https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it

operates on the project. Any object may provide services, so query if the service collection exists, then query

the collection to see the available services.

Service Architecture
Services are designed to provide stateless interaction with the object on which they operate. Services are

comprised of two components: a service and a job. The job executes the work asynchronously and provides

a mechanism through which a client can monitor the job for completion or for any errors that occurred dur-

ing its operation. After a job completes, it is scheduled for deletion automatically by the server; no action is

required by the client to clean up the job after it completes.

Service

www. ptc.com

69

ThingWorx Kepware Edge

The service is the interface through which an action is invoked. The service exposes all parameters that can

be specified during its invocation as properties. To see the available parameters, perform a HTTPSGET on

the service endpoint. All properties, besides the name and description of the service, are the parameters

that can be included when invoking a service. Depending on the service, some or all parameters may be

required.

Invocation of a service is accomplished by performing a HTTPSPUT request on the service endpoint with

any parameters specified in the body of the request. Services may limit the total number of concurrent

invocations. If the maximum number of concurrent invocations has been reached, the request is rejected

with an "HTTPS429 Too Many Requests" response. If the limit has not been reached, the server responds

with an "HTTPS202 Accepted" response and the body of the response including a link to the newly created

job.

Successful PUT response example:

{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

Busy PUT response example:

{
 "code": 429,
 "message": "The server is busy. Retry the operation at a later time."
}

Job
The job represents a specific request accepted by the server. To check the status of a job, perform a HTTPS

GET request on the job endpoint. The servermain.JOB_COMPLETE property represents the current state of

the job as a Boolean. The value of this property remains false until the job has finished executing. If the job

fails to execute for any reason, it provides the client with an appropriate error message in the server-

main.JOB_STATUS_MSG property.

Job Cleanup
Jobs are automatically deleted by the server after a configurable amount of time. By default, after a job has

completed, the client has 30 seconds to interact with it before the job is deleted. If a longer amount of time

is required by the client or the client is operating over a slow connection, the client can use the server-

main.JOB_TIME_TO_LIVE_SECOND parameter when invoking the service to increase the time-to-live up to a

maximum of five minutes. Each job has its own time-to-live and it may not be changed after a job has been

created. Clients are not allowed to manually delete jobs from the server, so it is best to choose the shortest

time-to-live without compromising the client’s ability to get the information from the job before it is deleted.

Service Automatic Tag Generation
The Automatic Tag Generation service operates under a device endpoint for a driver that supports Auto-

matic Tag Generation. The properties that support Automatic Tag Generation for the device must be con-

figured prior to initiating Automatic Tag Generation. See the driver specific documentation for related

properties.

To initiate Automatic Tag Generation, a PUT is sent to the TagGeneration endpoint with a defined empty pay-

load. In the following example, Automatic Tag Generation is initiated on Channel1/Device1.

Endpoint (PUT):

www. ptc.com

70

ThingWorx Kepware Edge

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration

The response should look something like the following.

Body:

{
 "code": 202,
 "message": "Accepted",
 "href": "/con-
fig/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by

querying the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the

following.

Endpoint (GET):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.
Note: Not all drivers support Automatic Tag Generation.
Tip: Automatic Tag Generation files must be located in the <installation_directory>/user_data directory. All

files in the user_data directory must be world readable or owned by the ThingWorx Kepware Edge user and

group that were created during installation, by default this is tkedge.

Service Project Load
Projects can be loaded by interacting with the ProjectLoad service on the ProjectLoad endpoint. First a GET

request must be sent to get the Project ID to later be used in the PUT request.

The GET request should look like the following.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

The server should respond with something similar to the following.

Body:

{
 "PROJECT_ID": 3531905431,
 "common.ALLTYPES_NAME": "ProjectLoad",
 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,
 "servermain.PROJECT_FILENAME": "",
 "servermain.PROJECT_PASSWORD": ""
}

To initiate the project load, a PUT request is sent to the server with the absolute path to the project file, the

project file password, and the Project ID. If there is no password on the project, that field is not required.

Project loading supports SLPF, LPF, and JSON file types. The request should look similar to the following.

Endpoint (PUT):

www. ptc.com

71

ThingWorx Kepware Edge

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

Body:

{
 "PROJECT_ID": 3531905431,
 "servermain.PROJECT_FILENAME": "MyProject.json",
 "servermain.PROJECT_PASSWORD": ""
}

where the project json file is located at /<install directory>/user_data/, which is /opt/tkedge/v1/user_data/

by default.

The server should respond with something similar to the following.

Body:

{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by

querying the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the

following.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

Service Project Save
Projects can be loaded by interacting with the ProjectSave service on the ProjectSave endpoint. A GET

request must be sent to get the Project ID to later be used in the PUT request. The GET request should look

similar to the following.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

The server should respond with something similar to the following.

Body:

{
 "PROJECT_ID": 2401921849,
 "common.ALLTYPES_NAME": "ProjectSave",
 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,
 "servermain.PROJECT_FILENAME": ""
}

To initiate the project save, a PUT request is sent with the project file path and name of the file with the

extension (SLPF, LPF, or JSON), the password to encrypt it with, and the Project ID. The password property is

required for SLPF file and ignored otherwise. The path is relative to the Application Data Folder. The PUT

request should look similar to the following.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

www. ptc.com

72

ThingWorx Kepware Edge

Body:

{
 "PROJECT_ID": 2401921849,
 "servermain.PROJECT_FILENAME": "Projects/MyProject.SLPF",
 "servermain.PROJECT_PASSWORD": "MyPassword"
}

The server should respond with something similar to the following.

Body:

{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectSave/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by

querying the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the

following.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

Configuration API Service — Reinit ialize Runtime Service
The Runtime Service can be reinitialized by interacting with the ReinitializeRuntime service. To initiate the

reinitialization, a PUT request is sent to the endpoint with a body that defines the service name and the job’s

desired Time to Live (timeout).

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime

Body:

{
 "common.ALLTYPES_NAME" : "ReinitializeRuntime",
 "servermain.JOB_TIME_TO_LIVE_SECONDS" : 30
}

The server should respond with something similar to the following.

Body:

{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ReinitializeRuntime/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by

querying the job by sending a GET to the job’s endpoint. The GET request should look like the following.

www. ptc.com

73

ThingWorx Kepware Edge

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime/jobs/job1

Jobs are automatically cleaned up after the wait time expires. This wait time is configurable.

See Also: Job Cleanup

Configuration API Service — Project Example
Project files control the communications and data collection of the server and all connected devices. Chan-

nel and device properties are defined and saved in the project file and how they are configured can impact

performance (see Optimization). Tag and tag group settings saved in the project can impact how the data is

available in control and monitoring displays and reports. There must always be one active open project.

Project saving and loading is restricted to the <installation_directory>/user_data directory. A local user must

be a member of the ThingWorx Kepware Edge user group created during installation, tkedge by default, to

be able to place files in this directory. The <installation_directory>/user_data directory is also used for load-

ing of automatic tag generation (ATG) files.
Note: All files in the user_data directory must be world readable or owned by the ThingWorx Kepware

Edge user and group that were created during installation, by default this is tkedge.
See Also: Application Data

Save a Project
Use a “PUT” command from a REST client to invoke the ProjectSave service and provide a unique file name

for the new file. All files are loaded from and saved to the <installation_directory>/user_data directory.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

Body:

{
 "common.ALLTYPES_NAME": "ProjectSave",
 "servermain.PROJECT_FILENAME":"myProject.json"
}

Note: The project is saved to: <installation_directory>/user_data/. A path may be included in the file

name, such as ‘projects/MyProject.json’. Any directory that does not exist within the <installation_dir-

ectory>/user_data/ directory will be created upon successfully saving a project file.

Update a Project
The typical work flow for editing a project is to read the properties using a GET, modify the properties, then

write them into the body of the message using a PUT.

Read Available Device Properties Example

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>/devices

Return:

[
{

 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": <device_name>,

www. ptc.com

74

ThingWorx Kepware Edge

 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "<driver>",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <ID>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "<channel_name>",
 "servermain.DEVICE_ID_FORMAT": 0,
 "servermain.DEVICE_ID_STRING": "<nnn.nnn.n.n>.0",
…
}

]

where nnn.nnn.n.n is the Device ID address.

Update Specific Device Properties Example
Only the properties you wish to change are needed for this step.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>/devices/<device_
name>

Body:

{
 "project_id": <project_ID_from_GET>,
 "servermain.DEVICE_ID_STRING": "<nnn.nnn.n.n>.0"
}

where nnn.nnn.n.n is the Device ID address.

Configuration API Service — Response Codes
One of the following response codes may be returned from a REST request. Where possible, the body of the

response contains specific error messages to help identify the cause of the error and possible solutions:

l HTTPS/1.1 200 OK

l HTTPS/1.1 201 Created

l HTTPS/1.1 202 Accepted

l HTTPS/1.1 207 Multi-Status

l HTTPS/1.1 400 Bad Request

l HTTPS/1.1 401 Unauthorized

l HTTPS/1.1 403 Forbidden

l HTTPS/1.1 404 Not Found

l HTTPS/1.1 429 Too Many Requests

l HTTPS/1.1 500 Internal Server Error

l HTTPS/1.1 503 Server Runtime Unavailable

l HTTPS/1.1 504 Gateway Timeout

l HTTPS/1.1 520 Unknown Error

Consult the Configuration API Service Event Log Messages

Project Properties (via API Commands)
The project endpoint is used to manage the project running in the server. All objects within the project can

be found underneath the project endpoint. To browse the child endpoints, see Content Retrieval.

www. ptc.com

75

ThingWorx Kepware Edge

The project endpoint provides a single point of access for configuring both global project settings as well as

client interfaces.
See Client Interfaces for detailed information on the available client interfaces and their associated settings.
See Project Properties for detailed information on the available Project Property settings.

Supported Actions

HTTPS Verb Action

GET Retrieves the current project properties

PUT Updates the project properties

Child Endpoints

Endpoint Description

/config/v1/project/channels Endpoint used to manage the channels in the project

/config/v1/project/_iot_gate-

way
Endpoint used to manage the IOT Gateway client interface configuration

/config/v1/project/aliases Endpoint used to manage the object aliases in the project

/config/v1/project/client_

interfaces
Endpoint used to manage the various client interfaces

/config/v1/project/services
Endpoint used to access the services available to the project (see Project

Load and Project Save)

GET /config/v1/project

Returns the set of project properties as they are configured when the request is processed.

Note: You cannot delete the project or create a new one. However, you can load a new project or save the

project using the Project Load and Project Save services.

See Also: Project Load and Project Save)

Resource Information

Type Description

Resource URL https://<hostname/port>:<port>/config/v1/project

Response Format JSON

Parameters

Content Returns

content=properties Returns the project properties

content=property_definitions Returns a detailed description for each property in the project endpoint

content=property_states Returns the property states

content=type_definition Returns the type definitions

content=children Returns a collection of child endpoints underneath the project endpoint.

Properties

www. ptc.com

76

Project_Properties.htm

ThingWorx Kepware Edge

Property Name Type Description

common.ALLTYPES_DESCRIPTION String
Provide a brief summary of this object or

its use.

servermain.PROJECT_TITLE String
Title of the project for informational pur-

poses.

servermain.PROJECT_TAGS_DEFINED String Count of tags identified in the project

uaserverinterface.PROJECT_OPC_UA_

ENABLE
YesNo

Enable the OPC UA server interface to

accept client connections. Changes in this

property require runtime reinitialization to

take effect.

uaserverinterface.PROJECT_OPC_UA_

DIAGNOSTICS
YesNo

Enable sending diagnostic information to

the event log.

Warning: Enabling UA diagnostics

allows server users to view encrypted OPC

UA client / server traffic.

uaserverinterface.PROJECT_OPC_UA_

ANONYMOUS_LOGIN
YesNo

Important: You must use Server Admin-

istration to define users if anonymous

login is not allowed.

uaserverinterface.PROJECT_OPC_UA_MAX_

CONNECTIONS
Integer

The number of simultaneous OPC UA cli-

ent connections allowed by the server.

Changes in this property require runtime

reinitialization to take effect.

uaserverinterface.PROJECT_OPC_UA_MIN_

SESSION_TIMEOUT_SEC
Integer

Minimum session timeout period, in

seconds, that client is allowed to specify.

uaserverinterface.PROJECT_OPC_UA_MAX_

SESSION_TIMEOUT_SEC
Integer

Maximum session timeout period, in

seconds, that client is allowed to specify.

uaserverinterface.PROJECT_OPC_UA_TAG_

CACHE_TIMEOUT_SEC
Integer

Increase the timeout to improve per-

formance for clients that perform reads /

writes on unregistered tags.

uaserverinterface.PROJECT_OPC_UA_

BROWSE_TAG_PROPERTIES
YesNo

Return tag properties when a client

browses the server address space.

uaserverinterface.PROJECT_OPC_UA_

BROWSE_ADDRESS_HINTS
YesNo

Return device addressing hints when a cli-

ent browses the server address space.

uaserverinterface.PROJECT_OPC_UA_MAX_

DATA_QUEUE_SIZE
Integer

Maximum number of data change noti-

fications queued per monitored item.

Higher limits give the client more flexibility

but can lead to higher memory usage.

uaserverinterface.PROJECT_OPC_UA_MAX_

RETRANSMIT_QUEUE_SIZE
Integer

Maximum number of notifications in the

republish queue the server allows per sub-

scription. Higher limits use more memory

but allow clients to retransmit older mes-

sages.

uaserverinterface.PROJECT_OPC_UA_MAX_

NOTIFICATION_PER_PUBLISH
Integer

Maximum number of notifications the

server sends per publish. Use larger values

for fast and reliable connections.

thingworxinterface.ENABLED YesNo Enable the ThingWorx native interface.

www. ptc.com

77

ThingWorx Kepware Edge

Property Name Type Description

thingworxinterface.HOSTNAME String
"The hostname or IP address of the

ThingWorx Platform instance.

thingworxinterface.PORT Integer

The port used to connect to the platform

instance, commonly 443 for secure con-

nections.

thingworxinterface.RESOURCE String

The endpoint URL of the platform hosting

the websocket server, such as '/Th-

ingWorx/WS'.

thingworxinterface.APPKEY String
The application key used to authenticate;

this is generated in the platform.

thingworxinterface.ALLOW_SELF_SIGNED_

CERTIFICATE
YesNo

Enable to trust valid self-signed certificates

presented by the server (less secure).

thingworxinterface.TRUST_ALL_

CERTIFICATES
YesNo

Enable to trust all server certificates

(include self-signed and invalid) and com-

pletely disable certificate validation. Do

not use on a production system.

thingworxinterface.DISABLE_ENCRYPTION YesNo

Disable SSL/TLSand allow connecting to

an insecure endpoint. Do not use on a pro-

duction system.

thingworxinterface.THING_NAME String The thing name presented to the platform.

thingworxinterface.PUBLISH_FLOOR_MSEC Integer

The minimum rate that updates are sent

to the platform. Set to zero to send

updates as fast as possible.

thingworxinterface.LOGGING_ENABLED YesNo

Enable ThingWorx Advanced Logging.

When enabled, advanced log information

is routed to the server event log.

thingworxinterface.LOG_LEVEL

Enumeration:

Trace: 0

Info: 2

Warning: 3

Error: 4

Audit: 6

Determines that amount of information

logged. Set to Trace to generate the most

detailed output.

thingworxinterface.VERBOSE YesNo

Determines the level of detail of each mes-

sage logged. Set to Yes to add additional

verbosity.

thingworxinterface.PROXY_ENABLED YesNo Enables ThingWorx proxy support.

thingworxinterface.PROXY_HOST String
Specify the IP address or DNSname of the

proxy server to connect.

thingworxinterface.PROXY_PORT Integer
Specify the number of the TCP port used

to connect to the proxy server.

thingworxinterface.PROXY_USERNAME String

Enter the password authentication string

for connecting to the ThingWorx server as

the user specified.

thingworxinterface.PROXY_PASSWORD String Enter the password authentication string

www. ptc.com

78

ThingWorx Kepware Edge

Property Name Type Description

for connecting to the ThingWorx server as

the user specified.

Example Request

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project

Example Response

{
"PROJECT_ID": 3536816236,
"common.ALLTYPES_DESCRIPTION": "",
"servermain.PROJECT_TITLE": "",
"servermain.PROJECT_TAGS_DEFINED": "121",
"uaserverinterface.PROJECT_OPC_UA_ENABLE": true
"uaserverinterface.PROJECT_OPC_UA_DIAGNOSTICS": false,
"uaserverinterface.PROJECT_OPC_UA_ANONYMOUS_LOGIN": true,
"uaserverinterface.PROJECT_OPC_UA_MAX_CONNECTIONS": 128,
"uaserverinterface.PROJECT_OPC_UA_MIN_SESSION_TIMEOUT_SEC": 15,
"uaserverinterface.PROJECT_OPC_UA_MAX_SESSION_TIMEOUT_SEC": 60,
"uaserverinterface.PROJECT_OPC_UA_TAG_CACHE_TIMEOUT_SEC": 5,
"uaserverinterface.PROJECT_OPC_UA_BROWSE_TAG_PROPERTIES": false,
"uaserverinterface.PROJECT_OPC_UA_BROWSE_ADDRESS_HINTS": false,
"uaserverinterface.PROJECT_OPC_UA_MAX_DATA_QUEUE_SIZE": 2,
"uaserverinterface.PROJECT_OPC_UA_MAX_RETRANSMIT_QUEUE_SIZE": 10,
"uaserverinterface.PROJECT_OPC_UA_MAX_NOTIFICATION_PER_PUBLISH": 65536,
"thingworxinterface.ENABLED": false,
"thingworxinterface.HOSTNAME": "hostname_or_ip",
"thingworxinterface.PORT": 443,
"thingworxinterface.RESOURCE": "/ThingWorx/WS",
"thingworxinterface.APPKEY": "",
"thingworxinterface.ALLOW_SELF_SIGNED_CERTIFICATE": false,
"thingworxinterface.TRUST_ALL_CERTIFICATES": false,
"thingworxinterface.DISABLE_ENCRYPTION": false,
"thingworxinterface.THING_NAME": "ThingWorxKepwareEdge",
"thingworxinterface.PUBLISH_FLOOR_MSEC": 1000,
"thingworxinterface.LOGGING_ENABLED": false,
"thingworxinterface.LOG_LEVEL": 3,
"thingworxinterface.VERBOSE": false,
"thingworxinterface.PROXY_ENABLED": false, "thingworxinterface.PROXY_HOST": "localhost",

"thingworxinterface.PROXY_PORT": 3128, "thingworxinterface.PROXY_USERNAME": "",
"thingworxinterface.PROXY_PASSWORD": "" }

Project Properties — OPC UA
OPC Unified Architecture (UA) provides a platform independent interoperability standard. The OPC UA Pro-

ject Properties group displays the current OPC UA settings in the server.

Server Interface

Enable: When enabled, the UA server interface is initialized and accepts client connections. When disabled,

the remaining properties on this page are disabled.

www. ptc.com

79

ThingWorx Kepware Edge

Client Sessions

Allow anonymous login: This property specifies whether or not a user name and password are required to

establish a connection. For security, the default setting is No to disallow anonymous access and require cre-

dentials to log in.
Tip: Additional users may be configured to access data without all the permissions associated with the

administrator account. When the client supplies a password on connect, the server decrypts the password

using the encryption algorithm defined by the security policy of the endpoint, then uses it to login.
Note: Users can login as the Administrator using the password set during the installation of ThingWorx

Kepware Edge to login. Additional users may be configured to access data without all the permissions asso-

ciated with the administrator account. When the client supplies a password on connect, the server decrypts

the password using the encryption algorithm defined by the security policy of the endpoint, then uses it to

login.
When the client supplies a password on connect, the server decrypts the password using the encryption

algorithm defined by the security policy of the endpoint.

Max. connections: specify the maximum number of supported connections. The valid range is 1 to 128.

The default setting is 128.

Minimum session timeout : specify the UA client's minimum timeout limit for establishing a session. Val-

ues may be changed depending on the needs of the application. The default value is 15 seconds.

Maximum session timeout : specify the UA client's maximum timeout limit for establishing a session. Val-

ues may be changed depending on the needs of the application. The default value is 60 seconds.

Tag cache timeout : specify the tag cache timeout. The valid range is 0 to 60 seconds. The default setting is

5 seconds.

Note: This timeout controls how long a tag is cached after a UA client is done using it. In cases where UA

clients read / write to unregistered tags at a set interval, users can improve performance by increasing the

timeout. For example, if a client is reading an unregistered tag every 5 seconds, the tag cache timeout

should be set to 6 seconds. Since the tag does not have to be recreated during each client request, per-

formance improves.

Browsing

Return tag properties: Enable to allow UA client applications to browse the tag properties available for

each tag in the address space. This setting is disabled by default.

Return address hints: Enable to allows UA client applications to browse the address formatting hints avail-

able for each item. Although the hints are not valid UA tags, certain UA client applications may try to add

them to the tag database. When this occurs, the client receives an error from the server. This may cause the

client to report errors or stop adding the tags automatically. To prevent this from occurring, make sure that

this property is disabled. This setting is disabled by default.

Monitored Items

Max. Data Queue Size: specify the maximum number of data notifications to be queued for an item. The

valid range is 1 to 100. The default setting is 2.

Note: The data queue is used when the monitored item's update rate is faster than the subscription's

publish rate. For example, if the monitored item update rate is 1 second, and a subscription publishes every

www. ptc.com

80

ThingWorx Kepware Edge

10 seconds, then 10 data notifications are published for the item every 10 seconds. Because queuing data

consumes memory, this value should be limited when memory is a concern.

Subscriptions

Max. retransmit queue size: specify the maximum number of publishes to be queued per subscription.

The valid range is 1 to 100. A value of zero disables retransmits. The default setting is 10.

Note: Subscription publish events are queued and retransmitted at the client's request. Because queuing

consumes memory, this value should be limited when memory is a concern.

Max. notifications per publish: specify the maximum number of notifications per publish. The valid range

is 1 to 65536. The default setting is 65536.

Note: This value may affect the connection's performance by limiting the size of the packets sent from

the server to the client. In general, large values should be used for high-bandwidth connections and small

values should be used for low-bandwidth connections.

Configuration API Services — Channel Properties
The following properties define a channel using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

Note: Changing this property causes the API endpoint URL to change.

common.ALLTYPES_DESCRIPTION

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

Ethernet Communication Properties

servermain.CHANNEL_ETHERNET_COMMUNICATIONS_NETWORK_ADAPTER_STRING

Advanced Properties

servermain.CHANNEL_NON_NORMALIZED_FLOATING_POINT_HANDLING

Write Optimizations

servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD

servermain.CHANNEL_WRITE_OPTIMIZATIONS_DUTY_CYCLE

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Channel
To create a channel via the Configuration API service, only a minimum set of properties are required; all oth-

ers are set to the default value. Once a channel is defined, its properties and settings are used by all devices

www. ptc.com

81

ThingWorx Kepware Edge

assigned to that channel. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the channel end-

point.

The example below creates a channel named Channel1 that uses the Simulator driver on a server running

on the local host.

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels

Body:

{
 “common.ALLTYPES_NAME”: “Channel1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

Refer to the driver specific help documentation to find out what properties are required to create a channel for

that driver.

Configuration API Service — Updating a Channel
To update a property or collection of properties on a channel, a GET request must first be sent to the end-

point to be updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the channel being updated is Channel1.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1

The GET request will return a JSON blob similar to the following.

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Channel1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.CHANNEL_UNIQUE_ID": 2154899492,
 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…

To update or change a channel property, a PUT request is sent to the channel with the Project ID and the

new property value defined. In the following example, the channel name will change from Channel1 (from

above) to Simulator.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

www. ptc.com

82

ThingWorx Kepware Edge

Following the PUT, a GET can be sent to the channel’s endpoint to validate that the property changed. In this

case, because the name was changed, the endpoint also changed and the GET request would be the fol-

lowing.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator

The response from the GET request should show the property value has changed. The response to the GET

above should look similar to the following:

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.CHANNEL_UNIQUE_ID": 2154899492,
 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…

Configuration API Service — Removing Channel
To remove a channel, send a DELETE command to the channel endpoint to be removed. This causes the

channel and all of its children to be removed.

In the example below, the channel Simulator will be removed.

Endpoint (DELETE):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can

also be verified with a GET to the "channels" endpoint; the removed channel will not be in the list of chan-

nels returned from the GET request.

Configuration API Service — Device Properties
The following properties define a device using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

common.ALLTYPES_DESCRIPTION

servermain.DEVICE_CHANNEL_ASSIGNMENT

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.DEVICE_MODEL * Not required, but verify the default is acceptable

servermain.DEVICE_ID_STRING * Required parameter

servermain.DEVICE_DATA_COLLECTION

www. ptc.com

83

ThingWorx Kepware Edge

servermain.DEVICE_SIMULATED

Scan Mode

servermain.DEVICE_SCAN_MODE

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_PROVIDE_INITIAL_UPDATES_FROM_CACHE

Auto Demotion

servermain.DEVICE_AUTO_DEMOTION_ENABLE_ON_COMMUNICATIONS_FAILURES

servermain.DEVICE_AUTO_DEMOTION_DEMOTE_AFTER_SUCCESSIVE_TIMEOUTS

servermain.DEVICE_AUTO_DEMOTION_PERIOD_MS

servermain.DEVICE_AUTO_DEMOTION_DISCARD_WRITES

Tag Generation

servermain.DEVICE_TAG_GENERATION_ON_STARTUP

servermain.DEVICE_TAG_GENERATION_DUPLICATE_HANDLING

servermain.DEVICE_TAG_GENERATION_GROUP

servermain.DEVICE_TAG_GENERATION_ALLOW_SUB_GROUPS

Tip: To Invoke Automatic Tag Generation, send a PUT with an empty body to the TagGeneration service

endpoint on the device.
Note: All files in the user_data directory must be world readable or owned by the ThingWorx Kepware

Edge user and group that were created during installation, by default tkedge.
See Also: For more information, see Services help.

Timing
servermain.DEVICE_CONNECTION_TIMEOUT_SECONDS

servermain.DEVICE_REQUEST_TIMEOUT_MILLISECONDS

servermain.DEVICE_RETRY_ATTEMPTS

servermain.DEVICE_INTER_REQUEST_DELAY_MILLISECONDS

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Device
To create a device via the Configuration API service, only a minimum set of properties are required; all oth-

ers are set to the default value. The specific properties are dependent on the protocol or driver selected.

www. ptc.com

84

ThingWorx Kepware Edge

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the device end-

point under a channel.

The example below will create a device named Device1 under Channel1 that uses the Simulator driver on a

server running on the local host.

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices

Body:

{
 “common.ALLTYPES_NAME”: “Device1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

Refer to the driver specific help documentation to find out what properties are required to create a device for

that driver.

Configuration API Service — Updating a Device
To update a property or collection of properties on a device, a GET request must first be sent to the end-

point to be updated to get the Project ID.

For more information about the Project ID, see the Concurrent Clients section.

In the example below, the device being updated is Device1 under Channel1.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1

The GET request will return a JSON blob similar to the following.

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Device1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <project_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

To update or change a device property a PUT request is sent to the device with the Project ID and the new

property value defined. In the following example the device name will change from Device1 (from above) to

Simulator.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

www. ptc.com

85

ThingWorx Kepware Edge

Following the PUT, a GET can be sent to the device endpoint to validate that the property changed. In this

case, because the name was changed, the endpoint also changed and the GET request would be the fol-

lowing.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

The response from the GET request will show the property value has changed. The response to the GET

above should look similar to the following.

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <device_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

Configuration API Service — Removing a Device
To remove a device, send a DELETE to the device endpoint to be removed. This will cause the device and all

of its children to be removed.

In the example below, the device Simulator will be removed.

Endpoint (DELETE):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can

also be verified with a get to the devices endpoint and the removed device will not be in the list of devices

returned from the GET request.

Configuration API Service — Creating a Tag
To create a tag via the Configuration API service, only a minimum set of properties are required; all others

are set to the default value. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tags endpoint

under a device.

The example below will create a tag named MyTag for address R5 under Channel1/Device1 that uses the

Simulator driver on a server running on the local host.

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tags

Body:

{
 “common.ALLTYPES_NAME”: “MyTag”,

www. ptc.com

86

ThingWorx Kepware Edge

 "servermain.TAG_ADDRESS": "R5"
}

Tags can also be created within a tag group. The process for adding a tag group is the same except the URL

changes to include the tag_group endpoint and the group name.
In the following example, the tag group RampTags already exists and a tag named MyTag is created under it

with the address R5.
For more information on creating a tag group, see Creating a Tag Group section.

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
group/RampTags/tags

Body:

{
 “common.ALLTYPES_NAME”: “MyTag”,
 "servermain.TAG_ADDRESS": "R5"
}

Refer to the driver specific help documentation to find out what properties are required to create a tag for that

driver.

Configuration API Service — Updating a Tag
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to

be updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the tag being updated is MyTag under Channel1/Device1.

Endpoint (GET):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

The GET request will return a JSON blob similar to the following.

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "MyTag",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…

To update or change a tag property, a PUT request is sent to the tag with the Project ID and the new prop-

erty value defined.
In the following example, the tag name will change from MyTag (from above) to Tag1.

Endpoint (PUT):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

www. ptc.com

87

ThingWorx Kepware Edge

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1"
}

Following the PUT a GET can be sent to the tag’s endpoint to validate that the property changed. In this case,

because the name was changed, the endpoint also changed and the GET request would be the following.

Endpoint (GET):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

The response from the GET request will show the property value has changed. The response to the GET

above should look similar to the following.

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…

Configuration API Service — Removing a Tag
To remove a tag, send a DELETE to the tag’s endpoint to be removed. This will cause the tag and all of its chil-

dren to be removed.
In the example below, the tag Tag1 will be removed.

Endpoint (DELETE):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can

also be verified with a get to the tags endpoint and the removed tag will not be in the list of tags returned

from the GET request.

Configuration API Service — Creating a Tag Group
To create a tag group via the Configuration API service, only a group name is required.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tag_groups

endpoint under a device.

The example below will create a tag group named RampTags under Channel1/Device1 that uses the Sim-

ulator driver on a server running on the local host.

Endpoint (POST):

www. ptc.com

88

ThingWorx Kepware Edge

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups

Body:

{
 “common.ALLTYPES_NAME”: “RampTags”
}

Tag groups can have tags and more tag groups nested under them. To add a Tag, see the Creating a Tag sec-

tion.

To nest a Tag Group within another group, another POST action is required to add the existing group name

and the tag_groups endpoint to the end of the URL.

Continuing the example above, the new request would look like the following.

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags/tag_groups

Body:

{
 “common.ALLTYPES_NAME”: “1-10”
}

Configuration API Service — Updating a Tag Group
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to

be updated to get the Project ID.
For more information about the Project ID, see the Concurrent Clients section.

In the example below, the tag group being updated is RampTags under Channel1/Device1.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags

The GET request will return a JSON blob similar to the following.

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}

To update or change a tag group property, a PUT request is sent to the tag group with the Project ID and the

new property value defined.
In the following example, the tag group name will change from RampTags (from above) to RampGroup.

Endpoint (PUT):

www. ptc.com

89

ThingWorx Kepware Edge

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampGroup"
}

Following the PUT, a GET can be sent to the tag group endpoint to validate that the property changed. In

this case, because the name was changed, the endpoint also changed and the GET request would be the fol-

lowing.

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup

The response from the GET request will show the property value has changed. The response to the GET

above should look similar to the following.

Body:

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}

Configuration API Service — Removing a Tag Group
To remove a tag group, send a DELETE to the tag group endpoint to be removed. This will cause the tag

group and all of its children to be removed. In the example below the tag group RampGroup will be

removed.

Endpoint (DELETE):

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can

also be verified with a get to the tag_groups endpoint and the removed tag group will not be in the list of tag

groups returned from the GET request.

Configuration API Service — Property Validation Error Object
When making a POST request to create an object or making a PUT request to update an object or project

properties, new values for those properties may be input as the body of the PUT or POST request to change

the values. If there is a property validation error, two error objects appear. The first error object contains an

error code and a message detailing why the error occurred. The second error object shows the same error

code and error message in addition to an error property value, a description of that error property, and the

line of input that created the error. The following example shows the error object of a POST request to cre-

ate an object with a name that already exists.

Response Body:

{
 “property”: “common.ALLTYPES_NAME”,

www. ptc.com

90

ThingWorx Kepware Edge

 “description”: “The name “Channel1” is already used.”,
 “error_line”: 7,
 "code": 400,
 "message": "Validation failed on property common.ALLTYPES_NAME in object definition at
line 7: The name 'Channel1' is already used."
}

Configuration API Service — User Management
The User Manager controls client access to the project's objects (which are the channels, devices, tags. etc.)

and their corresponding functions. The User Manager allows permissions to be specified by user groups.

For example, the User Manager can restrict user access to project tag data based on its permissions from

the parent user group.

User Groups

Endpoint : https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Supported Actions

HTTP(S) Verb Action

POST Create the specified group

GET Retrieves a list of all groups

DELETE Removes the specified group and all of its users

Endpoint : https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>

Supported Actions

HTTP(S) Verb Action

GET Retrieves the specified group

PUT Updates the specified group

DELETE Removes the specified user

Properties

Property Name Type Required Description

common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String No
Provide a brief summary of this object

or its use.

libadminsettings.USERMANAGER_

GROUP_ENABLED
Enable/Disable No

The group's enabled-state takes pre-

cedence over the users enabled state.

libadminsettings.USERMANAGER_

IO_TAG_READ
Enable/Disable No

Allow/deny clients belonging to the

group to access I/O tag data.

libadminsettings.USERMANAGER_

IO_TAG_WRITE
Enable/Disable No

Allow/deny clients belonging to the

group to modify I/O tag data. Note:

When USERMANAGER_IO_TAG_READ is

set to false, this property is also set to

false and disabled to prevent write-only

tags.

www. ptc.com

91

ThingWorx Kepware Edge

Property Name Type Required Description

libadminsettings.USERMANAGER_

IO_TAG_DYNAMIC_ADDRESSING
Enable/Disable No

Allow/deny clients belonging to the

group to add items using dynamic

addressing.

libadminsettings.USERMANAGER_

SYSTEM_TAG_READ
Enable/Disable No

Allow/deny clients belonging to the

group to access system tag data.

libadminsettings.USERMANAGER_

SYSTEM_TAG_WRITE
Enable/Disable No

Allow/deny clients belonging to the

group to modify system tag data. Note:

When USERMANAGER_SYSTEM_TAG_

READ is set to false, this property is also

set to false and disabled to prevent

write-only tags.

libadminsettings.USERMANAGER_

INTERNAL_TAG_READ
Enable/Disable No

Allow/deny clients belonging to the

group to access internal tag data.

libadminsettings.USERMANAGER_

INTERNAL_TAG_WRITE
Enable/Disable No

Allow/deny clients belonging to the

group to modify internal tag data. Note:

When USERMANAGER_INTERNAL_TAG_

READ is set to false, this property is also

set to false and disabled to prevent

write-only tags.

libadminsettings.USERMANAGER_

SERVER_MANAGE_LICENSES
Enable/Disable No

Allow/deny users belonging to the

group to access the license manager.

libadminsettings.USERMANAGER_

SERVER_MODIFY_SERVER_

SETTINGS

Enable/Disable No
Allow/deny users belonging to the

group to access this property sheet.

libadminsettings.USERMANAGER_

SERVER_DISCONNECT_CLIENTS
Enable/Disable No

Allow/deny users belonging to the

group to take action that can cause

data clients to be disconnected.

libadminsettings.USERMANAGER_

SERVER_RESET_EVENT_LOG
Enable/Disable No

Allow/deny users belonging to the

group to clear all logged event mes-

sages.

libadminsettings.USERMANAGER_

SERVER_OPCUA_DOTNET_

CONFIGURATION

Enable/Disable No

Allow/deny users belonging to the

group to access the OPC UA or XI con-

figuration manager.

libadminsettings.USERMANAGER_

SERVER_CONFIG_API_LOG_

ACCESS

Enable/Disable No

Allow/deny users belonging to the

group to access the Configuration API

Transaction Log.

libadminsettings.USERMANAGER_

SERVER_REPLACE_RUNTIME_

PROJECT

Enable/Disable No
Allow/deny users belonging to the

group to replace the running project.

libadminsettings.USERMANAGER_

BROWSE_BROWSENAMESPACE
Enable/Disable No

Allow/deny clients belonging to the

user group to browse the project

namespace.

Project Permissions

www. ptc.com

92

ThingWorx Kepware Edge

Endpoint : https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_

permissions

Supported Actions

HTTP(S) Verb Action

GET Retrieves a list of all project permissions

Child Endpoints

Properties

Endpoint Description

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Alias

Configure default 'Servermain Alias' access per-

missions for the selected user group.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Channel

Configure default 'Servermain Channel' access

permissions for the selected user group.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Device

Configure default 'Servermain Device' access per-

missions for the selected user group.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Meter Order

Configure default 'Servermain Meter Order'

access permissions for the selected user group.

Note: Add and delete properties are disabled

for this endpoint.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Phone Number

Configure default 'Servermain Phone Number'

access permissions for the selected user group.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Phone Priority

Configure default 'Servermain Phone Priority'

access permissions for the selected user group.

Note: Add and delete properties are disabled

for this endpoint.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Project

Configure default 'Servermain Project' access

permissions for the selected user group.

Note: Add and delete properties are disabled

for this endpoint.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Tag

Configure default 'Servermain Tag' access per-

missions for the selected user group.

/config/v1/admin/server_user-

groups/<GroupName>/project_per-

missions/Servermain Tag Group

Configure default 'Servermain Tag Group' access

permissions for the selected user group.

Endpoint : https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_

permissions/<PermissionName>

Supported Actions

www. ptc.com

93

ThingWorx Kepware Edge

HTTP(S) Verb Action

GET Retrieves the specified project permission

PUT Updates the specified project permission

Properties

Property Name Type Description

common.ALLTYPES_NAME String Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String
Provide a brief summary of this object or its

use.

libadminsettings.USERMANAGER_

PROJECTMOD_ADD
Enable/Disable

Allow/deny users belonging to the group to

add this type of object.

libadminsettings.USERMANAGER_

PROJECTMOD_EDIT
Enable/Disable

Allow/deny users belonging to the group to

edit this type of object.

libadminsettings.USERMANAGER_

PROJECTMOD_DELETE
Enable/Disable

Allow/deny users belonging to the group to

delete this type of object.

Users

Endpoint : https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Supported Actions

HTTP(S) Verb Action

POST Create the specified user

GET Retrieves a list of all users

Endpoint : https://<hostname_or_ip>:<port>/config/v1/admin/server_users/<UserName>

Supported Actions

HTTP(S) Verb Action

GET Retrieves the specified user

PUT Updates the specified user

Properties

Property Name Type Required Description

common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String No
Provide a brief summary of this object

or its use.

libadminsettings.USERMANAGER_

USER_GROUPNAME
String Yes The name of the parent group.

libadminsettings.USERMANAGER_

USER_ENABLED
Enable/Disable No

The group‘s enabled-state takes pre-

cedence over the users enabled state.

libadminsettings.USERMANAGER_

USER_PASSWORD
Password No

The user’s password. This is case-sens-

itive.

The password must be at least 14

www. ptc.com

94

ThingWorx Kepware Edge

Property Name Type Required Description

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has

the appropriate permissions.

Configuration API Service — Creating a User
To create a user via the Configuration API service, only a minimum set of properties are required; all others

are set to the default value.

Only members of the Administrators group can create users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_users

endpoint.

The example below creates a user named User1 that is a member of the server Administrators user group:

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Body:

{
 "common.ALLTYPES_NAME": "User1",
 "libadminsettings.USERMANAGER_USER_GROUPNAME": "Administrators",
 "libadminsettings.USERMANAGER_USER_PASSWORD": "<Password>"
}

 The Administrator user account password cannot be reset, but additional administrative users can be

added to the Administrator user group. Best practices suggest each user with administrative access be

assigned unique accounts and passwords to ensure audit integrity and continual access through role and

staff changes.

 The product Administrator password must be at least 14 characters and no more than 512. Passwords

should include a mix of uppercase and lowercase letters, numbers, and special characters. Choose a strong

unique password that avoids well-known, easily guessed, or common passwords.

Configuration API Service — Creating a User Group
To create a group via the Configuration API service, only a minimum set of properties are required; all oth-

ers are set to the default value. Once a user group is defined, its permissions are used by all users assigned

to that user group.

Only members of the Administrators group can create user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-

groups endpoint.

The example below creates a user group named Operators:

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Body:

www. ptc.com

95

ThingWorx Kepware Edge

{
 “common.ALLTYPES_NAME”: “Operators”,
}

Configuration API Service — Updating a User
To update a user via the Configuration API service, provide new values for the properties that require updat-

ing.
Only members of the Administrators group can update users.
There is no PROJECT_ID field for users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-

s/<username> endpoint.

The example below updates the user named User1 to add a description and move it to a different user

group:

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/admin/server_users/User1

Body:

{
"common.ALLTYPES_DESCRIPTION": "The user account of User1", "libadminsettings.USERMANAGER_
USER_GROUPNAME": "Operators"
}

Configuration API Service — Updating a User Group
To edit a user group via the Configuration API service, provide new values for the properties that require

updating.
Only members of the Administrators group can update user groups.
There is no PROJECT_ID field for user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the server_user-

groups/<groupname> endpoint.

The example below updates the user group named Operators to have permissions to modify server set-

tings, cause clients to be disconnected, and loading new runtime projects; it also updates the description of

the group:

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators

Body:

{
 "common.ALLTYPES_DESCRIPTION": "User group for standard operators",
 "libadminsettings.USERMANAGER_SERVER_MODIFY_SERVER_SETTINGS": true,
 "libadminsettings.USERMANAGER_SERVER_DISCONNECT_CLIENTS": true,
 "libadminsettings.USERMANAGER_SERVER_REPLACE_RUNTIME_PROJECT": true
}

Note: Group permissions for the administrator group are locked and cannot be modified by any user to

prevent an administrator from accidentally disabling a permission that could prevent administrators from

www. ptc.com

96

ThingWorx Kepware Edge

modifying any user permissions. Only users in the Administrator group can modify the permissions for

other groups.

Configuration API Service — Configuring User Group Project Permissions
All user groups contain a collection of project permissions. Each project permission corresponds to a spe-

cific permission applied when interacting with objects in the project. All permissions are always present

under a user group (and therefore cannot be created nor deleted). An individual project permission can be

granted or denied by updating that specific project permission under the desired User Group.
Only members of the Administrators group can update a user group’s project permissions.
There is no PROJECT_ID field for project permissions.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the project_per-

missions/<permission_name> endpoint.

The example below updates the user-created user group named Operators to grant permission to users of

that group to add, edit, and delete channels:

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators/project_per-
missions/Servermain Channel

Body:

{
 "libadminsettings.USERMANAGER_PROJECTMOD_ADD": true,
 "libadminsettings.USERMANAGER_PROJECTMOD_EDIT": true,
 "libadminsettings.USERMANAGER_PROJECTMOD_DELETE": true
}

Configuration API Service — Configuring Licensing Server
Parameters configuring the Licensing Server connection as well as various logging parameters, such as the

Event Log are configured under the admin endpoint.

Note: There is no PROJECT_ID field for admin permissions.

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/admin/

Supported Actions

HTTP(s) Verb Action

GET Retrieves a list of admin properties

PUT Updates the specified admin properties

Properties

Name Type Default Description

libadminsettings.LICENSING_

SERVER_PORT

Integer 7070 The port number used to

connect to license server for

non-TLSconnections

www. ptc.com

97

ThingWorx Kepware Edge

Name Type Default Description

libadminsettings.LICENSING_

SERVER_NAME

String " " Host name or IP address for

the license server (character

limit is 63 characters)

libadminsettings.LICENSING_

SERVER_ENDPOINT

String fne/bin/capability URL endpoint for the license

server

libadminsettings.LICENSING_

SERVER_ENABLE

Enable/Disable false Enable the connection to the

license server

libadminsettings.LICENSING_

CHECK_PERIOD_MINS

Integer 5 Time in minutes between

checks of the license state. A

license check occurs

whenever a feature in use

requires a license until it suc-

cessfully borrows one.

libadminsettings.LICENSING_

SERVER_SSL_PORT

Integer 1443 The port number used to

connect to License Server

for TLSconnections

libadminsettings.LICENSING_

SERVER_ALLOW_INSECURE_COMMS

Enable/Disable false Enable an insecure (non-TLS)

connection to the License

Server

libadminsettings.LICENSING_

SERVER_ALLOW_SELF_SIGNED_

CERTS

Enable/Disable false Enable use of self-signed cer-

tificates when establishing a

TLSconnection to the

license server. Self-signed

certificates are not secure

and should only be used for

testing.

libadminsettings.LICENSING_

CLIENT_ALIAS

String " " User-specified name used

for requesting license from

license server. Character

limit is 63 characters.

www. ptc.com

98

ThingWorx Kepware Edge

Configuration API Service — OPC UA Endpoint
While the majority of the OPC UA configuration is located under the Projects endpoint, the ua-endpoints are

configured under the admin endpoint:
See Also: Project Properties — OPC UA

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints

Supported Actions

HTTP(S) Verb Action

GET Retrieves a list of all UA endpoint objects

POST Creates a new UA endpoint

Endpoint:

https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints/<endpointName>

Supported Actions:

HTTP(S) Verb Action

GET Retrieves the specified UA endpoint

PUT Updates the specified UA endpoint

Properties

Name Type Required Default Description

common.ALLTYPES_NAME String Yes NA
Specifies the identity

of this object

common.ALLTYPES_DESCRIPTION String No ""

Lists available network

adapters found on the

system. Adapters

without assigned IP

address are listed as

disconnected.

libadminsettings.UACONFIGMANAGER_

ENDPOINT_ENABLE
Enable/Disable No True

Defines if the endpoint

is enabled or disabled

libadminsettings.UACONFIGMANAGER_

ENDPOINT_ADAPTER
String No "Default"

Specifies the network

adapter to which the

endpoint will be

bound. A list of net-

work adapters

installed on the sys-

tem is provided in the

endpoint Description

property.

The “Default” adapter

indicates that the end-

point can bind to any

adapter.

www. ptc.com

99

ThingWorx Kepware Edge

Name Type Required Default Description

Note: Network

adapters that do not

have a valid IPv4

address can be used

for configuring a UA

Endpoint; however, an

endpoint is only used

when there is a valid

IPv4 address during

startup. The server

needs to be rein-

itialized for endpoint

configurations to be

refreshed after con-

figuration changes are

made to the host’s net-

work adapters.

libadminsettings.UACONFIGMANAGER_

ENDPOINT_PORT
Integer No 49330

The port number to

which the endpoint

will be bound

libadminsettings.UACONFIGMANAGER_

ENDPOINT_URL
String No ""

The endpoint URL

(READONLY).

The property value is

generated based on

the selected network

adapter and port prop-

erty.

Note: The property

is blank when the spe-

cified network adapter

does not have a valid

IPv4 address.

libadminsettings.UACONFIGMANAGER_

ENDPOINT_SECURITY_NONE
Enable/Disable No False

The accepted end-

point security policy:

None: Endpoint

accepts insecure con-

nections

Note: {Insecure}

This setting is insecure

and not recom-

mended.

libadminsettings.UACONFIGMANAGER_

ENDPOINT_SECURITY_BASIC256_

SHA256

Enum No 2

The accepted end-

point security policy:

BASIC256_SHA256:

Endpoint accepts

BASIC256_SHA256

encrypted connections

www. ptc.com

100

ThingWorx Kepware Edge

Name Type Required Default Description

The value determines

the supported mes-

sage mode or disabled

if no message mode is

selected:

Enum=Disabled:0

Enum=Sign:1

Enum=Sign and

Encrypt:2

Enum=Sign; Sign and

Encrypt:3

libadminsettings.UACONFIGMANAGER_

ENDPOINT_SECURITY_BASIC128_RSA15
Enum No 0

The accepted end-

point security policy:

BASIC128_RSA15: End-

point accepts

BASIC128_RSA encryp-

ted connections.

The value determines

the supported mes-

sage mode or disabled

if no message mode is

selected:

Enum=Disabled:0

Enum=Sign:1

Enum=Sign and

Encrypt:2

Enum=Sign; Sign and

Encrypt:3

Note: {Deprecated}

This security policy is

deprecated.

libadminsettings.UACONFIGMANAGER_

ENDPOINT_SECURITY_BASIC256
Enum No 0

The accepted end-

point security policy:

BASIC256: Endpoint

accepts BASIC256

encrypted connections

The value determines

the supported mes-

sage mode or disabled

if no message mode is

selected:

Enum=Disabled:0

Enum=Sign:1

Enum=Sign and

Encrypt:2

Enum=Sign; Sign and

Encrypt:3

Note: {Deprecated}

www. ptc.com

101

ThingWorx Kepware Edge

Name Type Required Default Description

This security policy is

deprecated.

Note: A maximum of 100 OPC UA endpoints may be configured on a single instance of ThingWorx Kep-

ware Edge.

Configuration API Service — Creating a UA Endpoint
To create a UA endpoint via the Configuration API service, only a minimum set of properties are required; all

others are set to their default value.

To create a new UA endpoint, use a REST-based API tool such as Postman, Insomnia, or Curl and make a

POST request to the admin/ua_endpoints endpoint.

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints

Body:

{
 "common.ALLTYPES_NAME": "Endpoint1"
}

Configuration API Service — Updating a UA Endpoint
To update a UA endpoint via the Configuration API service, provide new values for the properties that

require updating.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the ua_end-

points/<endpoint> endpoint.

The example below updates the endpoint named Endpoint1 with a new port number and security policy:

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints/Endpoint1

Body:

{
"libadminsettings.UACONFIGMANAGER_ENDPOINT_PORT": 49321,
"libadminsettings.UACONFIGMANAGER_ENDPOINT_SECURITY_BASIC256": 1
}

Configuration API Service — Removing a UA Endpoint
To delete an existing UA endpoint, make a DELETE request to the ua_endpoints/<endpoint_name> end-

point. A request body is not required:

Endpoint (DELETE):

https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints/Endpoint1

Body:

{
}

www. ptc.com

102

ThingWorx Kepware Edge

www. ptc.com

103

ThingWorx Kepware Edge

Connecting with an OPC UA Client Using UaExpert
An application like Unified Automation's UaExpert can be used to verify the flow of data from devices

through ThingWorx Kepware Edge.

The UaExpert tool is designed to be a general-purpose OPC UA test client; it is not meant for production.

Below is a walk-through of creating a secure user with specific data access rights to read and write tags.

Default OPC UA Server Sett ings

l URL: opc.tcp://<hostname>:<port>

l Port: 49330

l Security Policies: Basic256Sha256

l Authentication: (Enabled by default)

l Server Interface Enabled: True

Creating a User Group and User with Read / Write / Browse Access

1. Install ThingWorx Kepware Edge with default settings.

2. Add a new user group with data access and browse permissions via the Config API:

Endpoint (POST):

https://<hostname>:<port>/config/v1/admin/server_usergroups

Body:

{
"common.ALLTYPES_NAME": "Group1",
"libadminsettings.USERMANAGER_GROUP_ENABLED": true,
"libadminsettings.USERMANAGER_IO_TAG_READ": true,
"libadminsettings.USERMANAGER_IO_TAG_WRITE": true,
"libadminsettings.USERMANAGER_BROWSE_BROWSENAMESPACE": true
}

3. Add a new user with a password to the group created in above.

Endpoint (POST):

https://<hostname>:<port>/config/v1/admin/server_users

Body:

{
"common.ALLTYPES_NAME": "User1",
"libadminsettings.USERMANAGER_USER_GROUPNAME": "Group1",
"libadminsettings.USERMANAGER_USER_ENABLED": true,
"libadminsettings.USERMANAGER_USER_PASSWORD": "<insert_password>"
}

Adding Server Connection to UaExpert

1. Download, install, and launch UaExpert from Unified Automation.

2. Select the Server | Add drop-down menu option.

www. ptc.com

104

ThingWorx Kepware Edge

3. In the Add Server configuration window, double-click the Add Server option located under Custom

Discovery.

4. Enter the URL and port for the machine to connect. For example: “opc.tcp://<hostname>:49330”.

5. A new server connection is added in the Custom Discovery group.

6. Expand the new server connection for a list of valid endpoints. These are the available security

options for the server. In this example, only one option is available.

7. Choose the Basic256Sha256 – Sign & Encrypt security option.

8. Set the user name and password using the settings used in the creation of the user above.

9. Check the Store checkbox to save the password or leave it unchecked and to be prompted for a pass-

word when connecting to the server.

10. Click OK to close the window.

11. Verify that "ThingWorxKepwareEdge/UA" appears under Servers.

12. Right-click on the server and select Connect .

13. A certificate validation window appears.

14. Click Trust Server Certificate for the client to trust the ThingWorxKepwareEdge/UA server.

15. Click Continue. There is an error until the server trusts the client certificate.

16. To trust the client certificate on the server, these instructions use the edge_admin tool (see the server

help for other methods).

17. The client certificate’s thumbprint is required to trust it. To get the thumbprint, use the edge_admin

tool to list the certificates in the UA Server trust store:

$ <installation_directory>/edge_admin manage-truststore --list uaserver

18. The output of the list shows a thumbprint, a status, and a common name of the certificate.

The UaExpert certificate will be Rejected. Use the thumbprint to trust the certificate.

$ <installation_directory>/edge_admin manage-truststore --trust=
<certificate_thumbprint> uaserver

19. List the certificates of the UA Server to verify that the certificate is now trusted.

20. In UaExpert, right-click on the server and click Connect . The connection should succeed and the

Address Space window in the lower right pane should be populated, which enables browsing for and

adding tags.

21. Add a tag in the data access view to verify that the user has read access.

22. Change the value of the tag to verify that the user has write access.

www. ptc.com

105

ThingWorx Kepware Edge

Event Log Messages

The following information concerns messages posted to the Event Log. Server help contains many common

messages, so should also be searched. Generally, the type of message (informational, warning) and

troubleshooting information is provided whenever possible.

Please refer to the Running in a Container for information about additional Event Log features using ThingWorx

Kepware Edge in a container.

The Config API SSL certificate contains a bad signature.

Error Type:
Error

The Config API is unable to load the SSL certificate.

Error Type:
Error

Unable to start the Config API Service. Possible problem binding to port.

Error Type:
Error

Possible Cause:
The HTTP or HTTPSport specified in the Config API settings is already bound by another application.

Possible Solution:
Change the configuration of the Config API or blocking application to use a different port, or stop the applic-

ation blocking the port.

The Config API SSL certificate has expired.

Error Type:
Warning

The Config API SSL certificate is self-signed.

Error Type:
Warning

The configured version of TLS for the Configuration API is no longer con-
sidered secure. It is recommended that only TLS 1.2 or higher is used.

Error Type:
Warning

Configuration API started without SSL on port <port number>.

Error Type:

www. ptc.com

106

ThingWorx Kepware Edge

Informational

Configuration API started with SSL on port <port number>.

Error Type:
Informational

The <name> device driver was not found or could not be loaded.

Error Type:
Error

Possible Cause:

1. If the project has been moved from one PC to another, the required drivers may have not been

installed yet.

2. The specified driver may have been removed from the installed server.

3. The specified driver may be the wrong version for the installed server version.

Possible Solution:

1. Re-run the server install and add the required drivers.

2. Re-run the server install and re-install the specified drivers.

3. Ensure that a driver has not been placed in the installed server directory (which is out of sync with

the server version).

Unable to load the '<name>' driver because more than one copy exists
('<name>' and '<name>'). Remove the conflict ing driver and restart the
application.

Error Type:
Error

Possible Cause:
Multiple versions of the driver DLL exist in the driver's folder in the server.

Possible Solution:

1. Re-run the server install and re-install the specified drivers.

2. Contact Technical support and verify the correct version. Remove the driver that is invalid and restart

the server and load the project.

Invalid project file.

Error Type:
Error

www. ptc.com

107

ThingWorx Kepware Edge

Unable to add channel due to driver-level failure.

Error Type:
Error

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Unable to add device due to driver-level failure.

Error Type:
Error

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Version mismatch.

Error Type:
Error

Unable to load project <name>:

Error Type:
Error

Possible Cause:

1. The project was created using a version of the server that contained a feature or configuration that

has been obsoleted and no longer exists in the server that is trying to load it.

2. The project was created in a server version that is not compatible with the version trying to load it.

3. The project file is corrupt.

Possible Solution:
Save project as JSON(V6), remove the unsupported feature that is defined in the project file and then save

and load the updated project file into the server that is trying to load it.

 Note:
Every attempt is made to ensure backwards compatibility in the server so that projects created in older ver-

sions may be loaded in newer versions. However, since new versions of the server and driver may have

properties and configurations that do not exist in older versions, it may not be possible to open or load an

older project in a newer version.

www. ptc.com

108

ThingWorx Kepware Edge

Unable to back up project file to '<path>' [<reason>]. The save operation
has been aborted. Verify the destination file is not locked and has
read/write access. To continue to save this project without a backup,
deselect the backup option under Tools | Options | General and re-save
the project.

Error Type:
Error

Possible Cause:

1. The destination file may be not locked by another application.

2. The destination file or the folder where it is located does not allow read/write access.

Possible Solution:

1. Ensure that the destination file is not locked by another application, unlock the file, or close the

application.

2. Ensure that the destination file and with the folder where it is located allow read and write access.

<feature name> was not found or could not be loaded.

Error Type:
Error

Possible Cause:
The feature is not installed or is not in the expected location.

Possible Solution:
Re-run the server install and select the specified feature for installation.

Unable to save project file <name>:

Error Type:
Error

Device discovery has exceeded <count> maximum allowed devices. Limit
the discovery range and try again.

Error Type:
Error

<feature name> is required to load this project.

Error Type:
Error

www. ptc.com

109

ThingWorx Kepware Edge

Unable to load the project due to a missing object. | Object = '<object>'.

Error Type:
Error

Possible Cause:
Editing the JSON project file may have left it in an invalid state.

Possible Solution:
Revert any changes made to the JSON project file.

Invalid Model encountered while trying to load the project. | Device =
'<device>'.

Error Type:
Error

Possible Cause:
The specified device has a model that is not supported in this version of the server.

Possible Solution:
Open this project with a newer version of the server.

Cannot add device. A duplicate device may already exist in this channel.

Error Type:
Error

Auto-generated tag '<tag>' already exists and will not be overwritten.

Error Type:
Warning

Possible Cause:
Although the server is regenerating tags for the tag database, it has been set not to overwrite tags that

already exist.

Possible Solution:
If this is not the desired action, change the setting of the "On Duplicate Tag" property for the device.

Unable to generate a tag database for device '<device>'. The device is not
responding.

Error Type:
Warning

Possible Cause:

1. The device did not respond to the communications request.

2. The specified device is not on, not connected, or in error.

www. ptc.com

110

ThingWorx Kepware Edge

Possible Solution:

1. Verify that the device is powered on and that the PC is on (so that the server can connect to it).

2. Verify that all cabling is correct.

3. Verify that the device IDs are correct.

4. Correct the device failure and retry the tag generation.

Unable to generate a tag database for device '<device>':

Error Type:
Warning

Possible Cause:
The specified device is not on, not connected, or in error.

Possible Solution:
Correct the device failure and retry the tag generation.

Auto generation produced too many overwrites, stopped posting error
messages.

Error Type:
Warning

Possible Cause:

1. To keep from filling the error log, the server has stopped posting error messages on tags that cannot

be overwritten during automatic tag generation.

2. Reduce the scope of the automatic tag generation or eliminate problematic tags.

Failed to add tag '<tag>' because the address is too long. The maximum
address length is <number>.

Error Type:
Warning

Unable to use network adapter '<adapter>' on channel '<name>'. Using
default network adapter.

Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC. The server uses the default network

adapter.

Possible Solution:

www. ptc.com

111

ThingWorx Kepware Edge

Select the network adapter to use for the PC and save the project.

 See Also:
Channel Properties - Network Interface

Rejecting attempt to change model type on a referenced device '<channel
device>'.

Error Type:
Warning

Validation error on '<tag>': <error>.

Error Type:
Warning

Possible Cause:
An attempt was made to set invalid parameters on the specified tag.

Unable to load driver DLL '<name>'.

Error Type:
Warning

Possible Cause:
The specified driver could not be loaded when the project started.

Possible Solution:

1. Verify the version of the installed driver. Check the website to see if the driver version is correct for

the server version installed.

2. If the driver corrupted, delete it and re-run the server install.

 Note:
This problem is usually due to corrupted driver DLLs or drivers that are not compatible with the server ver-

sion.

Validation error on '<tag>': Invalid scaling parameters.

Error Type:
Warning

Possible Cause:
An attempt was made to set invalid scaling parameters on the specified tag.

 See Also:
Tag Properties - Scaling

www. ptc.com

112

ThingWorx Kepware Edge

Device '<device>' has been automatically demoted.

Error Type:
Warning

Possible Cause:
Communications with the specified device failed. The device has been demoted from the poll cycle.

Possible Solution:

1. If the device fails to reconnect, investigate the reason behind the communications loss and correct it.

2. To stop the device from being demoted, disable Auto-Demotion.

 See Also:
Auto-Demotion

Unable to load plug-in DLL '<name>'.

Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is com-

patible with the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

 Note:
This problem is usually due to corrupted plug-in DLLs or plug-ins that are not compatible with the server ver-

sion.

Unable to load driver DLL '<name>'. Reason:

Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is com-

patible with the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

www. ptc.com

113

ThingWorx Kepware Edge

Unable to load plug-in DLL '<name>'. Reason:

Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is com-

patible with the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

The specified network adapter is invalid on channel '%1' | Adapter = '%2'.

Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC.

Possible Solution:
Select the network adapter to use for the PC and save the project.

 See Also:
Channel Properties - Network Interface

No tags were created by the tag generation request. See the event log for
more information.

Error Type:
Warning

Possible Cause:
The driver produced no tag information but declined to provide a reason why.

Possible Solution:
Event log may contain information that will help troubleshoot the issue.

<Product> device driver loaded successfully.

Error Type:
Informational

Start ing <name> device driver.

Error Type:
Informational

www. ptc.com

114

ThingWorx Kepware Edge

Stopping <name> device driver.

Error Type:
Informational

<Product> device driver unloaded from memory.

Error Type:
Informational

Simulation mode is enabled on device '<device>'.

Error Type:
Informational

Simulation mode is disabled on device '<device>'.

Error Type:
Informational

Attempting to automatically generate tags for device '<device>'.

Error Type:
Informational

Completed automatic tag generation for device '<device>'.

Error Type:
Informational

A client application has enabled auto-demotion on device '<device>'.

Error Type:
Informational

Possible Cause:
A client application connected to the server has enabled or disabled Auto Demotion on the specified device.

Possible Solution:
To restrict the client application from doing this, disable its ability to write to system-level tags through the

User Manager.

 See Also:
User Manager

Data collection is enabled on device '<device>'.

Error Type:
Informational

Data collection is disabled on device '<device>'.

Error Type:

www. ptc.com

115

ThingWorx Kepware Edge

Informational

Object type '<name>' not allowed in project.

Error Type:
Informational

Created backup of project '<name>' to '<path>'.

Error Type:
Informational

Device '<device>' has been auto-promoted to determine if com-
munications can be re-established.

Error Type:
Informational

Failed to load library: <name>.

Error Type:
Informational

Failed to read build manifest resource: <name>.

Error Type:
Informational

A client application has disabled auto-demotion on device '<device>'.

Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>.

Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>, Tags
overwritten = <count>.

Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>, Tags
not overwritten = <count>.

Error Type:
Informational

www. ptc.com

116

ThingWorx Kepware Edge

Access to object denied. | User = '<account>', Object = '<object path>', Per-
mission =

Error Type:
Security

User moved from user group. | User = '<name>', Old group = '<name>',
New group = '<name>'.

Error Type:
Security

User group has been created. | Group = '<name>'.

Error Type:
Security

User added to user group. | User = '<name>', Group = '<name>'.

Error Type:
Security

User group has been renamed. | Old name = '<name>', New name =
'<name>'.

Error Type:
Security

Permissions definit ion has changed on user group. | Group = '<name>'.

Error Type:
Security

User has been renamed. | Old name = '<name>', New name = '<name>'.

Error Type:
Security

User has been disabled. | User = '<name>'.

Error Type:
Security

User group has been disabled. | Group = '<name>'.

Error Type:
Security

User has been enabled. | User = '<name>'.

Error Type:
Security

www. ptc.com

117

ThingWorx Kepware Edge

User group has been enabled. | Group = '<name>'.

Error Type:
Security

Password for user has been changed. | User = '<name>'.

Error Type:
Security

The endpoint '<url>' has been added to the UA Server.

Error Type:
Security

The endpoint '<url>' has been removed from the UA Server.

Error Type:
Security

The endpoint '<url>' has been disabled.

Error Type:
Security

The endpoint '<url>' has been enabled.

Error Type:
Security

User has been deleted. | User = '<name>'.

Error Type:
Security

Group has been deleted. | Group = '<name>'.

Error Type:
Security

Connection to ThingWorx failed. | Platform = <host:port resource>, error =
<reason>.

Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform could not be established.

Possible Solution:

www. ptc.com

118

ThingWorx Kepware Edge

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryp-

tion.

Error adding item. | Item name = '<item name>'.

Error Type:
Error

Possible Cause:
The item <TagName> could not be added to the server for scanning.

Possible Solution:

1. Verify that the tag exists on a valid channel and device.

2. Verify that the tag may be read using another client, such as the QuickClient.

Failed to trigger the autobind complete event on the platform.

Error Type:
Error

Possible Cause:
The ThingWorx connection was terminated before the autobind process completed.

Possible Solution:
Wait to reinitialize or alter the ThingWorx project properties until after all autobinds have completed.

Connection to ThingWorx failed for an unknown reason. | Platform =
<host:port resource>, error = <error>.

Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform failed.

Possible Solution:

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryp-

tion.

4. Contact technical support with the error code and an application report.

www. ptc.com

119

ThingWorx Kepware Edge

One or more value change updates lost due to insufficient space in the
connection buffer. | Number of lost updates = <count>.

Error Type:
Error

Possible Cause:
Data is being dropped because the ThingWorx Platform is not available or too much data is being collected

by the instance.

Possible Solution:

1. Verify that some data is updating on the ThingWorx Platform and that the platform is reachable.

2. Slow down the tag scan rate to move less data into the ThingWorx Platform.

Item failed to publish; mult idimensional arrays are not supported. | Item
name = '%s'.

Error Type:
Error

Possible Cause:
The item <ItemName> references a tag whose data is a multidimensional array.

Possible Solution:
Modify the item to reference a tag with a supported datatype.

Store and Forward datastore unable to store data due to full disk.

Error Type:
Error

Possible Cause:
The disk being used to store updates has been filled to within 500 MiB.

Possible Solution:

1. Free up some space on the disk being used to store updates.

2. Delete the data stored in the datastore using the _DeleteStoredData system tag.

3. Replace the disk being used to store data with a larger disk.

Store and Forward datastore size limit reached.

Error Type:
Error

Possible Cause:
The ThingWorx Interface is not able to send updates to the platform as fast as the updates are being gen-

erated.

www. ptc.com

120

ThingWorx Kepware Edge

Possible Solution:

1. Verify that the ThingWorx Interface can connect to the ThingWorx Platform.

2. Reduce the rate of updates being collected by the ThingWorx Interface.

Connection to ThingWorx was closed. | Platform = <host:port resource>.

Error Type:
Warning

Possible Cause:
The connection was closed. The service was stopped or the interface is no longer able to reach the platform.

Possible Solution:

1. Verify that the native interface is enabled in the project properties.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

Failed to autobind property. | Name = '<property name>'.

Error Type:
Warning

Possible Cause:
A property with this name already exists under this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

Failed to restart Thing. | Name = '<thing name>'.

Error Type:
Warning

Possible Cause:
When the AddItem service is complete, a restart service is called on the Thing. This allows the Composer to

visualize the changes. Data changes are sent to the platform even when this error has been presented.

Possible Solution:
Relaunch the Composer to restart the Thing.

Write to property failed. | Property name = '<name>', reason = <reason>.

Error Type:
Warning

www. ptc.com

121

ThingWorx Kepware Edge

Possible Cause:
Unable to write to a tag due to a conversion issue.

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and

consistent.

2. Verify that the value to be written is within the appropriate range for the data type.

ThingWorx request to add item failed. The item was already added. | Item
name = '<name>'.

Error Type:
Warning

Possible Cause:
The tag had already been added to this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

ThingWorx request to remove item failed. The item doesn't exist. | Item
name = '<name>'.

Error Type:
Warning

Possible Cause:
The tag was already removed from the Thing or no such tag exists.

Possible Solution:
If the tag still shows under the properties of the Thing, delete that property in the ThingWorx Composer.

The server is configured to send an update for every scan, but the push
type of one or more properties are set to push on value change only. |
Count = <count>.

Error Type:
Warning

Possible Cause:
The push type in the ThingWorx Platform is set to change only for some items. This push type only updates

data on the platform when the data value changes.

Possible Solution:
To use the Send Every Scan option, set this value to Always.

www. ptc.com

122

ThingWorx Kepware Edge

The push type of one or more properties are set to never push an update
to the platform. | Count = <count>.

Error Type:
Warning

Possible Cause:
The push type in the ThingWorx Platform is set to Never for some items, which prevents any data changes

from being automatically updated on the platform.

Possible Solution:
If this is not the desired behavior, change the push type in the ThingWorx Platform.

ThingWorx request to remove an item failed. The item is bound and the
force flag is false. | Item name = '<name>'.

Error Type:
Warning

Possible Cause:
The RemoveItems service could not remove the item because it is bound to a property and the Force Flag is

not set to True.

Possible Solution:
Re-run the service, explicitly calling the ForceRemove flag as True.

Write to property failed. | Thing name = '<name>', property name =
'<name>', reason = <reason>.

Error Type:
Warning

Possible Cause:
Unable to write to a tag due to a conversion issue.

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and

consistent.

2. Verify that the value to be written is within the appropriate range for the data type.

Error pushing property updates to thing. | Thing name = '<name>'.

Error Type:
Warning

Possible Cause:
Property updates for the named thing were not successfully published to the platform.

www. ptc.com

123

ThingWorx Kepware Edge

Possible Solution:
Check the platform's log for an indication of why property updates are failing, such as a permissions issue.

Unable to connect or attach to Store and Forward datastore. Using in-
memory store. | In-memory store size (updates) = <count>.

Error Type:
Warning

Possible Cause:

1. The Store and Forward service is not running.

2. The service does not have access to the specified storage directory.

3. There is a port conflict that prevents the Store and Forward service from accepting connections.

Possible Solution:

1. Restart the server runtime.

2. Verify the specified storage location is accessible by the Store and Forward service.

3. Resolve the port conflict by configuring a new port for Store and Forward in the server admin-

istration.

Store and Forward datastore reset due to file IO error or datastore cor-
ruption.

Error Type:
Warning

Possible Cause:

1. The datastore was corrupted by a user or another program.

2. The datastore was corrupted by a hardware error.

3. An error occurred while attempting to read data from disk, possibly due to a hardware issue.

Possible Solution:

1. Use User Access Controls to limit the which users have access to the datastore location.

2. Move the datastore to another disk.

Unable to apply sett ings change init iated by the Platform. Permission
Denied. | User = '<user name>'.

Error Type:
Warning

Possible Cause:

www. ptc.com

124

ThingWorx Kepware Edge

The user group "ThingWorx Interface Users" has the permissions "Project Modification:Servermain.Project"

set to "Deny".

Possible Solution:
Set the permission "Project Modification:Servermain.Project" on the user group "ThingWorx Interface

Users" to "Allow".

Configuration Transfer to ThingWorx Platform failed.

Error Type:
Warning

Configuration Transfer to ThingWorx Platform failed. | Reason =
'<reason>'

Error Type:
Warning

Possible Cause:

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

Failed to delete stored updates in the Store and Forward datastore.

Error Type:
Warning

Possible Cause:
A hardware or operating system error prevented the operation from completing.

Possible Solution:
Restart the machine and try again.

Configuration Transfer from ThingWorx Platform failed.

Error Type:
Warning

Configuration Transfer from ThingWorx Platform failed. | Reason =
'<reason>'

Error Type:
Warning

Possible Cause:

www. ptc.com

125

ThingWorx Kepware Edge

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

Check that your Application Key is properly formatted and valid.

Error Type:
Warning

Possible Cause:
The connection to the ThingWorx Platform failed due to bad authorization.

Possible Solution:

1. Verify that application key has not expired.

2. Verify that application key is properly formatted.

3. Verify that application key was inputted correctly.

The maximum number of configured Industrial Things has been reached,
count = <number>. Consider increasing the value of the Max Thing Count.

Error Type:
Warning

Possible Cause:
Max Thing Count is configured too low.

Possible Solution:
Verify that the Max Thing Count property is greater than the configured number of bound things.

Connected to ThingWorx. | Platform = <host:port resource>, Thing name =
'<name>'.

Error Type:
Informational

Possible Cause:
A connection was made to the ThingWorx Platform.

Reinit ializing ThingWorx connection due to a project sett ings change ini-
t iated from the platform.

Error Type:
Informational

Possible Cause:

www. ptc.com

126

ThingWorx Kepware Edge

When using the SetConfiguration service, this message informs an operator viewing the server event log

that a change was made.

Dropping pending autobinds due to interface shutdown or reinit ialize. |
Count = <count>.

Error Type:
Informational

Possible Cause:
A server shutdown or initialization was called while auto-binding was in process from an AddItems service

call.

Possible Solution:
Any Items not auto bound need to be manually created and bound in the ThingWorx Composer.

Serviced one or more autobind requests. | Count = <count>.

Error Type:
Informational

Possible Cause:
Part of the AddItems service is the autobind action. This action may take more time than the actual adding

of the item. This message alerts the operator to how many items have been autobound.

Reinit ializing ThingWorx connection due to a project sett ings change ini-
t iated from the Configuration API.

Error Type:
Informational

Possible Cause:
When using the Configuration API, this message informs an operator viewing the server event log that a

change was made.

Resumed pushing property updates to thing: the error condit ion was
resolved. | Thing name = '<name>'.

Error Type:
Informational

Configuration transfer from ThingWorx init iated.

Error Type:
Informational

Configuration transfer from ThingWorx aborted.

Error Type:
Informational

www. ptc.com

127

ThingWorx Kepware Edge

Init ialized Store and Forward datastore. | Datastore location: '<location>'.

Error Type:
Informational

Possible Cause:
ThingWorx Native Interface is configured to use Store and Forward.

Successfully deleted stored data from the Store and Forward datastore.

Error Type:
Informational

Possible Cause:
A client used the _DeleteStoredData system tag to delete data cached for ThingWorx Interface in the Store

and Forward datastore.

Store and Forward mode changed. | Forward Mode = '<mode>'.

Error Type:
Informational

Possible Cause:
The _ForwardMode system tag was written to by a connected client and the value of the write caused a set-

tings change.

Init ialized Store and Forward datastore. | Forward Mode = '<mode>' |
Datastore location = '<location>'.

Error Type:
Informational

Possible Cause:
ThingWorx Native Interface is configured to use Store and Forward.

Missing server instance certificate '<cert location>'. Please use the OPC UA
Configuration Manager to reissue the certificate.

Error Type:
Error

Failed to import server instance cert: '<cert location>'. Please use the OPC
UA Configuration Manager to reissue the certificate.

Error Type:
Error

Possible Cause:

www. ptc.com

128

ThingWorx Kepware Edge

1. The file containing the server instance certificate does not exist or is inaccessible.

2. Certificate decryption failed.

Possible Solution:

1. Verify the file references a valid instance certificate to which the user has permissions.

2. Import a new certificate.

3. Re-issue the certificate to refresh the encryption.

The UA server certificate is expired. Please use the OPC UA Configuration
Manager to reissue the certificate.

Error Type:
Error

Possible Cause:
The validity period of the certificate is before the current system date.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

A socket error occurred listening for client connections. | Endpoint URL =
'<endpoint URL>', Error = <error code>, Details = '<description>'.

Error Type:
Error

Possible Cause:
The endpoint socket returned an error while listening for client connections.

Possible Solution:
Note the details in the error message to diagnose the problem.

The UA Server failed to register with the UA Discovery Server. | Endpoint
URL: '<endpoint url>'.

Error Type:
Error

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to register the UA Server with the UA Discovery Server could not complete in the expec-

ted manner.

www. ptc.com

129

ThingWorx Kepware Edge

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

Unable to start the UA server due to certificate load failure.

Error Type:
Error

Possible Cause:

1. The UA Server application instance certificate validity period occurs before the current system date.

2. The file containing the server instance certificate does not exist or is inaccessible.

3. Certificate decryption failed.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

3. Verify the file references a valid instance certificate to which the user has permissions.

4. Re-issue the certificate to refresh the encryption.

Failed to load the UA Server endpoint configuration.

Error Type:
Error

Possible Cause:
The endpoint configuration file is corrupt or doesn't exist.

Possible Solution:
Re-configure the UA Endpoint configuration and reinitialize the server.

The UA Server failed to unregister from the UA Discovery Server. | End-
point URL: '<endpoint url>'.

Error Type:
Warning

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to unregister the UA Server from the UA Discovery Server could not complete in the

expected manner.

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

www. ptc.com

130

ThingWorx Kepware Edge

The UA Server failed to init ialize an endpoint configuration. | Endpoint
Name: '<name>'.

Error Type:
Warning

Possible Cause:
The endpoint is configured to use a network adapter that does not have a valid ipv4 address.

Possible Solution:

1. Re-configure the network adapter property with an adapter that has a valid ipv4 address.

2. Restart the runtime to refresh the endpoint configurations.

The UA Server successfully registered with the UA Discovery Server. | End-
point URL: '<endpoint url>'.

Error Type:
Informational

The UA Server successfully unregistered from the UA Discovery Server. |
Endpoint URL: '<endpoint url>'.

Error Type:
Informational

Com port is in use by another application. | Port = '<port>'.

Error Type:
Error

Possible Cause:
The serial port assigned to a device is being used by another application.

Possible Solution:

1. Verify that the correct port has been assigned to the channel.

2. Verify that only one copy of the current project is running.

Unable to configure com port with specified parameters. | Port =
COM<number>, OS error = <error>.

Error Type:
Error

Possible Cause:
The serial parameters for the specified COM port are not valid.

Possible Solution:

www. ptc.com

131

ThingWorx Kepware Edge

Verify the serial parameters and make any necessary changes.

Driver failed to init ialize.

Error Type:
Error

Unable to allocate thread resource. Please check the memory usage of the
application.

Error Type:
Error

Possible Cause:
The server process has no resources available to create new threads.

Possible Solution:
Each tag group consumes a thread. The typical limit for a single process is about 2000 threads. Reduce the

number of tag groups in the project.

Com port does not exist. | Port = '<port>'.

Error Type:
Error

Possible Cause:
The specified COM port is not present on the target computer.

Possible Solution:
Verify that the proper COM port is selected.

Error opening com port. | Port = '<port>', OS error = <error>.

Error Type:
Error

Possible Cause:
The specified COM port could not be opened due an internal hardware or software problem on the target

computer.

Possible Solution:
Verify that the COM port is functional and may be accessed by other applications.

Connection failed. Unable to bind to adapter. | Adapter = '<name>'.

Error Type:
Error

Possible Cause:

www. ptc.com

132

ThingWorx Kepware Edge

Since the specified network adapter cannot be located in the system device list, it cannot be bound to for

communications. This can occur when a project is moved from one PC to another (and when the project spe-

cifies a network adapter rather than using the default). The server reverts to the default adapter.

Possible Solution:
Change the Network Adapter property to Default (or select a new adapter), save the project, and retry.

Winsock shut down failed. | OS error = <error>.

Error Type:
Error

Winsock init ialization failed. | OS error = <error>.

Error Type:
Error

Possible Solution:

1. The underlying network subsystem is not ready for network communication. Wait a few seconds and

restart the driver.

2. The limit on the number of tasks supported by the Windows Sockets implementation has been

reached. Close one or more applications that may be using Winsock and restart the driver.

Winsock V1.1 or higher must be installed to use this driver.

Error Type:
Error

Possible Cause:
The version number of the Winsock DLL found on the system is older than 1.1.

Possible Solution:
Upgrade Winsock to version 1.1 or higher.

Socket error occurred binding to local port. | Error = <error>, Details =
'<information>'.

Error Type:
Error

Device is not responding.

Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communication parameters for the connection are incorrect.

www. ptc.com

133

ThingWorx Kepware Edge

3. The named device may have been assigned an incorrect device ID.

4. The response from the device took longer to receive than allowed by the Request Timeout device set-

ting.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

3. Verify that the device ID for the named device matches that of the actual device.

4. Increase the Request Timeout setting to allow the entire response to be handled.

Device is not responding. | ID = '<device>'.

Error Type:
Warning

Possible Cause:

1. The network connection between the device and the host PC is broken.

2. The communication parameters configured for the device and driver do not match.

3. The response from the device took longer to receive than allowed by the Request Timeout device set-

ting.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

3. Increase the Request Timeout setting to allow the entire response to be handled.

Serial communications error on channel. | Error mask = <mask>.

Error Type:
Warning

Possible Cause:

1. The serial connection between the device and the host PC is broken.

2. The communications parameters for the serial connection are incorrect.

Possible Solution:

1. Investigate the error mask code and the related information.

2. Verify the cabling between the PC and the PLC device.

3. Verify that the specified communication parameters match those of the device.

www. ptc.com

134

ThingWorx Kepware Edge

 See Also:
Error Mask Codes

Invalid array size detected writ ing to tag <device name>.<address>.

Error Type:
Warning

Possible Cause:
Client trying to write before being updated.

Possible Solution:
Perform a read on the array before attempting a write.

Unable to write to address on device. | Address = '<address>'.

Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Items on this page may not be changed while the driver is processing tags.

Error Type:
Warning

Possible Cause:
An attempt was made to change a channel or device configuration while data clients were connected to the

server and receiving data from the channel/device.

Possible Solution:
Disconnect all data clients from the server before making changes.

Specified address is not valid on device. | Invalid address = '<address>'.

Error Type:

www. ptc.com

135

ThingWorx Kepware Edge

Warning

Possible Cause:
A tag address has been assigned an invalid address.

Possible Solution:
Modify the requested address in the client application.

Address '<address>' is not valid on device '<name>'.

Error Type:
Warning

This property may not be changed while the driver is processing tags.

Error Type:
Warning

Unable to write to address '<address>' on device '<name>'.

Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Socket error occurred connecting. | Error = <error>, Details = '<inform-
ation>'.

Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy

when appropriate.

www. ptc.com

136

ThingWorx Kepware Edge

Socket error occurred receiving data. | Error = <error>, Details = '<inform-
ation>'.

Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy

when appropriate.

Socket error occurred sending data. | Error = <error>, Details = '<inform-
ation>'.

Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy

when appropriate.

Socket error occurred checking for readability. | Error = <error>, Details =
'<information>'.

Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy

when appropriate.

Socket error occurred checking for writability. | Error = <error>, Details =
'<information>'.

Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:

www. ptc.com

137

ThingWorx Kepware Edge

Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy

when appropriate.

%s |

Error Type:
Informational

<Name> Device Driver '<name>'

Error Type:
Informational

Could not load item state data. Reason: <reason>.

Error Type:
Warning

Possible Cause:

1. The driver could not load the item state data for the specified reason.

2. Corrupt data files.

3. Inadequate disk space.

4. Invalid drive in path.

5. Deleted or renamed data files.

Possible Solution:
Solution depends upon the reason given in the error message. In the case of file corruption or deletion, pre-

vious state data is lost.

Could not save item state data. Reason: <reason>.

Error Type:
Warning

Possible Cause:

1. The driver could not save the item state data for the specified reason.

2. Corrupt data files.

3. Inadequate disk space.

4. Invalid drive in path.

5. Deleted or renamed data files.

Possible Solution:
Solution depends upon the reason given in the error message. In the case of file corruption or deletion, pre-

vious state data is lost.

www. ptc.com

138

ThingWorx Kepware Edge

Feature '<name>' is not licensed and cannot be used.

Error Type:
Error

Possible Cause:

1. The named feature of the product has not been purchased and licensed.

2. The product license has been removed or trusted storage has become corrupted.

Possible Solution:

1. Download or install the software feature and purchase license.

2. Consult the Licensing User Manual for instructions on activating emergency licenses.

3. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

Failed to load the license interface, possibly due to a missing third-party
dependency. Run in Time Limited mode only.

Error Type:
Error

Possible Cause:
One or more required OEM licensing component is missing the system.

Possible Solution:
Contact a sales or support representative for assistance.

 See Also:
License Utility Help

Failed to init ialize licensing. Unable to load the demo file license (Error
%1!x!).

Error Type:
Error

Possible Cause:
The demo license file is not valid

Failed to init ialize licensing. Unable to init ialize the licensing identity
(Error %1!x!).

Error Type:
Error

www. ptc.com

139

ThingWorx Kepware Edge

Failed to init ialize licensing. Unable to init ialize trusted storage (Error
%1!x!).

Error Type:
Error

Possible Cause:

1. The system identifier has changed

2. Trusted storage has been tampered with

Failed to init ialize licensing. Unable to init ialize the licensing publisher
(Error %1!x!).

Error Type:
Error

Failed to init ialize licensing. Unable to establish system time interface
(Error %1!x!).

Error Type:
Error

Failed to init ialize licensing (Error <error code>)

Error Type:
Error

Failed to process the activation response from the license server (Error:
%x, Process Codes: %s, Message Codes: %s)

Error Type:
Error

Failed to create an activation request (Error %x)

Error Type:
Error

Request failed with license server.

Error Type:
Error

Time Limited mode has expired.

Error Type:
Warning

Possible Cause:

www. ptc.com

140

ThingWorx Kepware Edge

1. The product has not been purchased and licensed during Time Limited mode.

2. The server started in Time Limited mode with the specified time remaining in Time Limited mode.

Possible Solution:

1. If evaluating the server, no action needs to be taken.

2. If this is a production machine, activate the product licenses for the installed components before

Time Limited mode expires.

3. Purchase a license for all features of the product that will be used.

4. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

Maximum device count exceeded for the lite version '<number>' license.
Edit project and restart the server.

Error Type:
Warning

Possible Cause:
The specified driver was activated with a lite license, which limits the number of devices that can be con-

figured.

Possible Solution:

1. Verify the number of devices authorized by the license and correct the project design to reduce the

device count.

2. If more devices are needed or the lite activation is incorrect, contact a sales representative about

upgrading the license to support more devices.

 See Also:
License Utility Help

Maximum runtime tag count exceeded for the lite version '<number>'
license. Edit client project and restart the server.

Error Type:
Warning

Possible Cause:
The specified driver was activated with a lite license, which limits the number of tags that can be configured.

Possible Solution:

www. ptc.com

141

ThingWorx Kepware Edge

1. Verify the number of tags authorized by the license and correct the project design to reduce the tag

count.

2. If more tags are needed or if the lite activation is incorrect, contact a sales representative about

upgrading the license to support more tags.

 See Also:
License Utility Help

Type <numeric type ID> limit of <maximum count> exceeded on feature
'<name>'.

Error Type:
Warning

Possible Cause:
The installed feature license limits the number of items of the specified type that can be configured.

Possible Solution:

1. Contact customer solutions to determine what object type count should be reduced to remain within

the limits of the license.

2. If more items are needed, contact a sales representative about upgrading the license.

 See Also:
License Utility Help

<Object type name> limit of <maximum count> exceeded on feature
'<name>'.

Error Type:
Warning

Possible Cause:
The installed feature license limits the number of items of the specified type that can be configured.

Possible Solution:

1. Verify the number authorized by the license and correct the project design to use only that number

of items.

2. If more items are needed, contact a sales representative about upgrading the license.

 See Also:
License Utility Help

The FlexNet Licensing Service must be enabled to process licenses. Failure
to enable the service results in Time Limited mode.

Error Type:

www. ptc.com

142

ThingWorx Kepware Edge

Warning

Possible Cause:
An attempt was made to verify the license, but the FlexNet Licensing Service is disabled.

Possible Solution:
Use the Windows Service Control Manager to enable the FlexNet Licensing Service, which requires a

runtime restart.

 See Also:
License Utility Help

The <name> feature license has been removed. The server will enter Time
Limited mode unless the license is restored before the grace period
expires.

Error Type:
Warning

Possible Cause:
The feature license has been deleted, moved to another machine, the hardware key has been removed, or

trusted storage has been corrupted.

Possible Solution:

1. Consult the Licensing User Manual for instructions on activating an emergency licenses.

2. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

License for feature <name> cannot be accessed [error=<code>] and must
be reactivated.

Error Type:
Warning

Possible Cause:
Trusted storage has been corrupted, possibly due to a system update.

Possible Solution:

1. Consult the Licensing User Manual for instructions on activating an emergency licenses.

2. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

www. ptc.com

143

ThingWorx Kepware Edge

Feature %1 is time limited and will expire at %2.

Error Type:
Warning

Feature %1 is time limited and will expire at %2.

Error Type:
Warning

Object count limit has been exceeded on feature <name>. Time limited
usage will expire at <date/ t ime>.

Error Type:
Warning

Feature count limit exceeded on <name>. Time limited usage will expire at
<date/ t ime>.

Error Type:
Warning

Time limited usage period on feature <name> has expired.

Error Type:
Warning

Failed to obtain licenses from the license server.

Error Type:
Warning

The license for this product has expired and will soon stop functioning.
Please contact your sales representative to renew the subscription.

Error Type:
Warning

Licensing for this system is currently provided by a file-based license.

Error Type:
Warning

Failed to connect to the license server.

Error Type:
Warning

Possible Cause:

1. The license server connection parameters are incorrect.

2. The license server is not running or has been disabled.

www. ptc.com

144

ThingWorx Kepware Edge

3. The TLSconnection has not been properly configured.

Possible Solution:

1. Verify that the license server connection parameters are correct.

2. Check that the license server is running and that its state is not set to 'suspended'.

3. Verify that the license server CA certificate has been imported.

Failed to return licenses to the LLS.

Error Type:
Warning

Maximum driver count exceeded for the lite version '<name>' driver
license. Edit project and restart the server.

Error Type:
Informational

Possible Cause:
The specified driver was activated with a lite license, which limits the number of drivers that can be con-

figured.

Possible Solution:

1. Verify the number of drivers authorized by the license. Correct the project to use only that number

of drivers.

2. If more drivers are needed or the lite activation is incorrect, contact a sales representative about

upgrading the license to support more drivers.

 See Also:

1. Event Log (in server help)

2. License Utility Help

Connecting to the license server.

Error Type:
Informational

Successful communication with the license server. Renew interval estab-
lished at %d seconds.

Error Type:
Informational

www. ptc.com

145

ThingWorx Kepware Edge

License synchronization required. Init iat ing request...

Error Type:
Informational

Performing init ial license request to the license server.

Error Type:
Informational

Connected to license server, no changes.

Error Type:
Informational

Requesting return of all borrowed licenses...

Error Type:
Informational

Cannot add item. Requested count of <number> would exceed license
limit of <maximum count>.

Error Type:
Informational

Possible Cause:
The product license limits the number of items that can be configured.

Possible Solution:

1. Verify the number authorized by the license and correct the project to use only that number of

items.

2. If more items are needed, contact a sales representative about upgrading the license.

 See Also:
License Utility Help

The version of component <name> (<version>) is required to match that of
component <name> (<version>).

Error Type:
Informational

Possible Cause:
Two installed components have an interdependency that requires the versions to match.

Possible Solution:
Verify component versions and download or install the matching versions of the components.

 See Also:

www. ptc.com

146

ThingWorx Kepware Edge

License Utility Help

Maximum channel count exceeded for the lite version '<name>' driver
license. Edit project and restart the server.

Error Type:
Informational

Possible Cause:
The specified driver was activated with a lite license, which limits the number of channels that can be con-

figured.

Possible Solution:

1. Verify the number of channels authorized by the license. Correct the project to use only that number

of channels.

2. If more channels are needed or the lite activation is incorrect, contact a sales representative about

upgrading the license to support more channels.

 See Also:

1. Event Log (in server help)

2. License Utility Help

%s is now licensed.

Error Type:
Informational

www. ptc.com

147

ThingWorx Kepware Edge

Appendix — Running ThingWorx Kepware Edge
in a Container
ThingWorx Kepware Edge is designed with the ability to run within a container environment. A Docker

image built with ThingWorx Kepware Edge and its prerequisites is available to be deployed and run using a

variety of tools.

Start ing a ThingWorx Kepware Edge Container Instance
To run an instance of the ThingWorx Kepware Edge Docker image, execute the following command:

docker run -d -e USE_SAMPLE_PROJECT='<Use sample project flag>' -p 57513:57513 -p
49330:49330 --init --name <Container name> --mount type=bind,source=<Admin password source
directory>,target=/opt/tkedge/v1/secrets --mount type=bind,source=<user data source dir-
ectory>, target=/opt/tkedge/v1/user_data --mount type=bind,source=<.config source dir-
ectory>, target=/opt/tkedge/v1/.config <Image name>

where:

l <Use sample project flag> (optional). Set to TRUE to start with a sample project.

l <Admin password source directory> is on the host machine that contains the password.txt file.

See the "Administrator Password" on the facing page section for more information.

l <Container name> is the name of the container instance.

l <user data source directory> is on the host machine that is used to share files with the container.

See the Sharing Files with the Container for more information.

l <.config source directory> is on the host machine that is used to persist the configuration files from

the container.

See the Persisting Data to the Host for more information.

l <Container name> is the name of the container instance.

l <Image name> is the name of the container image.

For additional details about Docker run command options, see Docker Run documentation.

Required Port Binding
The -p option in the Docker run command specifies the port or range of ports to publish from container to

host using the format:

<Host Port>:<Container Port>

The ports in the example above are configured by default in ThingWorx Kepware Edge:

l The default https port for the Configuration API is 57513.

l The default port for UA Endpoints is 49330.

If a port other than the defaults listed above is required, include additional ports when executing the Docker

run command. Alternatively, a range of ports can be specified.
See the Docker Links User Guide for information on how to manipulate ports in Docker.
See the Docker Networking Overview for information on all networking options.

Additional options can be included in the Docker run command to enable data sharing between the host

and container.
See Sharing Project Files with the Container section for an example.

www. ptc.com

148

https://docs.docker.com/network/links
https://docs.docker.com/network/

ThingWorx Kepware Edge

Administrator Password
A password for the administrator account must be set at container run time. During the container ini-

tialization, ThingWorx Kepware Edge searches for a password.txt file that contains the administrator account

password. The password must be between 14 and 512 characters. Set the permissions on this file such that

the Docker container user has read and write permissions. Place this file in a directory accessible to the con-

tainer via a bind mount, as described in the Start ing a ThingWorx Kepware Edge container instance sec-

tion.
Note: When the ThingWorx Kepware Edge startup script is run, it deletes the password.txt file.
Caution: An insecure and non-production option is to pass the password as an environmental variable

named “EDGEADMINPW” when deploying the container. The password still needs to follow all character and

length requirements.

Checking if the Container is Running
View the container status with the command:

docker ps -a

Sharing Files with the Container
Various configuration and files are necessary to share with the ThingWorx Kepware Edge instance running

in the container. For example, project files can be loaded using the Configuration API projectLoad service.

This service requires files to be located in a specific directory created at container run time:

/opt/tkedge/v1/user_data

To move any files to the container, a method of file sharing between the host and container must be imple-

mented. The simplest option to share data with the container is to directly copy files into the container file

system using the docker cp command:

docker cp <source file> <container name>:/opt/tkedge/v1/user_data

Persisting Data to the Host
A bind mount can be used to share and persist data used by ThingWorx Kepware Edge with the host

machine. This can be accomplished by adding the --mount option to the Docker run command:

docker run -d -p 57513:57513 -p 49330:49330 --init --name <Container name> --mount type-
e=bind,source=<user data source directory>,target=/opt/tkedge/v1/user_data --mount type-
e=bind,source=<.config source directory>,target=/opt/tkedge/v1/.config <Image name>

Note: The target parameters must not be modified from this example. These directories are created at

container run time for the purpose of storing application data and are not configurable.

Persisting configuration data is strongly recommended while using ThingWorx Kepware Edge in a container.

Configuration data, such as the project file, OPC UA certificates and endpoints, user management con-

figuration and other data are stored in the /opt/tkedge/v1/.config folder in the containers file system. Per-

sisting this folder allows for a container to be redeployed due to failure or planned updates while keeping

all configuration data from the previous running state.

To persist the configuration data add a volume mount mapped to the .config directory as seen in the Docker

run command above.
Note: Do not mount more than one container to a shared .config directory. Each unique instance of

ThingWorx Kepware Edge needs its own data store for configuration. This is not supported and can result in

undefined behavior.
See Backup and Restore configuration data.

www. ptc.com

149

ThingWorx Kepware Edge

For additional details about sharing data between containers using Docker volume mounts., see Docker

Volume documentation.

Permissions
To access the specified data source directory on the host, user and group entities identical to those created

for ThingWorx Kepware Edge at container run time must exist on the host and be granted the appropriate

permission on that directory, where group: tkedge and user: tkedge.
Note: The host and container user and group entities must have matching UID and GID.

Configuring a ThingWorx Kepware Edge Container Instance:
The ThingWorx Kepware Edge instance is operational after executing the above "docker run" command. To

manage certificates for northbound interfaces or configure other administrative options, connect to a com-

mand shell on the container with the following command:

docker exec -it <Container Name> /bin/bash

From the command shell, the "edge_admin" command-line tool can be used to perform these actions.
See the Command-Line Edge Admin for more information on this tool.

Note: The ThingWorx Kepware Edge runtime must be reinitialized through the Configuration API or restar-

ted after making changes to the UA Endpoint configuration. Restarting the container can be accomplished

by running the "docker stop" followed by "docker start" command.

Managing OPC UA Certificates
The preferred method for managing OPC UA certificates is to share the trusted certificates through the

mounted .config folder. This allows trusted client certificates to be added or updated in the trust store

without connecting to the container with a command shell.
See Managing OPC UA Certificates through the .config folder.

Event Log
In a container environment, log services, such as Docker log service, are used to monitor information about

the running container. ThingWorx Kepware Edge can be configured to send all event log messages to

* STDOUT* to make the messages accessible through the docker log service.
To enable this, use the Configuration API and set the Log to Console properties in the Admin properties as

shown below.

Endpoint (PUT):

https://<hostname_or_ip>:<port>/config/v1/admin

Body:

{ "libadminsettings.EVENT_LOG_LOG_TO_CONSOLE": true }

For additional details about monitoring the Docker log service, see the Docker log documentation.

www. ptc.com

150

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/reference/commandline/logs/

ThingWorx Kepware Edge

Appendix — Running ThingWorx Kepware Edge
as an Azure IoT Edge Module
ThingWorx Kepware Edge is available to deploy within an Azure IoT environment with access to the module

provided in the Azure Marketplace. This allows for the ability to manage and deploy ThingWorx Kepware

Edge within an environment that is using the Azure IoT Edge runtime.

Prerequisites

l Azure IoT Portal Account

l Azure IoT Hub Deployed (see Instructions)

l IoT Edge runtime environment must be installed on the host

l IoT Edge runtime needs to be installed and deployed to an IoT Edge device

See Also: ThingWorx Kepware Edge module installation instructions.

Managing Configuration
An IoT Edge module is functionally a container used to deploy an application. Managing the configuration of

the module for Azure IoT is like managing ThingWorx Kepware Edge in a container. Persisting configuration

data to the host IoT device environment is necessary to ensure that application data is accessible during

various module management actions such as deployment, upgrade, etc.

In preparation for a production deployment, three folders should be configured for access from the module

to support persisting the configuration data (.config folder), user data (user_data folder) and the secrets

data (secrets folder).

For additional details about these application folders for ThingWorx Kepware Edge, see sections Sharing Files

with the Container and Persisting Data to the Host.

For additional details about sharing data between modules and the IoT Edge runtime host, see Azure's "How to

Access Host Storage from Module" documentation.

Deploying ThingWorx Kepware Edge Module
A IoT Edge module can be deployed using multiple tools within the Azure ecosystem. This section uses the

Azure Portal and the Azure Marketplace to select and deploy the ThingWorx Kepware Edge for Azure mod-

ule.

1. Open the Azure Marketplace listing for the ThingWorx Kepware Edge for Azure module.

2. Select Get It Now button, fill out form, and accept the BOYL agreement.

3. Sign into a valid Azure account if not already signed in.

 Confirmation of contact information is necessary as part of the initial access to the module on

the Azure marketplace.

www. ptc.com

151

https://azuremarketplace.microsoft.com/
https://docs.microsoft.com/en-us/azure/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-access-host-storage-from-module
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-access-host-storage-from-module

ThingWorx Kepware Edge

4. An Azure portal page opens in a browser to configure the target IoT Edge device to receive the mod-

ule. Select the appropriate Subscription, IoT Hub, and IoT Edge Device to deploy the module to and

select Create.

www. ptc.com

152

ThingWorx Kepware Edge

5. Once a target IoT Edge device has been selected, confirm and/or modify the Module settings, Envir-

onment Variables, and Container Create Options.

Caution: Do NOT click Review and Create until Step 10.

www. ptc.com

153

ThingWorx Kepware Edge

6. Select the ThingWorxKepwareEdgeforAzure module to view the module options.

7. Select the Container Create Options tab and modify the options as necessary. Below is an

example of the options that could be used.

{
"ExposedPorts": {

"57513/tcp": {},
"49330/tcp": {}

},
"HostConfig": {

"PortBindings": {
"57513/tcp": [

{
"HostPort": "57513"

}
],
"49330/tcp": [

{
"HostPort": "49330"

www. ptc.com

154

ThingWorx Kepware Edge

}
]

 },
 "Binds": [
 "<HostStoragePath>/config:/opt/tkedge/v1/.config",
 "<HostStoragePath>/user_data:/opt/tkedge/v1/user_data",
 "<HostStoragePath>/secrets:/opt/tkedge/v1/secrets"
]

}
}

 “Binds” configurations are used for sharing data to the module from the IoT Edge Device host

environment and is used to persist configuration data, share files, and securely assign the Admin-

istrator password for ThingWorx Kepware Edge. Modify the <HostStoragePath> to point to the

appropriate folder locations on the IoT Edge device host used to persist files from the module.

 Ensure that the appropriate permissions are set to the <HostStoragePath> directories.

For additional details about these application folders and permissions, see sections Sharing Files with

the Container, Persisting Data to the Host, and Permissions.

8. Select the Environment Variables tab.

 For secure deployments, it is recommended to delete the EDGEADMINPW and use the “secrets”

bind to initialize the container with an Administrator password. For insecure non-production test-

ing purposes, it is possible to set the EDGEADMINPW environmental variable value to assign a pass-

word at deployment.

For additional details about Administrator password assignment, see Administrator Password.

9. Once completed, select Update.

10. Select Review then Create buttons to deploy the module.

11. From the IoT Edge device information interface, confirm that the module is listed and is in the run-

ning state.

www. ptc.com

155

ThingWorx Kepware Edge

www. ptc.com

156

ThingWorx Kepware Edge

Index

%

%s | 138

%s is now licensed. 147

<

<feature name> is required to load this project. 109

<feature name> was not found or could not be loaded. 109

<Name> Device Driver '<name>' 138

<Object type name> limit of <maximum count> exceeded on feature '<name>'. 142

<Product> device driver loaded successfully. 114

<Product> device driver unloaded from memory. 115

A

A client application has disabled auto-demotion on device '<device>'. 116

A client application has enabled auto-demotion on device '<device>'. 115

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>', Error =

<error code>, Details = '<description>'. 129

About Endpoints 43

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 117

ActiveTagCount 20

Address '<address>' is not valid on device '<name>'. 136

Administrator 40

Alias Name 37

Alias Properties 37

Anonymous 80

API Command 73

APPKEY 48

Application Data 13

Architecture 12, 49, 69

Attempting to automatically generate tags for device '<device>'. 115

authentication 53

Authentication 40, 104

Authorization 40

www. ptc.com

157

ThingWorx Kepware Edge

Auto-generated tag '<tag>' already exists and will not be overwritten. 110

Auto generation produced too many overwrites, stopped posting error messages. 111

Automatic Tag Generation 70

Azure 151

B

Basic256Sha256 105

BCD 34

Boolean 34

Byte 34

C

cacerts 51

Cannot add device. A duplicate device may already exist in this channel. 110

Cannot add item. Requested count of <number> would exceed license limit of <maximum count>. 146

certificate 51

Certificates 16

Char 34

Check that your Application Key is properly formatted and valid. 126

Child Endpoints 93

Clamp 36

ClientCount 20

Com port does not exist. | Port = '<port>'. 132

Com port is in use by another application. | Port = '<port>'. 131

Command line 11

Command Line Interface 16

Command line interfaces 11

Completed automatic tag generation for device '<device>'. 115

Components and Concepts 17

Concurrent Clients 53

config_api_service 41

Configuration API Service 53

Configuration API Service — Configuring Licensing Server 97

Configuration API started with SSL on port <port number>. 107

Configuration API started without SSL on port <port number>. 106

Configuration Backup and Restore 41

www. ptc.com

158

ThingWorx Kepware Edge

Configuration transfer from ThingWorx aborted. 127

Configuration transfer from ThingWorx initiated. 127

Configuration Transfer from ThingWorx Platform failed. 125

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 125

Configuration Transfer to ThingWorx Platform failed. 125

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 125

Configuring User Group Project Permissions 97

Connected to license server, no changes. 146

Connected to ThingWorx. | Platform = <host

port resource>, Thing name = '<name>'. 126

Connecting to the license server. 145

Connecting with an OPC UA Client with UaExpert 104

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 132

Connection to ThingWorx failed for an unknown reason. | Platform = <host

port resource>, error = <error>. 119

Connection to ThingWorx failed. | Platform = <host

port resource>, error = <reason>. 118

Connection to ThingWorx was closed. | Platform = <host

port resource>. 121

Connectivity 43, 46

Content Retrieval 56

Could not load item state data. Reason

<reason>. 138

Could not save item state data. Reason

<reason>. 138

Create MQTT Agent 50

Create MQTT Agent Tag 51

Created backup of project '<name>' to '<path>'. 116

Creating a Channel 81

Creating a Device 84

Creating a Tag 86

Creating a UA Endpoint 102

Creating a User 95

Creating a User Group 95

Credentials 80

cURL 11

Curl 82

D

Data 65

www. ptc.com

159

ThingWorx Kepware Edge

Data collection is disabled on device '<device>'. 115

Data collection is enabled on device '<device>'. 115

Date 20

DateTime 20

DateTimeLocal 21

Default 13

DELETE 83, 86, 88, 90

Delete MQTT Agent 51

Demo License 14

Device '<device>' has been auto-promoted to determine if communications can be re-established. 116

Device '<device>' has been automatically demoted. 113

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range and try

again. 109

Device is not responding. 133

Device is not responding. | ID = '<device>'. 134

Directory 13

Documentation Endpoint 42

Documentation Endpoints 42

Double 34

Driver failed to initialize. 132

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 127

DWord 34

Dynamic Tags 34

E

Edge Module 151

edge_admin 16

Enable 104

Endpoint 40, 99

Endpoint Mapping 42

Error adding item. | Item name = '<item name>'. 119

Error opening com port. | Port = '<port>', OSerror = <error>. 132

Error pushing property updates to thing. | Thing name = '<name>'. 123

Evaluation 14

Event Log Messages 106

www. ptc.com

160

ThingWorx Kepware Edge

F

Failed to add tag '<tag>' because the address is too long. The maximum address length is

<number>. 111

Failed to autobind property. | Name = '<property name>'. 121

Failed to connect to the license server. 144

Failed to create an activation request (Error %x) 140

Failed to delete stored updates in the Store and Forward datastore. 125

Failed to import server instance cert

'<cert location>'. Please use the OPC UA Configuration Manager to reissue the certificate. 128

Failed to initialize licensing (Error <error code>) 140

Failed to initialize licensing. Unable to establish system time interface (Error %1!x!). 140

Failed to initialize licensing. Unable to initialize the licensing identity (Error %1!x!). 139

Failed to initialize licensing. Unable to initialize the licensing publisher (Error %1!x!). 140

Failed to initialize licensing. Unable to initialize trusted storage (Error %1!x!). 140

Failed to initialize licensing. Unable to load the demo file license (Error %1!x!). 139

Failed to load library

<name>. 116

Failed to load the license interface, possibly due to a missing third-party dependency. Run in Time Lim-

ited mode only. 139

Failed to load the UA Server endpoint configuration. 130

Failed to obtain licenses from the license server. 144

Failed to process the activation response from the license server (Error

%x, Process Codes
%s, Message Codes

%s) 140

Failed to read build manifest resource

<name>. 116

Failed to restart Thing. | Name = '<thing name>'. 121

Failed to return licenses to the LLS. 145

Failed to trigger the autobind complete event on the platform. 119

Feature '<name>' is not licensed and cannot be used. 139

Feature %1 is time limited and will expire at %2. 144

Feature count limit exceeded on <name>. Time limited usage will expire at <date/time>. 144

Filtering 54, 62

Float 34

FORCE_UPDATE 45

G

GET Request URI 56

www. ptc.com

161

ThingWorx Kepware Edge

Getting Started 39

Group has been deleted. | Group = '<name>'. 118

H

Health Status Endpoint 44

Health Status Endpoints 43

Hierarchy 67

HOSTNAME 48

HTTP 53

HTTPS 53

Human Machine Interface (HMI) 46

I

Initialization 53

Initialized Store and Forward datastore. | Datastore location

'<location>'. 128

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location =

'<location>'. 128

Insomnia 82

install 12

Installer 12

installing 12

Instance Certificate 16

Interface 45-46

Interfaces and Connectivity 46

Introduction 11

Invalid array size detected writing to tag <device name>.<address>. 135

Invalid Model encountered while trying to load the project. | Device = '<device>'. 110

Invalid project file. 107

IoT Gateway 50-51

IoT Gateway — MQTT 49

Item failed to publish 120

Items on this page may not be changed while the driver is processing tags. 135

J

Java Runtime 11

www. ptc.com

162

ThingWorx Kepware Edge

Job 70

Job Cleanup 70

JSON Response Structure 56

K

KeyStore 51

keytool 51

L

LBCD 34

License for feature <name> cannot be accessed [error=<code>] and must be reactivated. 143

License Recheck 15

License Server 14

License synchronization required. Initiating request... 146

Licensing 14

Licensing for this system is currently provided by a file-based license. 144

Linear 35

Linux 11

LLong 34

Location 13

Log Endpoints 43

Log Retrieval 54

Long 34

LSB 11

M

Man Machine Interface (MMI) 46

Mapped to 37

Maximum channel count exceeded for the lite version '<name>' driver license. Edit project and restart

the server. 147

Maximum device count exceeded for the lite version '<number>' license. Edit project and restart the

server. 141

Maximum driver count exceeded for the lite version '<name>' driver license. Edit project and restart the

server. 145

Maximum runtime tag count exceeded for the lite version '<number>' license. Edit client project and

restart the server. 141

www. ptc.com

163

ThingWorx Kepware Edge

Member 58

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Manager to reis-

sue the certificate. 128

MQTT 49

MQTT Agent 45, 50-51

MQTT client 11

multidimensional arrays are not supported. | Item name = '%s'. 120

Multiple Objects 66

N

Negate 36

No tags were created by the tag generation request. See the event log for more information. 114

O

Object 65

Object count limit has been exceeded on feature <name>. Time limited usage will expire at

<date/time>. 144

Object type '<name>' not allowed in project. 116

One or more value change updates lost due to insufficient space in the connection buffer. | Number of

lost updates = <count>. 120

OPC UA 46

OPC UA Certificate Management 47

OPC UA Endpoint 99

OPC UA server 104

OpenJDK 11

Operation 53

P

password 40

Password 61, 80

Password for user has been changed. | User = '<name>'. 118

Performing initial license request to the license server. 146

Permissions definition has changed on user group. | Group = '<name>'. 117

Plug-in Endpoints 43

Port 40, 104

PORT 48

www. ptc.com

164

ThingWorx Kepware Edge

Ports 39

Postman 11, 82

Prerequisites 50

Project 40

Project Permissions 92

Project Properties — OPC UA 79

Project Properties (via API Commands) 75

Project Save 72

ProjectSave 74

Properly Name a Channel, Device, Tag, and Tag Group 37

Property Definitions 58

Property Tags 31

Property Types 60

Property Validation Error Object 90

Q

QWord 34

R

Raw 35

Reinitialize Runtime Service 73

Reinitializing ThingWorx connection due to a project settings change initiated from the Configuration

API. 127

Reinitializing ThingWorx connection due to a project settings change initiated from the platform. 126

Rejecting attempt to change model type on a referenced device '<channel device>'. 112

Removing a Device 86

Removing a Tag 88

Removing a Tag Group 90

Removing a UA Endpoint 102

Removing Channel 83

Request failed with license server. 140

Requesting return of all borrowed licenses... 146

Response Codes 75

REST 40, 53, 82, 85-86

Restart 73

Resumed pushing property updates to thing

the error condition was resolved. | Thing name = '<name>'. 127

www. ptc.com

165

ThingWorx Kepware Edge

Running in a Container 148

S

Save 13

Scaled 36

Scan rate override 37

security 13, 40

Security 53, 56, 69, 80, 94, 104

Self-Signed Certificates 51

Serial communications error on channel. | Error mask = <mask>. 134

Server Administration Endpoints 43

server_eventlog 41

server_runtime 41

Service 69

Service Logs 39

Serviced one or more autobind requests. | Count = <count>. 127

Services 39

Short 34

Shutdown 53

Simulation mode is disabled on device '<device>'. 115

Simulation mode is enabled on device '<device>'. 115

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 133

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 137

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 137

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 136

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 137

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 137

Sorting 62

Specified address is not valid on device. | Invalid address = '<address>'. 135

Square Root 35

Starting <name> device driver. 114

Statistics Tags 32

Stopping <name> device driver. 115

Store and Forward datastore reset due to file IO error or datastore corruption. 124

Store and Forward datastore size limit reached. 120

Store and Forward datastore unable to store data due to full disk. 120

Store and Forward mode changed. | Forward Mode = '<mode>'. 128

String 34

www. ptc.com

166

ThingWorx Kepware Edge

Successful communication with the license server. Renew interval established at %d seconds. 145

Successfully deleted stored data from the Store and Forward datastore. 128

System Requirements 11

System Services 69

System Tags 19

T

Tag count 14

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten =

<count>. 116

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten = <count>. 116

Tag generation results for device '<device>'. | Tags created = <count>. 116

Tag Group Properties 37

Tag Limit 14

Tag Properties — General 18

Tag Properties — Scaling 35

The <name> device driver was not found or could not be loaded. 107

The <name> feature license has been removed. The server will enter Time Limited mode unless the

license is restored before the grace period expires. 143

The Config API is unable to load the SSL certificate. 106

The Config API SSL certificate contains a bad signature. 106

The Config API SSL certificate has expired. 106

The Config API SSL certificate is self-signed. 106

The configured version of TLS for the Configuration API is no longer considered secure. It is recom-

mended that only TLS1.2 or higher is used. 106

The endpoint '<url>' has been added to the UA Server. 118

The endpoint '<url>' has been disabled. 118

The endpoint '<url>' has been enabled. 118

The endpoint '<url>' has been removed from the UA Server. 118

The FlexNet Licensing Service must be enabled to process licenses. Failure to enable the service results

in Time Limited mode. 142

The license for this product has expired and will soon stop functioning. Please contact your sales rep-

resentative to renew the subscription. 144

The maximum number of configured Industrial Things has been reached, count = <number>. Consider

increasing the value of the Max Thing Count. 126

The push type of one or more properties are set to never push an update to the platform. | Count =

<count>. 123

The server is configured to send an update for every scan, but the push type of one or more properties

are set to push on value change only. | Count = <count>. 122

www. ptc.com

167

ThingWorx Kepware Edge

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 114

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue the cer-

tificate. 129

The UA Server failed to initialize an endpoint configuration. | Endpoint Name

'<name>'. 131

The UA Server failed to register with the UA Discovery Server. | Endpoint URL

'<endpoint url>'. 129

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL

'<endpoint url>'. 130

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL

'<endpoint url>'. 131

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL

'<endpoint url>'. 131

The version of component <name> (<version>) is required to match that of component <name> (<ver-

sion>). 146

THING_NAME 48

ThingWorx Native Interface 45

ThingWorx Native Interface Certificate Management 49

ThingWorx Native Interface Example 47

ThingWorx Platform 11

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 122

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item name =

'<name>'. 123

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 122

This property may not be changed while the driver is processing tags. 136

Time Limited mode has expired. 140

Time limited usage period on feature <name> has expired. 144

Trust Store 16

Type <numeric type ID> limit of <maximum count> exceeded on feature '<name>'. 142

Type Definitions 58

U

UA Server 45

uaserver 105

Ubuntu 11

Unable to add channel due to driver-level failure. 108

Unable to add device due to driver-level failure. 108

Unable to allocate thread resource. Please check the memory usage of the application. 132

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user

name>'. 124

www. ptc.com

168

ThingWorx Kepware Edge

Unable to backup project file to '<path>' [<reason>]. The save operation has been aborted. Verify the des-

tination file is not locked and has read/write access. To continue to save this project without a

backup, deselect the backup option under Tools | Options | General and re-save the project. 109

Unable to configure com port with specified parameters. | Port = COM<number>, OSerror =

<error>. 131

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-memory store

size (updates) = <count>. 124

Unable to generate a tag database for device '<device>' 111

Unable to generate a tag database for device '<device>'. The device is not responding. 110

Unable to load driver DLL '<name>'. 112

Unable to load driver DLL '<name>'. Reason 113

Unable to load plug-in DLL '<name>'. 113

Unable to load plug-in DLL '<name>'. Reason 114

Unable to load project <name> 108

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>'). Remove

the conflicting driver and restart the application. 107

Unable to load the project due to a missing object. | Object = '<object>'. 110

Unable to save project file <name> 109

Unable to start the Config API Service. Possible problem binding to port. 106

Unable to start the UA server due to certificate load failure. 130

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network adapter. 111

Unable to write to address '<address>' on device '<name>'. 136

Unable to write to address on device. | Address = '<address>'. 135

Update MQTT Agent 51

Updating a Channel 82

Updating a Device 85

Updating a Tag 87

Updating a Tag Group 89

Updating a UA Endpoint 102

Updating a User 96

Updating a User Group 96

URL 104

User added to user group. | User = '<name>', Group = '<name>'. 117

User group has been created. | Group = '<name>'. 117

User group has been disabled. | Group = '<name>'. 117

User group has been enabled. | Group = '<name>'. 118

User group has been renamed. | Old name = '<name>', New name = '<name>'. 117

User Groups 91

User has been deleted. | User = '<name>'. 118

User has been disabled. | User = '<name>'. 117

www. ptc.com

169

ThingWorx Kepware Edge

User has been enabled. | User = '<name>'. 117

User has been renamed. | Old name = '<name>', New name = '<name>'. 117

User Management 91

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 117

Users 94

V

Validation error on '<tag>'

<error>. 112
Invalid scaling parameters. 112

Version mismatch. 108

View MQTT Agent Tags 51

View MQTT Agents 50

W

What is a Channel? 17

What is a Device? 17

What is a Tag Group? 36

What is a Tag? 18

What is the Alias Map? 37

What is the Event Log? 37

Winsock initialization failed. | OSerror = <error>. 133

Winsock shut down failed. | OSerror = <error>. 133

Winsock V1.1 or higher must be installed to use this driver. 133

Word 34

Write to property failed. | Property name = '<name>', reason = <reason>. 121

Write to property failed. | Thing name = '<name>', property name = '<name>', reason = <reason>. 123

www. ptc.com

170

	Table of Contents
	Introduction
	ThingWorx Kepware Edge System Requirements
	Configuration API Service — Architecture
	ThingWorx Kepware Edge Installation
	Application Data
	ThingWorx Kepware Edge Licensing
	Command Line Interface — edge_admin

	Components and Concepts
	What is a Channel?
	What is a Device?
	What is a Tag?
	Tag Properties — General

	System Tags
	Property Tags
	Statistics Tags
	Dynamic Tags
	Tag Properties — Scaling

	What is a Tag Group?
	Tag Group Properties

	What is the Alias Map?
	Alias Properties

	What is the Event Log?
	Properly Name a Channel, Device, Tag, and Tag Group

	Getting Started
	Managing ThingWorx Kepware Edge Services
	Configuration Backup and Restore
	Configuration API Service — Documentation Endpoint
	Configuration API Service — Endpoint Mapping
	Configuration API Service — Health Status Endpoint
	Enabling Interfaces

	Interfaces and Connectivity
	OPC UA Interface
	OPC UA Certificate Management

	Configuring the ThingWorx Native Interface
	ThingWorx Native Interface Certificate Management

	IoT Gateway — MQTT
	Configuring the IoT Gateway
	Configuring Self-Signed Certificates for MQTT Agent

	Configuration API Service
	Security
	Documentation
	Configuration API Service — Concurrent Clients
	Configuration API Service — Log Retrieval
	Configuration API Service — Content Retrieval
	Configuration API Service — Data
	Configuration API Service — Invoking Services
	Configuration API Service — Reinitialize Runtime Service
	Configuration API Service — Project Example
	Configuration API Service — Response Codes
	Project Properties (via API Commands)
	Project Properties — OPC UA
	Configuration API Services — Channel Properties
	Configuration API Service — Creating a Channel
	Configuration API Service — Updating a Channel
	Configuration API Service — Removing Channel
	Configuration API Service — Device Properties
	Configuration API Service — Creating a Device
	Configuration API Service — Updating a Device
	Configuration API Service — Removing a Device
	Configuration API Service — Creating a Tag
	Configuration API Service — Updating a Tag
	Configuration API Service — Removing a Tag
	Configuration API Service — Creating a Tag Group
	Configuration API Service — Updating a Tag Group
	Configuration API Service — Removing a Tag Group
	Configuration API Service — Property Validation Error Object
	Configuration API Service — User Management
	Configuration API Service — Creating a User
	Configuration API Service — Creating a User Group
	Configuration API Service — Updating a User
	Configuration API Service — Updating a User Group
	Configuration API Service — Configuring User Group Project Permissions
	Configuration API Service — Configuring Licensing Server
	Configuration API Service — OPC UA Endpoint
	Configuration API Service — Creating a UA Endpoint
	Configuration API Service — Updating a UA Endpoint
	Configuration API Service — Removing a UA Endpoint

	Connecting with an OPC UA Client Using UaExpert
	Event Log Messages
	The Config API SSL certificate contains a bad signature.
	The Config API is unable to load the SSL certificate.
	Unable to start the Config API Service. Possible problem binding to port.
	The Config API SSL certificate has expired.
	The Config API SSL certificate is self-signed.
	The configured version of TLS for the Configuration API is no longer consider...
	Configuration API started without SSL on port <port number>.
	Configuration API started with SSL on port <port number>.
	The <name> device driver was not found or could not be loaded.
	Unable to load the '<name>' driver because more than one copy exists ('<name>...
	Invalid project file.
	Unable to add channel due to driver-level failure.
	Unable to add device due to driver-level failure.
	Version mismatch.
	Unable to load project <name>:
	Unable to back up project file to '<path>' [<reason>]. The save operation has...
	<feature name> was not found or could not be loaded.
	Unable to save project file <name>:
	Device discovery has exceeded <count> maximum allowed devices. Limit the disc...
	<feature name> is required to load this project.
	Unable to load the project due to a missing object. | Object = '<object>'.
	Invalid Model encountered while trying to load the project. | Device = '<devi...
	Cannot add device. A duplicate device may already exist in this channel.
	Auto-generated tag '<tag>' already exists and will not be overwritten.
	Unable to generate a tag database for device '<device>'. The device is not re...
	Unable to generate a tag database for device '<device>':
	Auto generation produced too many overwrites, stopped posting error messages.
	Failed to add tag '<tag>' because the address is too long. The maximum addres...
	Unable to use network adapter '<adapter>' on channel '<name>'. Using default ...
	Rejecting attempt to change model type on a referenced device '<channel devic...
	Validation error on '<tag>': <error>.
	Unable to load driver DLL '<name>'.
	Validation error on '<tag>': Invalid scaling parameters.
	Device '<device>' has been automatically demoted.
	Unable to load plug-in DLL '<name>'.
	Unable to load driver DLL '<name>'. Reason:
	Unable to load plug-in DLL '<name>'. Reason:
	The specified network adapter is invalid on channel '%1' | Adapter = '%2'.
	No tags were created by the tag generation request. See the event log for mor...
	<Product> device driver loaded successfully.
	Starting <name> device driver.
	Stopping <name> device driver.
	<Product> device driver unloaded from memory.
	Simulation mode is enabled on device '<device>'.
	Simulation mode is disabled on device '<device>'.
	Attempting to automatically generate tags for device '<device>'.
	Completed automatic tag generation for device '<device>'.
	A client application has enabled auto-demotion on device '<device>'.
	Data collection is enabled on device '<device>'.
	Data collection is disabled on device '<device>'.
	Object type '<name>' not allowed in project.
	Created backup of project '<name>' to '<path>'.
	Device '<device>' has been auto-promoted to determine if communications can b...
	Failed to load library: <name>.
	Failed to read build manifest resource: <name>.
	A client application has disabled auto-demotion on device '<device>'.
	Tag generation results for device '<device>'. | Tags created = <count>.
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Access to object denied. | User = '<account>', Object = '<object path>', Perm...
	User moved from user group. | User = '<name>', Old group = '<name>', New grou...
	User group has been created. | Group = '<name>'.
	User added to user group. | User = '<name>', Group = '<name>'.
	User group has been renamed. | Old name = '<name>', New name = '<name>'.
	Permissions definition has changed on user group. | Group = '<name>'.
	User has been renamed. | Old name = '<name>', New name = '<name>'.
	User has been disabled. | User = '<name>'.
	User group has been disabled. | Group = '<name>'.
	User has been enabled. | User = '<name>'.
	User group has been enabled. | Group = '<name>'.
	Password for user has been changed. | User = '<name>'.
	The endpoint '<url>' has been added to the UA Server.
	The endpoint '<url>' has been removed from the UA Server.
	The endpoint '<url>' has been disabled.
	The endpoint '<url>' has been enabled.
	User has been deleted. | User = '<name>'.
	Group has been deleted. | Group = '<name>'.
	Connection to ThingWorx failed. | Platform = <host:port resource>, error = <r...
	Error adding item. | Item name = '<item name>'.
	Failed to trigger the autobind complete event on the platform.
	Connection to ThingWorx failed for an unknown reason. | Platform = <host:port...
	One or more value change updates lost due to insufficient space in the connec...
	Item failed to publish; multidimensional arrays are not supported. | Item nam...
	Store and Forward datastore unable to store data due to full disk.
	Store and Forward datastore size limit reached.
	Connection to ThingWorx was closed. | Platform = <host:port resource>.
	Failed to autobind property. | Name = '<property name>'.
	Failed to restart Thing. | Name = '<thing name>'.
	Write to property failed. | Property name = '<name>', reason = <reason>.
	ThingWorx request to add item failed. The item was already added. | Item name...
	ThingWorx request to remove item failed. The item doesn't exist. | Item name ...
	The server is configured to send an update for every scan, but the push type ...
	The push type of one or more properties are set to never push an update to th...
	ThingWorx request to remove an item failed. The item is bound and the force f...
	Write to property failed. | Thing name = '<name>', property name = '<name>', ...
	Error pushing property updates to thing. | Thing name = '<name>'.
	Unable to connect or attach to Store and Forward datastore. Using in-memory s...
	Store and Forward datastore reset due to file IO error or datastore corruption.
	Unable to apply settings change initiated by the Platform. Permission Denied....
	Configuration Transfer to ThingWorx Platform failed.
	Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>'
	Failed to delete stored updates in the Store and Forward datastore.
	Configuration Transfer from ThingWorx Platform failed.
	Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>'
	Check that your Application Key is properly formatted and valid.
	The maximum number of configured Industrial Things has been reached, count = ...
	Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<nam...
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Dropping pending autobinds due to interface shutdown or reinitialize. | Count...
	Serviced one or more autobind requests. | Count = <count>.
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Resumed pushing property updates to thing: the error condition was resolved. ...
	Configuration transfer from ThingWorx initiated.
	Configuration transfer from ThingWorx aborted.
	Initialized Store and Forward datastore. | Datastore location: '<location>'.
	Successfully deleted stored data from the Store and Forward datastore.
	Store and Forward mode changed. | Forward Mode = '<mode>'.
	Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastor...
	Missing server instance certificate '<cert location>'. Please use the OPC UA ...
	Failed to import server instance cert: '<cert location>'. Please use the OPC ...
	The UA server certificate is expired. Please use the OPC UA Configuration Man...
	A socket error occurred listening for client connections. | Endpoint URL = '<...
	The UA Server failed to register with the UA Discovery Server. | Endpoint URL...
	Unable to start the UA server due to certificate load failure.
	Failed to load the UA Server endpoint configuration.
	The UA Server failed to unregister from the UA Discovery Server. | Endpoint U...
	The UA Server failed to initialize an endpoint configuration. | Endpoint Name...
	The UA Server successfully registered with the UA Discovery Server. | Endpoin...
	The UA Server successfully unregistered from the UA Discovery Server. | Endpo...
	Com port is in use by another application. | Port = '<port>'.
	Unable to configure com port with specified parameters. | Port = COM<number>,...
	Driver failed to initialize.
	Unable to allocate thread resource. Please check the memory usage of the appl...
	Com port does not exist. | Port = '<port>'.
	Error opening com port. | Port = '<port>', OS error = <error>.
	Connection failed. Unable to bind to adapter. | Adapter = '<name>'.
	Winsock shut down failed. | OS error = <error>.
	Winsock initialization failed. | OS error = <error>.
	Winsock V1.1 or higher must be installed to use this driver.
	Socket error occurred binding to local port. | Error = <error>, Details = '<i...
	Device is not responding.
	Device is not responding. | ID = '<device>'.
	Serial communications error on channel. | Error mask = <mask>.
	Invalid array size detected writing to tag <device name>.<address>.
	Unable to write to address on device. | Address = '<address>'.
	Items on this page may not be changed while the driver is processing tags.
	Specified address is not valid on device. | Invalid address = '<address>'.
	Address '<address>' is not valid on device '<name>'.
	This property may not be changed while the driver is processing tags.
	Unable to write to address '<address>' on device '<name>'.
	Socket error occurred connecting. | Error = <error>, Details = '<information>'.
	Socket error occurred receiving data. | Error = <error>, Details = '<informat...
	Socket error occurred sending data. | Error = <error>, Details = '<informatio...
	Socket error occurred checking for readability. | Error = <error>, Details = ...
	Socket error occurred checking for writability. | Error = <error>, Details = ...
	%s |
	<Name> Device Driver '<name>'
	Could not load item state data. Reason: <reason>.
	Could not save item state data. Reason: <reason>.
	Feature '<name>' is not licensed and cannot be used.
	Failed to load the license interface, possibly due to a missing third-party d...
	Failed to initialize licensing. Unable to load the demo file license (Error $...
	Failed to initialize licensing. Unable to initialize the licensing identity (...
	Failed to initialize licensing. Unable to initialize trusted storage (Error $...
	Failed to initialize licensing. Unable to initialize the licensing publisher ...
	Failed to initialize licensing. Unable to establish system time interface (Er...
	Failed to initialize licensing (Error <error code>)
	Failed to process the activation response from the license server (Error: %...
	Failed to create an activation request (Error %x)
	Request failed with license server.
	Time Limited mode has expired.
	Maximum device count exceeded for the lite version '<number>' license. Edit p...
	Maximum runtime tag count exceeded for the lite version '<number>' license. E...
	Type <numeric type ID> limit of <maximum count> exceeded on feature '<name>'.
	<Object type name> limit of <maximum count> exceeded on feature '<name>'.
	The FlexNet Licensing Service must be enabled to process licenses. Failure to...
	The <name> feature license has been removed. The server will enter Time Limit...
	License for feature <name> cannot be accessed [error=<code>] and must be reac...
	Feature %1 is time limited and will expire at %2.
	Feature %1 is time limited and will expire at %2.
	Object count limit has been exceeded on feature <name>. Time limited usage wi...
	Feature count limit exceeded on <name>. Time limited usage will expire at <da...
	Time limited usage period on feature <name> has expired.
	Failed to obtain licenses from the license server.
	The license for this product has expired and will soon stop functioning. Plea...
	Licensing for this system is currently provided by a file-based license.
	Failed to connect to the license server.
	Failed to return licenses to the LLS.
	Maximum driver count exceeded for the lite version '<name>' driver license. E...
	Connecting to the license server.
	Successful communication with the license server. Renew interval established ...
	License synchronization required. Initiating request...
	Performing initial license request to the license server.
	Connected to license server, no changes.
	Requesting return of all borrowed licenses...
	Cannot add item. Requested count of <number> would exceed license limit of <m...
	The version of component <name> (<version>) is required to match that of comp...
	Maximum channel count exceeded for the lite version '<name>' driver license. ...
	%s is now licensed.

	Appendix — Running ThingWorx Kepware Edge in a Container
	Appendix — Running ThingWorx Kepware Edge as an Azure IoT Edge Module
	Index

