
SIXNET EtherTRAK Driver

© 2024 PTC Inc. All Rights Reserved.



SIXNET EtherTRAK Driver

Table of Contents

SIXNET EtherTRAK Driver 1

Table of Contents 2

SIXNET EtherTRAK Driver 4

Overview 4

Setup 5

Channel Properties — General 5

Tag Counts 6

Channel Properties — Ethernet Communications 6

Channel Properties — Write Optimizations 6

Channel Properties — Advanced 7

Device Properties — General 8

Operating Mode 9

Tag Counts 10

Device Properties — ScanMode 11

Device Properties — Timing 11

Device Properties — Auto-Demotion 12

Device Properties — TCP/IP 13

Device Properties — Blocks 13

Device Properties — Redundancy 15

Addressing RS-485 RemoteTRAK Devices Over the Ethernet 16

Optimizing Communications 17

Data Types Description 18

Error Descriptions 22

Missing address 22

Device address '<address>' contains a syntax error 22

Address '<address>' is out of range for the specified device or register 23

Data Type '<type>' is not valid for device address '<address>' 23

Device address '<address>' is Read Only 23

Array size is out of range for address '<address>' 23

Array support is not available for the specified address: '<address>' 24

Device '<device name>' is not responding 24

Unable to write to '<address>' on device '<device name>' 24

Winsock initialization failed (OS Error = n) 25

Winsock V1.1 or higher must be installed to use the SIXNET EtherTRAK device driver 25

Bad address in block [<start address> to <end address>] on device '<device name>' 25

Block size mismatch reading [<start address> to <end address>] on device '<device name> 25

www.ptc.com

2



SIXNET EtherTRAK Driver

Block request [<start address> to <end address>] on device '<device name>' responded with
exception = n 26

Index 27

www.ptc.com

3



SIXNET EtherTRAK Driver

SIXNET EtherTRAK Driver
Help version 1.018

CONTENTS

Overview
What is the SIXNET EtherTRAK Driver?

Device Setup
How do I configure a device for use with this driver?

Addressing RemoteTRAK Devices Over the Ethernet
How do I address RS-485 RemoteTRAK devices over Ethernet?

Optimizing Communications
How do I get the best performance from the SIXNET EtherTRAK Driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location on a SIXNET EtherTRAK device?

Error Descriptions
What error messages does the SIXNET EtherTRAK Driver produce?

Overview
The SIXNET EtherTRAK Driver provides a reliable way to connect SIXNET EtherTRAK devices to OPC client
applications; including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended for
use with SIXNET EtherTRAK devices that support the Modbus Open TCP/UDP protocol. This driver utilizes
UDP socket communications to provide maximum performance with minimal overhead.

www.ptc.com

4



SIXNET EtherTRAK Driver

Setup
Supported Devices
SIXNET EtherTRAK I/Omodules (firmware version 2.10 or later)
SIXNET RemoteTRAK I/O connected through an EtherTRAK I/Omodule.*
SIXNET VersaTRAK RTUs (firmware version 2.12 or later)
SIXNET SIXTRAK gateways (firmware version 2.12 or later)

*Both the RemoteTRAK and EtherTRAKmust have firmware version 2.01 or later.

Communication Protocol
Modbus Open Protocol over Ethernet using Winsock V1.1 or higher.

Channel and Device Limits
The maximum number of channels supported by this driver is 100. The maximum number of devices sup-
ported by this driver is 1024 per channel.

Device ID (EtherTRAK IP Network Address without RemoteTRAK RS-485 Bridging)
SIXNET EtherTRAK devices are networked using standard IP addressing. Determine and set the IP of the
SIXNET EtherTRAKmodules using the SIXNET Remote IO Toolkit. In general, the Device ID has the following
format: YYY.YYY.YYY.YYY, where YYY designates the device IP address. Each YYY byte should be in the range
of 0 to 255. If intending to address RemoteTRAK modules hung from the SIXNET EtherTRAK module's RS-485 port,
refer to Addressing RS-485 RemoteTRAK Devices Over Ethernet.

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same com-
munications driver or with unique communications drivers. A channel acts as the basic building block of an
OPC link. This group is used to specify general channel properties, such as the identification attributes and
operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window
when browsing the OPC server's tag space. The channel name is part of the OPC browser information. The
property is required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

www.ptc.com

5



SIXNET EtherTRAK Driver

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during chan-
nel creation. It is a disabled setting in the channel properties. The property is required for creating a chan-
nel.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. Changes to the properties should not be made
once a large client application has been developed. Utilize proper user role and privilege management to
prevent operators from changing properties or accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this optionmakes the channel's diagnostic information available to
OPC applications allows the usage of statistics tags that provide feedback to client applications regarding
the operation of the channel. Because the server's diagnostic features require a minimal amount of over-
head processing, it is recommended that they be utilized when needed and disabled when not. The default is
disabled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to "Communication Diagnostics" and "Statistics Tags" in the server help.

Tag Counts

Static Tags:  Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

Channel Properties — Ethernet Communications
Ethernet Communication can be used to communicate with devices.

Ethernet Settings

Network Adapter:  Specify the network adapter to bind. When left blank or Default is selected, the oper-
ating system selects the default adapter.

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties to meet specific needs or improve application respons-
iveness.

www.ptc.com

6



SIXNET EtherTRAK Driver

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags:  This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client applic-
ations is sent to the target device. This mode should be selected if the write operation order or the
write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize

the operation of HMI data without causing problems with Boolean operations, such as a momentary
push button.

l Write Only Latest Value for All Tags:  This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows optim-
ization for applications with continuous writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

www.ptc.com

7



SIXNET EtherTRAK Driver

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as
a Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may
default to Unmodified. Non-normalized float handling allows users to specify how a driver handles non-nor-
malized IEEE-754 floating point data. Descriptions of the options are as follows:

l Replace with Zero:  This option allows a driver to replace non-normalized IEEE-754 floating point val-
ues with zero before being transferred to clients.

l Unmodified:  This option allows a driver to transfer IEEE-754 denormalized, normalized, non-num-
ber, and infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the
option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-
Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers,
users must enter a device ID for each controller.

Identification

Name:  Specify the name of the device. It is a logical user-defined name that can be up to 256 characters
long andmay be used onmultiple channels.

Note: Although descriptive names are generally a good idea, some OPC client applications may have a
limited display window when browsing the OPC server's tag space. The device name and channel name
become part of the browse tree information as well. Within an OPC client, the combination of channel name
and device name would appear as "ChannelName.DeviceName".
For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server

help.

Description: Specify the user-defined information about this device.
Many of these properties, including Description, have an associated system tag.

www.ptc.com

8



SIXNET EtherTRAK Driver

Channel Assignment: Specify the user-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model:  Specify the type of device that is associated with this ID. The contents of the drop-downmenu
depend on the type of communications driver being used. Models that are not supported by a driver are dis-
abled. If the communications driver supports multiple device models, the model selection can only be
changed when there are no client applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model selec-
tion to the physical device. If the device is not represented in the drop-downmenu, select a model that con-
forms closest to the target device. Some drivers support a model selection called "Open," which allows users
to communicate without knowing the specific details of the target device. For more information, refer to the
driver documentation.

ID:  Specify the device's driver-specific station or node. The type of ID entered depends on the com-
munications driver being used. For many communication drivers, the ID is a numeric value. Drivers that sup-
port a Numeric ID provide users with the option to enter a numeric value whose format can be changed to
suit the needs of the application or the characteristics of the selected communications driver. The format is
set by the driver by default. Options include Decimal, Octal, and Hexadecimal.

Note: If the driver is Ethernet-based or supports an unconventional station or node name, the device's
TCP/IP address may be used as the device ID. TCP/IP addresses consist of four values that are separated by
periods, with each value in the range of 0 to 255. Some device IDs are string based. There may be additional
properties to configure within the ID field, depending on the driver.

Operating Mode

Data Collection:  This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not attemp-
ted when a device is disabled. From a client standpoint, the data is marked as invalid and write operations
are not accepted. This property can be changed at any time through this property or the device system tags.

Simulated:  Place the device into or out of Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The data is not saved if the server removes
the item (such as when the server is reinitialized). The default is No.

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The Sys-
tem tag allows this property to be monitored from the client.

2. When a device is simulated, updates may not appear faster than one (1) second in the client.

www.ptc.com

9



SIXNET EtherTRAK Driver

 Simulation Mode is for test and simulation purposes only. It should never be used in a production envir-
onment.

Tag Counts

Static Tags:  Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

www.ptc.com

10



SIXNET EtherTRAK Driver

Device Properties — Scan Mode
The ScanMode specifies the subscribed-client requested scan rate for tags that require device com-
munications. Synchronous and asynchronous device reads and writes are processed as soon as possible;
unaffected by the ScanMode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions
of the options are:

l Respect Client-Specified Scan Rate:  This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate:  This mode specifies the value set as the maximum scan

rate. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate:  This mode forces tags to be scanned at the specified rate for sub-
scribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only:  This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the OPC client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate:  This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the applic-
ation's needs. In many cases, the environment requires changes to these properties for optimum per-
formance. Factors such as electrically generated noise, modem delays, and poor physical connections can
influence howmany errors or timeouts a communications driver encounters. Timing properties are specific
to each configured device.

Communications Timeouts

www.ptc.com

11



SIXNET EtherTRAK Driver

Connect Timeout:  This property (which is used primarily by Ethernet based drivers) controls the amount of
time required to establish a socket connection to a remote device. The device's connection time often takes
longer than normal communications requests to that same device. The valid range is 1 to 30 seconds. The
default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not sup-
ported by the driver, it is disabled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout:  Specify an interval used by all drivers to determine how long the driver waits for a
response from the target device to complete. The valid range is 50 to 9999999 milliseconds (167 minutes).
The default is usually 1000 milliseconds, but can vary depending on the driver. The default timeout for most
serial drivers is based on a baud rate of 9600 baud or better. When using a driver at lower baud rates,
increase the timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout: Specify howmany times the driver issues a communications request before con-
sidering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is typ-
ically 3, but can vary depending on the driver's specific nature. The number of attempts configured for an
application depends largely on the communications environment. This property applies to both connection
attempts and request attempts.

Timing

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target
device. It overrides the normal polling frequency of tags associated with the device, as well as one-time
reads and writes. This delay can be useful when dealing with devices with slow turnaround times and in
cases where network load is a concern. Configuring a delay for a device affects communications with all
other devices on the channel. It is recommended that users separate any device that requires an inter-
request delay to a separate channel if possible. Other communications properties (such as communication
serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may
limit the maximum value due to a function of their particular design. The default is 0, which indicates no
delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline for a specific time period, the driver can continue to
optimize its communications with other devices on the same channel. After the time period has been
reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,
the device is placed on-scan; otherwise, it restarts its off-scan time period.

www.ptc.com

12



SIXNET EtherTRAK Driver

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted sys-

tem tag.

Timeouts to Demote: Specify howmany successive cycles of request timeouts and retries occur before the
device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is
reached. During this period, no read requests are sent to the device and all data associated with the read
requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for
another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000
milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the
off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard
writes; the server automatically fails any write request received from a client and does not post a message
to the Event Log.

Device Properties — TCP/IP

Port Number: Specify the TCP/IP port number that the remote device is configured to use. The default set-
ting is 502.

Device Properties — Blocks

www.ptc.com

13



SIXNET EtherTRAK Driver

Discretes: Coils can be read from 8 to 800 points (bits) at a time. A higher block size means more points will
be read from the device in a single request. If data needs to be read from non-contiguous locations within
the device, the block size can be reduced. The default setting is 32.

Registers: Registers can be read from 1 to 120 locations (words) at a time. A higher block size means more
register values will be read from the device in a single request. If data needs to be read from non-contiguous
locations within the device, the block size can be reduced. The default setting is 32.

www.ptc.com

14



SIXNET EtherTRAK Driver

Device Properties — Redundancy

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

www.ptc.com

15

https://www.ptc.com/~/media/kepware-store/en/manuals/redundancymaster-manual


SIXNET EtherTRAK Driver

Addressing RS-485 RemoteTRAK Devices Over the Ethernet
The SIXNET EtherTRAK Driver can address RemoteTRAK I/O connected on a RS485 party-line by connecting
through the SIXNET ET-GT-485-1 Ethernet to Modbus RS485 gateway. Any SIXNET EtherTRAK I/Omodule
messages are passed through to the RS485 port.

The intelligent Modbus interfaces accept Modbus Ethernet commands and convert them to traditional Mod-
bus messages. They then pass the command along to the RS485 port on the Ethernet interface. Replies from
the station are returned to Modbus Ethernet format and passed back on the Ethernet network to the SIXNET
EtherTRAK OPC server.

Device ID (EtherTRAK IP Network Address with RemoteTRAK RS-485 Bridging)
SIXNET EtherTRAK devices are networked using standard IP addressing. Users can determine or set the IP of
the SIXNET EtherTRAKmodules using the SIXNET Remote IO Toolkit. In general, the Device ID has the fol-
lowing format YYY.YYY.YYY.YYY, where YYY designates the device IP address. Each YYY byte should be in the
range of 0 to 255.

When addressing RemoteTRAK devices via the SIXNET EtherTRAKmodule's RS-485 port, include the station
number of the RemoteTRAK device as part of the SIXNET EtherTRAK IP address. Using the same format as
the IP address, adding the RemoteTRAK station number would take the following format:
YYY.YYY.YYY.YYY.ZZZ. The normal IP address remains the same as denoted by the YYY.YYY.YYY.YYY; how-
ever, the station number of the desired RemoteTRAK unit on the SIXNET EtherTRAKmodule's RS-485 port is
denoted by the .ZZZ. The valid station number range for ZZZ is 1 to 247.

Example
Assume that the SIXNET EtherTRAKmodule is at IP address 10.1.1.10. To this EtherTRAKmodule, the user
desires to attach four RemoteTRAKmodules that have already been configured with Modbus Station num-
bers of 1, 2, 3 and 4. In the SIXNET EtherTRAK OPC Server, the user would add four separate devices to the
SIXNET EtherTRAK project. The first device would have a Device ID of 10.1.1.10.1; the second 10.1.1.10.2; the
third 10.1.1.10.3; the forth 10.1.1.10.4. Thus, although each Device ID has the same IP address, the last field
contains the actual station number of each RemoteTRAK device attached to the RS-485 port.

www.ptc.com

16



SIXNET EtherTRAK Driver

Optimizing Communications
The SIXNET EtherTRAK Driver has been designed to provide the best performance with the least amount of
impact on the system's overall performance. While the SIXNET EtherTRAK Driver is fast, there are a couple
of guidelines that can be used to control and optimize the application and gain maximum performance.

Our server refers to communications protocols like EtherTRAK driver as a channel. Each channel defined in
the application represents a separate path of execution in the server. Once a channel has been defined, a
series of devices must then be defined under that channel. Each of these devices represents a single Ether-
TRAK I/Omodule from which data will be collected. While this approach to defining the application will
provide a high level of performance, it won't take full advantage of the SIXNET EtherTRAK Driver or the net-
work. An example of how the applicationmay appear when configured using a single channel is shown
below.

Each device appears under a single SIXNET EtherTRAK Driver channel. In this con-
figuration, the driver must move from one device to the next as quickly as possible
to gather information at an effective rate. As more devices are added or more
information is requested from a single device, the overall update rate begins to suf-
fer.

If the SIXNET EtherTRAK Driver could only define one single channel, then the example shown above would
be the only option available; however, the SIXNET EtherTRAK Driver can define up to 100 channels. Using
multiple channels distributes the data collection workload by simultaneously issuing multiple requests to the
network. An example of how the same applicationmay appear when configured using multiple channels to
improve performance is shown below.

Each device can be defined under its own channel. In this configuration, a single
path of execution is dedicated to the task of gathering data from each device. If the
application has fewer devices than channels, it can be optimized exactly as it is
shown here.

The performance will improve even if the application has more devices than chan-
nels. While one device per channel is ideal, the application will still benefit from
additional channels. Although spreading the device load across all channels will
cause the server to move from device to device again, it can now do so with far
less devices to process on a single channel.

Block Size, which is available on each defined device, can also affect the SIXNET EtherTRAK Driver's per-
formance. Block Size refers to the number of bytes that may be requested from a device at one time. To
refine the performance of this driver, configure Block Size from 1 to 120 registers per request. The coil block
size can be adjusted from 8 to 800. Increase the block size setting for the device if the application consists of
large requests for consecutively ordered data.

www.ptc.com

17



SIXNET EtherTRAK Driver

Data Types Description

Data Type Description

Boolean Single bit

Byte Unsigned 8-bit value

bit 0 is the low bit
bit 7 is the high bit

Char Signed 8-bit value

bit 0 is the low bit
bit 6 is the high bit
bit 7 is the sign bit

Word Unsigned 16-bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16-bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32-bit value

bit 0 is the low bit
bit 31 is the high bit

DWord
Example

If register 40001 is specified as a DWord, bit 0 of register 40001 would be bit 0 of the 32-
bit data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type. The
reverse is true when this is not selected.

Long Signed 32-bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

Long Example If register 40001 is specified as a long, bit 0 of register 40001 would be bit 0 of the 32-bit
data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type. The
reverse is true when this is not selected.

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.

Float 32-bit floating point value.

The driver interprets two consecutive registers as a floating point value by making the
second register the high word and the first register the low word.

www.ptc.com

18



SIXNET EtherTRAK Driver

Data Type Description

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-bit
word, and bit 15 of register 40002 would be bit 31 of the 32-bit word.

Note: The descriptions above assume first word low data handling of 32-bit data types.

www.ptc.com

19



SIXNET EtherTRAK Driver

Address Descriptions
Access to I/O of different types is supported by the Modbus messaging protocol via address ranges. To
access the following SIXNET data types, use the following Modbus address ranges.

SIXNET Data Type SIXNET Address Modbus Data Address

Discrete In: 0 .. 9999 10001 .. 20000

Discrete Out: 0 .. 9999 00001 .. 10000

Analog In: 0 .. 2999 30001 .. 33000

Analog Out: 0 .. 2999 40001 .. 43000

Short Integer In 0 .. 1999 33001 .. 35000

Long Integer In 0 .. 1999 35001 .. 37000

Floating Point In: 0 .. 2999 37001 .. 40000

Short Integer Out: 0 .. 1999 43001 .. 45000

Long Integer Out: 0 .. 1999 45001 .. 47000

Floating Point Out: 0 .. 2999 47001 .. 50000

Examples
1. Modbus data address 10001 equates to SIXNET discrete input 0.
2. Modbus data address 30006 equates to SIXNET analog input 5.

Generic Modbus Addressing Decimal Format
The default data types for dynamically defined tags are shown in bold.

Address Range Data Type Access

Output Coils

[Function Codes (decimal): 01, 05,
15]

000001-065536 Boolean, Byte, Char, Word,
Short*

Read/Write

Input Coils

[Function Code (decimal): 02]

100001-165536 Boolean, Byte, Char, Word,
Short*

Read Only

Internal Registers

[Function Code (decimal): 04]

300001-365536
300001-365535
3xxxxx.0-
3xxxxx.15

Word, Short, BCD
Float, DWord, Long, LBCD
Boolean

Read Only

Holding Registers

[Function Codes (decimal): 03, 06,
16]

400001-465536
400001-465535
4xxxxx.0-
4xxxxx.15

Word, Short, BCD
Float, DWord, Long, LBCD
Boolean

Read/Write

*When accessing coils as a byte or char, the address specified must lie on a byte boundary (such as xxxxx1,
xxxxx9, xxxxx17 and so forth). When accessed as a word or short, the address specified must lie on a word
boundary (such as xxxxx1, xxxxx17, xxxx33 and so forth).

Examples
1. To access SIXNET Discrete Output 0, enter a Modbus address of 00001.

www.ptc.com

20



SIXNET EtherTRAK Driver

2. To access SIXNET Analog In 3, enter a Modbus address of 30004.
3. To access SIXNET Analog Out 2, enter a Modbus address of 40003.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean. There
are twomethods of addressing an array. Examples are given using holding register locations.

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one.

Rows multiplied by cols cannot exceed the block size that has been assigned to the device for the register
type. For arrays of 32 bit data types, rows multiplied by cols multiplied by 2 cannot exceed the block size.

www.ptc.com

21



SIXNET EtherTRAK Driver

Error Descriptions
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Missing address
Device address '<address>' contains a syntax error
Address '<address>' is out of range for the specified device or register
Data Type '<type>' is not valid for device address '<address>'
Device address '<address>' is Read Only
Array size is out of range for address '<address>'
Array support is not available for the specified address: '<address>'

Device Status Messages
Device '<device name>' is not responding
Unable to write to '<address>' on device '<device name>'

Driver Error Messages
Winsock initialization failed (OS Error = n)
Winsock V1.1 or higher must be installed to use the SIXNET EtherTRAK device driver

Device Specific Messages
Bad address in block [<start address> to <end address>] on device '<device name>'
Block size mismatch reading [<start address> to <end address>] on device '<device
name>'
Block request [<start address> to <end address>] on device '<device name>.' responded
with exception = n

Missing address
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically has no length.

Solution:
Re-enter the address in the client application.

Device address '<address>' contains a syntax error
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically contains one or more invalid characters.

Solution:

www.ptc.com

22



SIXNET EtherTRAK Driver

Re-enter the address in the client application.

Address '<address>' is out of range for the specified device or register
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically references a location that is beyond the range of sup-
ported locations for the device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application.

Data Type '<type>' is not valid for device address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address '<address>' is Read Only
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically has a requested access mode that is not compatible with
what the device supports for that address.

Solution:
Change the access mode in the client application.

Array size is out of range for address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically is requesting an array size that is too large for the
address type or block size of the driver.

Solution:
Re-enter the address in the client application to specify a smaller value for the array or a different starting
point.

www.ptc.com

23



SIXNET EtherTRAK Driver

Array support is not available for the specified address: '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically contains an array reference for an address type that
doesn't support arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

Device '<device name>' is not responding
Error Type:
Serious

Possible Cause:

1. The serial connection between the device and the Host PC is broken.

2. The communications properties for the serial connection are incorrect.

3. The named device may have been assigned an incorrect Network ID.

4. The response from the device took longer to receive than the amount of time specified in the
"Request Timeout" device property.

Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications properties match those of the device.

3. Verify that the Network ID given to the named device matches that of the actual device.

4. Increase the Request Timeout property so that the entire response can be handled.

Unable to write to '<address>' on device '<device name>'
Error Type:
Serious

Possible Cause:

1. The serial connection between the device and the Host PC is broken.

2. The communications properties for the serial connection are incorrect.

3. The named device may have been assigned an incorrect Network ID.

Solution:

www.ptc.com

24



SIXNET EtherTRAK Driver

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications properties match those of the device.

3. Verify that the Network ID given to the named device matches that of the actual device.

Winsock initialization failed (OS Error = n)
Error Type:
Fatal

OS Error Indication Possible Solution

10091 Indicates that the underlying network sub-
system is not ready for network communication.

Wait a few seconds and restart the
driver.

10067 Limit on the number of tasks supported by the
Windows Sockets implementation has been
reached.

Close one or more applications that
may be using Winsock and restart the
driver.

Winsock V1.1 or higher must be installed to use the SIXNET EtherTRAK
device driver
Error Type:
Fatal

Possible Cause:
The version number of the Winsock DLL found on the system is less than 1.1.

Solution:
Upgrade Winsock to version 1.1 or higher.

Bad address in block [<start address> to <end address>] on device '<device
name>'
Error Type:
Serious

Possible Cause:
An attempt has beenmade to reference a nonexistent location in the specified device.

Solution:
Verify the tags assigned to addresses in the specified range on the device and eliminate ones that reference
invalid locations.

Block size mismatch reading [<start address> to <end address>] on device
'<device name>
Error Type:
Fatal for addresses falling in this block.

www.ptc.com

25



SIXNET EtherTRAK Driver

Possible Cause:
The driver attempted to read a block of memory in the PLC. The PLC responded with no error, but did not
provide the driver with the requested block size of data.

Solution:
Ensure that the range of memory exists for the PLC.

Block request [<start address> to <end address>] on device '<device
name>' responded with exception = n
Error Type:
Fatal for addresses falling in this block.

Possible Cause:
The driver attempted to read a block of memory in the PLC. The PLC responded with the exception error
shown.

Solution:
Ensure that the range of memory or data type exists for the PLC.

www.ptc.com

26



SIXNET EtherTRAK Driver

Index

A

Address '<address>' is out of range for the specified device or register 23

Address Descriptions 20

Addressing RS-485 RemoteTRAK Devices over the Ethernet 16

Array size is out of range for address '<address>' 23

Array support is not available for the specified address 24

Array support is not available for the specified address:'<address>' 24

Attempts Before Timeout 12

Auto-Demotion 12

B

Bad address in block [<start address> to <end address>] on device '<device name>' 25

BCD 18

Block request [<start address> to <end address>] on device '<device name>' responded with exception =
n 26

Block Size 17

Block size mismatch reading [<start address> to <end address>] on device '<device name> 25

Blocks 13

Boolean 18

C

Channel Assignment 9

Channel Properties — Advanced 7

Channel Properties — Ethernet Communications 6

Channel Properties — General 5

Channel Properties — Write Optimizations 7

Coils 20

Communications Timeouts 11

Connect Timeout 12

D

Data Collection 9

www.ptc.com

27



SIXNET EtherTRAK Driver

Data Type '<type>' is not valid for device address '<address>' 23

Data Types Description 18

Demote on Failure 13

Demotion Period 13

Device '<device name>' is not responding 24

Device address '<address>' contains a syntax error 22

Device address '<address>' is read only 23

Device ID 5

Device Properties — Auto-Demotion 12

Device Properties — General 8

Device Properties — Redundancy 15

Device Properties — Timing 11

Diagnostics 6

Discard Requests when Demoted 13

Discretes 14

Do Not Scan, Demand Poll Only 11

Driver 9

Duty Cycle 7

DWord 18

E

Error Descriptions 22

Ethernet Settings 6

F

Firmware 5

Float 18

G

General 8

I

ID 9

Identification 5, 8

www.ptc.com

28



SIXNET EtherTRAK Driver

Initial Updates from Cache 11

Inter-Device Delay 8

L

LBCD 18

Long 18

M

Missing address 22

Modbus Open Protocol 5

Model 9

N

Name 8

Network 5

Network Adapter 6

Non-Normalized Float Handling 8

O

Operating Mode 9

Optimization Method 7

Optimizing Your SIXNET EtherTRAK Communications 17

Overview 4

P

performance 17

Port 13

Protocol 5

R

Redundancy 15

Registers 14, 20

www.ptc.com

29



SIXNET EtherTRAK Driver

Replace with Zero 8

Request Timeout 12

Respect Tag-Specified Scan Rate 11

S

ScanMode 11

Setup 5

Short 18

Simulated 9

T

Tag Counts 6, 10

TCP/IP 13

Timeouts to Demote 13

Timing 11

U

Unable to write to '<address>' on device '<device name>' 24

Unmodified 8

W

Winsock initialization failed (OS Error = n) 25

Winsock V1.1 5

Winsock V1.1 or higher must be installed to use the SIXNET EtherTRAK device driver 25

Word 18

Write All Values for All Tags 7

Write Only Latest Value for All Tags 7

Write Only Latest Value for Non-Boolean Tags 7

www.ptc.com

30


	SIXNET EtherTRAK Driver
	Table of Contents
	SIXNET EtherTRAK Driver
	Overview

	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Ethernet Communications
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Device Properties — General
	Operating Mode
	Tag Counts

	Device Properties — Scan Mode
	Device Properties — Timing
	Device Properties — Auto-Demotion
	Device Properties — TCP/IP
	Device Properties — Blocks
	Device Properties — Redundancy

	Addressing RS-485 RemoteTRAK Devices Over the Ethernet
	Optimizing Communications
	Data Types Description
	Error Descriptions
	Missing address
	Device address '<address>' contains a syntax error
	Address '<address>' is out of range for the specified device or register
	Data Type '<type>' is not valid for device address '<address>'
	Device address '<address>' is Read Only
	Array size is out of range for address '<address>'
	Array support is not available for the specified address: '<address>'
	Device '<device name>' is not responding
	Unable to write to '<address>' on device '<device name>'
	Winsock initialization failed (OS Error = n)
	Winsock V1.1 or higher must be installed to use the SIXNET EtherTRAK device d...
	Bad address in block [<start address> to <end address>] on device '<device na...
	Block size mismatch reading [<start address> to <end address>] on device '<de...
	Block request [<start address> to <end address>] on device '<device name>' re...

	Index
	Bookmarks
	Address Descriptions


