
User-Configurable (U-CON) Driver

© 2024 PTC Inc. All Rights Reserved.

User-Configurable (U-CON) Driver

Table of Contents

User-Configurable (U-CON) Driver 1

Table of Contents 2

User-Configurable (U-CON) Driver 7

Overview 8

Setup 8

Channel Properties — General 9

Tag Counts 10

Channel Properties — Serial Communications 10

Channel Properties — Write Optimizations 13

Channel Properties — Advanced 14

Channel Properties — Mode 15

Unsolicited Message Wait Time 16

Device Properties — General 17

Operating Mode 18

Tag Counts 18

Device Properties — ScanMode 18

Device Properties — Ethernet Encapsulation 19

Device Properties — Timing 20

Device Properties — Auto-Demotion 21

Device Properties — Tag Generation 21

Driver Configuration 23

Step One: Defining a Server Channel 23

Step Two: Defining a Device 24

Step Three: Defining a Device Profile 24

Step Four: Testing and Debugging the Configuration 25

Password Protection 25

Transaction Editor 27

Tags 30

Tag Groups 31

Tag Blocks 32

Function Blocks 32

Scratch Buffers 33

Global Buffers 34

Rolling Buffer 34

Initialize Buffers 34

www.ptc.com

2

User-Configurable (U-CON) Driver

Event Counters 36

Buffer Pointers 36

Transaction Validation 36

Transaction Commands 37

Add Comment Command 40

Cache Write Value Command 41

Clear Rolling Buffer Command 41

Clear RX Buffer Command 42

Clear TX Buffer Command 42

Close Port Command 42

Compare Buffer Command 42

Continue Command 44

Control Serial Line Command 44

Copy Buffer Command 45

Deactivate Tag Command 46

End Command 46

Go To Command 47

Handle Escape Characters Command 47

Insert Function Block 49

Invalidate Tag Command 50

Label Command 50

Log Event Command 50

Modify Byte Command 51

Move Buffer Pointer 53

Pause Command 54

Read Response Command 55

Seek Character Command 57

Seek String Command 59

Set Event Counter Command 60

Test Bit within Byte Command 61

Test Character Command 63

Test Checksum Command 64

Test Device ID Command 66

Test Frame Length Command 67

Test String Command 68

Transmit Command 69

Transmit Byte Command 69

Update Tag Command 70

www.ptc.com

3

User-Configurable (U-CON) Driver

Write Character Command 71

Write Checksum Command 72

Write Data Command 74

Write Device ID Command 74

Write Event Counter Command 75

Write String Command 76

Unsolicited Transactions 78

Updating the Server 80

Device Data Formats 80

Dynamic ASCII Formatting 88

Format Alternating Byte ASCII String 89

Format ASCII Integer 90

Format ASCII HEX Integer 91

Format ASCII Multi-Bit Integer 92

Format ASCII Real 93

Format ASCII String 95

Format ASCII Hex String 96

Format ASCII Hex String From Nibbles 97

Format ASCII Integer (Packed 6 Bit) 98

Format ASCII Real (Packed 6 Bit) 99

Format ASCII String (Packed 6 Bit) 100

Format Multi-Bit Integer 101

Format Unicode String 102

Format UnicodeLoHi String 103

Format Date / Time 104

ChecksumDescriptions 105

ASCII Character Table 110

ASCII Character Table (Packed 6 Bit) 111

Tips and Tricks 112

Bit Fields: Using theModify Byte and Copy Buffer Commands 112

Branching: Using the conditional, Go To, Label and End Commands 113

Dealing with Echoes 114

Debugging: Using theDiagnosticWindow and Quick Client 114

Delimited Lists 115

Moving the Buffer Pointer 120

Scanner Applications 121

Slowing Things Down: Using the Pause Command 121

www.ptc.com

4

User-Configurable (U-CON) Driver

Transferring Data Between Transactions: Using Scratch Buffers 122

Data Types Description 123

Address Descriptions 124

Error Descriptions 125

Missing address. 126

Device address <address> contains a syntax error. 126

Address <address> is out of range for the specified device or register. 127

Device address <address> is not supported by model <model name>. 127

Data type <type> is not valid for device address <address>. 127

Device address <address> is read only. 127

Array support is not available for the specified address: <address>. 128

COMn does not exist. 128

Error opening COMn. 128

COMn is in use by another application. 128

Unable to set comm properties on COMn. 129

Communications error on <channel name> [<error mask>]. 129

Unable to create serial I/O thread. 129

Device <device name> is not responding. 130

Unable to write to <address> on device <device name>. 130

RX buffer overflow. Stop characters not received. 131

RX buffer overflow. Full variable length frame could not be received. 131

Unable to locate Transaction Editor executable file. 131

Copy Buffer command failed for address <address.transaction> - <source/destination> buffer
bounds. 132

Failed to load the global file. 132

Go To command failed for address <address.transaction> - label not found. 132

Mod Byte command failed for address <address.transaction> - write buffer bounds. 133

Test Character command failed for address <address.transaction> - source buffer bounds. 133

Test Checksum command failed for address <address.transaction> - read buffer bounds. 133

Test Checksum command failed for address <address.transaction> - data conversion. 134

Test Device ID command failed for address <address.transaction> - read buffer bounds. 134

Test Device ID command failed for address <address.transaction> - data conversion. 134

Test String command failed for address <address.transaction> - source buffer bounds. 135

Update Tag command failed for address <address.transaction> - <read/scratch/event counter>
buffer bounds. 135

Write Character command failed for address <address.transaction> - destination buffer bounds. 136

Write Checksum command failed for address <address.transaction> - write buffer bounds. 136

Write Checksum command failed for address <address.transaction> - data conversion. 136

Write Data command failed for address <address.transaction> - write buffer bounds. 137

www.ptc.com

5

User-Configurable (U-CON) Driver

Write Data command failed for address <address.transaction> - data conversion. 137

Write Device ID command failed for address <address.transaction> - write buffer bounds. 137

Write Device ID command failed for address <address.transaction> - data conversion. 138

Write String command failed for address <address.transaction> - destination buffer bounds. 138

Tag update for address <address> failed due to data conversion error. 138

Unsolicited message receive timeout. 139

Unsolicited message dead time expired. 139

Move Pointer command failed for address <address.transaction>. 140

Seek Character command failed for address <address.transaction> - label not found. 140

Insert Function Block command failed for address <address.transaction> - Invalid FB. 140

Unable to save password protected device profile in XML format. 140

XML loading error: The number of unsolicited transaction keys exceeds the set key length: <key
length>. 141

XML loading error: The two buffers of a <command> are the same. The buffers must be unique. 141

XML loading error: The string <string> entered for a Write String command with format
<format> is invalid. 141

XML loading error: Range exceeds source buffer size of <max buffer size> bytes for a <com-
mand>. 142

Index 143

www.ptc.com

6

User-Configurable (U-CON) Driver

User-Configurable (U-CON) Driver
Help version 1.134

CONTENTS

Overview
What is the User-Configurable (U-CON) Driver?

Setup
How do I configure a device for use with the User-Configurable (U-CON) Driver?

Driver Configuration
How do I configure the driver for use with a particular device?

Transaction Editor
How do I use the Transaction Editor to create a profile for a particular device?

Tips and Tricks
Where can I see some example solutions to common driver profile development problems?

Data Types Description
What data types does the User-Configurable (U-CON) Driver support?

Address Descriptions
How do I reference a data location in a device using the User-Configurable (U-CON) Driver?

Error Descriptions
What error messages are produced by the driver?

www.ptc.com

7

User-Configurable (U-CON) Driver

Overview
The User-Configurable (U-CON) Driver provides a reliable way to connect User-Configurable (U-CON) Eth-
ernet and serial devices to OPC client applications; including HMI, SCADA, Historian, MES, ERP, and count-
less custom applications. While other drivers are designed specifically for use with a single device type, or a
small family of closely related devices, the User-Configurable (U-CON) Driver can be programmed to work
with a very wide variety of serial and Ethernet devices. Driver profiles are created using the integrated Trans-
action Editor. Transaction elements are selected from context aware menus, thus eliminating the need to
learn scripting languages and greatly reducing the possibility of errors.

Features
The User-Configurable (U-CON) Driver is completely integrated with the server. Custom drivers can be
developed, debugged, and run from the server itself. Such tight integration with the server ensures that all
of the important features users demand from other drivers are available to the custom driver projects.
These features include full OPC 1.0 and 2.0 compliance, DDE support, tag browsing, automatic tag database
generation, diagnostics and Event Logging. The server may also be configured to run as a Windows service.

The server's Ethernet Encapsulation feature is supported andmay be used in solicited or unsolicited mode.
This feature is used to communicate with serial devices connected to a terminal server such as the Digi One
RealPort or the Lantronix CoBox over an Ethernet network. It also is used to develop driver profiles for native
Ethernet devices.

Like any other serial driver for the server, custom driver projects will have modem support, communication
port configuration and standard error handling features with configurable retries and timeouts. Fur-
thermore, the server's built in diagnostics display is used to easily diagnose communications problems dur-
ing driver profile development.

The User-Configurable (U-CON) Driver is based on the same technology found in every other driver avail-
able for the server. With the User-Configurable (U-CON) Driver, users get all of the benefits of a true multi-
threaded 32-bit environment without the need to learn the intricacies of Microsoft Windows development.

Setup
Supported Devices
The User-Configurable (U-CON) Driver can be configured to work with a wide range of serial devices.

Supported Models
NumericID
StringID

Communication Protocol
Most protocols can be accommodated.

Supported Communication Properties
Baud Rate: 300, 600, 1200, 2400, 9600, 19200, or 38400.
Parity: None, Even, or Odd.
Data Bits: 5, 6, 7, or 8.
Stop Bits: 1 or 2.

Note: Not all devices support the listed configurations.

Channel and Device Limits

www.ptc.com

8

User-Configurable (U-CON) Driver

The maximum number of channels supported by this driver is 256. The maximum number of devices sup-
ported by this driver is 256 per channel.

Ethernet Encapsulation
This driver supports Ethernet Encapsulation in both solicited and unsolicited modes. Ethernet Encapsulation
allows the driver to communicate with serial devices attached to an Ethernet network using a terminal
server (such as the Lantronix DR1). It may be enabled through the Communications dialog in Channel Prop-
erties. For more information, refer to the Channel Properties Serial Communication.

Flow Control
When using an RS232 / RS485 converter, the type of flow control that is required will depend on the needs of
the converter. Some converters do not require any flow control, whereas others require RTS flow. Consult
the converter's documentation to determine its flow requirements. An RS485 converter that provides auto-
matic flow control is recommended.
Note: When using the manufacturer's supplied communications cable, it is sometimes necessary to

choose a flow control setting of RTS or RTS Always under the Channel Properties.

Inter-Request Delay
This option limits how often requests are sent to a device. It will override the normal polling frequency of
tags associated with the device, as well as one-shot reads and writes. Delays will not be used if the channel
is in unsolicited mode. This delay can be useful when dealing with devices with slow turnaround times and in
cases where network load is a concern. Configuring a delay for a device will affect communications with all
other devices on the channel. As such, it is recommended that any device that requires an inter-request
delay be isolated to a separate channel if possible. Users may set the inter-request delay from 0 to 300000
milliseconds (5 minutes). The default setting of 0 disables this feature.
See Also: Defining a Server Channel

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same com-
munications driver or with unique communications drivers. A channel acts as the basic building block of an
OPC link. This group is used to specify general channel properties, such as the identification attributes and
operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window
when browsing the OPC server's tag space. The channel name is part of the OPC browser information. The
property is required for creating a channel.

www.ptc.com

9

User-Configurable (U-CON) Driver

For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag
Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during chan-
nel creation. It is a disabled setting in the channel properties. The property is required for creating a chan-
nel.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. Changes to the properties should not be made
once a large client application has been developed. Utilize proper user role and privilege management to
prevent operators from changing properties or accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this optionmakes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead pro-
cessing, it is recommended that they be utilized when needed and disabled when not. The default is dis-
abled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

Channel Properties — Serial Communications
Serial communication properties are available to serial drivers and vary depending on the driver, connection
type, and options selected. Below is a superset of the possible properties.
Click to jump to one of the sections: Connection Type, Serial Port Settings or Ethernet Settings, and
Operational Behavior.

Notes:

l With the server's online full-time operation, these properties can be changed at any time. Utilize
proper user role and privilege management to prevent operators from changing properties or
accessing server features.

l Users must define the specific communication parameters to be used. Depending on the driver, chan-
nels may or may not be able to share identical communication parameters. Only one shared serial
connection can be configured for a Virtual Network (see Channel Properties — Serial Com-
munications).

www.ptc.com

10

User-Configurable (U-CON) Driver

Connection Type

Physical Medium: Choose the type of hardware device for data communications. Options include Modem,
Ethernet Encapsulation, COM Port, and None. The default is COM Port.

1. None: Select None to indicate there is no physical connection, which displays the Operation with no
Communications section.

2. COM Port: Select Com Port to display and configure the Serial Port Settings section.

3. Modem: Select Modem if phone lines are used for communications, which are configured in the
Modem Settings section.

4. Ethernet Encap.: Select if Ethernet Encapsulation is used for communications, which displays the
Ethernet Settings section.

5. Shared: Verify the connection is correctly identified as sharing the current configuration with another
channel. This is a read-only property.

Serial Port Settings

COM ID: Specify the Communications ID to be used when communicating with devices assigned to the chan-
nel. The valid range is 1 to 9991 to 16. The default is 1.

Baud Rate: Specify the baud rate to be used to configure the selected communications port.

Data Bits: Specify the number of data bits per data word. Options include 5, 6, 7, or 8.

Parity: Specify the type of parity for the data. Options include Odd, Even, or None.

Stop Bits: Specify the number of stop bits per data word. Options include 1 or 2.

Flow Control: Select how the RTS and DTR control lines are utilized. Flow control is required to communicate
with some serial devices. Options are:

l None: This option does not toggle or assert control lines.

l DTR: This option asserts the DTR line when the communications port is opened and remains on.

www.ptc.com

11

User-Configurable (U-CON) Driver

l RTS: This option specifies that the RTS line is high if bytes are available for transmission. After all buf-
fered bytes have been sent, the RTS line is low. This is normally used with RS232/RS485 converter
hardware.

l RTS, DTR: This option is a combination of DTR and RTS.

l RTS Always: This option asserts the RTS line when the communication port is opened and remains
on.

l RTS Manual: This option asserts the RTS line based on the timing properties entered for RTS Line
Control. It is only available when the driver supports manual RTS line control (or when the properties
are shared and at least one of the channels belongs to a driver that provides this support).
RTS Manual adds an RTS Line Control property with options as follows:

l Raise: Specify the amount of time that the RTS line is raised prior to data transmission. The
valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Drop: Specify the amount of time that the RTS line remains high after data transmission. The
valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Poll Delay: Specify the amount of time that polling for communications is delayed. The valid
range is 0 to 9999. The default is 10 milliseconds.

Tip: When using two-wire RS-485, "echoes" may occur on the communication lines. Since this com-
munication does not support echo suppression, it is recommended that echoes be disabled or a RS-485 con-
verter be used.

Operational Behavior

l Report Communication Errors: Enable or disable reporting of low-level communications errors.
When enabled, low-level errors are posted to the Event Log as they occur. When disabled, these
same errors are not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the connection when there are no longer any tags being ref-
erenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been
removed before closing the COM port. The default is 15 seconds.

Ethernet Settings
Note: Not all serial drivers support Ethernet Encapsulation. If this group does not appear, the functionality

is not supported.

Ethernet Encapsulation provides communication with serial devices connected to terminal servers on the
Ethernet network. A terminal server is essentially a virtual serial port that converts TCP/IP messages on the
Ethernet network to serial data. Once the message has been converted, users can connect standard devices
that support serial communications to the terminal server. The terminal server's serial port must be prop-
erly configured to match the requirements of the serial device to which it is attached. For more information,
refer to "Using Ethernet Encapsulation" in the server help.

l Network Adapter: Indicate a network adapter to bind for Ethernet devices in this channel. Choose a
network adapter to bind to or allow the OS to select the default.
Specific drivers may display additional Ethernet Encapsulation properties. For more information, refer

to Channel Properties — Ethernet Encapsulation.

Modem Settings

www.ptc.com

12

User-Configurable (U-CON) Driver

l Modem: Specify the installed modem to be used for communications.

l Connect Timeout: Specify the amount of time to wait for connections to be established before failing
a read or write. The default is 60 seconds.

l Modem Properties: Configure the modem hardware. When clicked, it opens vendor-specific modem
properties.

l Auto-Dial: Enables the automatic dialing of entries in the Phonebook. The default is Disable. For more
information, refer to "Modem Auto-Dial" in the server help.

l Report Communication Errors: Enable or disable reporting of low-level communications errors.
When enabled, low-level errors are posted to the Event Log as they occur. When disabled, these
same errors are not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the modem connection when there are no longer any tags
being referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been
removed before closing the modem connection. The default is 15 seconds.

Operation with no Communications

l Read Processing: Select the action to be taken when an explicit device read is requested. Options
include Ignore and Fail. Ignore does nothing; Fail provides the client with an update that indicates fail-
ure. The default setting is Ignore.

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties to meet specific needs or improve application respons-
iveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client applic-
ations is sent to the target device. This mode should be selected if the write operation order or the
write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the

www.ptc.com

13

User-Configurable (U-CON) Driver

server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize

the operation of HMI data without causing problems with Boolean operations, such as a momentary
push button.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows optim-
ization for applications with continuous writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as
a Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may
default to Unmodified. Non-normalized float handling allows users to specify how a driver handles non-nor-
malized IEEE-754 floating point data. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point val-
ues with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-num-
ber, and infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the
option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-
Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

www.ptc.com

14

User-Configurable (U-CON) Driver

Channel Properties — Mode
The device determines the mode; some are designed to work in unsolicited mode (such as scanners and
scales) and others only supply data when it is requested or "solicited" (such as most controllers and PLCs).
Once the driver's channel mode is set, it cannot be changed: any driver configuration beyond this point is
likely incompatible with the newmode of operation.

Mode

Unsolicited Mode: Specify the type of mode in which the devices communicate. When disabled, the device
runs in normal mode (No), where the driver requests data from each device periodically (up to 100 or more
times per second per tag). It ignores all data that is not in response to a request. If Unsolicited Mode is
enabled (Yes), the driver waits for data to come in from the device and does not request data. The default is
No (normal mode).
For more information, refer to Unsolicited Communications below.
 When using Ethernet Encapsulation, users must configure its mode of operation to match this property.

Receive Timeout: Specify the amount of time that the driver should wait to receive the full, unsolicited mes-
sage. If a full message has not been received by this time (either due to a hardware problem or an incor-
rectly defined Read Response command), the driver will assume that the next received character is the start
of another message. The default is 1000. This property is only available in Unsolicited Mode.

Dead Time: Specify how often the driver re-synchronizes itself with the devices after receiving a message
with an unknown key. If a message is unrecognizable, the driver will not know where that message ends and
the next one begins. The driver allows the entire unrecognizedmessage to come in, and will then wait for a
period of time. This dead time must be enough so that it is safe to assume that the next byte received is the
beginning of another message. Reasonable values depend upon the target device and should be as small as
possible, but longer than the typical time between bytes in a message. The time between bytes in a message
is approximately 8000/baud rate (in milliseconds). The default is 1000 milliseconds. This property is only
available in Unsolicited Mode.
Note: Because the dead time starts each time a byte is received, users should not define too large a

value. The driver reads individual messages as a single unrecognizable stream.

Key Length: Specify the number of characters to use as transaction keys. These characters must be the
first characters in a message. The protocols used on a given channel must be such that keys of the same
length can uniquely identify all possible messages. The key length may be between 0 and 32 characters. The
default is 0. This property is only available in Unsolicited Mode.

The driver can still be used even if the protocol does not permit the use of transaction keys. An example
would be a scanner that sends packets starting with the raw data values. In these cases, the transaction key
length must be set to zero. This forces the driver to use the first unsolicited transaction defined on the chan-
nel to interpret all incoming packets. Because of this, there should be only one device on the channel. Fur-
thermore, that device should have a single block tag or a single non-block tag defined. That tag or tag block

www.ptc.com

15

User-Configurable (U-CON) Driver

may be placed in a group.
For more information on unsolicited transactions and transaction keys, refer to Unsolicited Transactions.

Log Unsolicited Message Timeouts: This property is useful when diagnosing communications problems.
When checked, a message will be placed in the Event Log each time that the Receive Timeout period expires
while receiving an unsolicited message. Such events may be caused by data delays due to network traffic or
gateway devices, incorrectly configured transactions, or Pause commands in the transactions. The default
setting is unchecked.

Unsolicited Communications
Upon receiving an unsolicited message, the driver must determine what user-defined transaction should be
used to interpret the message. To make this possible, users must associate each transaction definition with
some property unique to messages of a given type. For example, a device could report changes in input 1 as
"IN01xxxx" where xxxx is a 4-byte value, and changes in input 2 as "IN02xxxx". In this case, IN01 would tell
the driver to use one transaction that updates an Input_1 Tag, and IN02 would tell it to use another trans-
action that updates an Input_2 Tag. The driver can look up the appropriate transaction using the first four
bytes of any message from this particular device as keys. If the protocol does not allow the use of such keys,
it is still possible to use this driver by specifying a Key Length of 0.

Important: Users must not mix devices that send unsolicited data with those that do not on the same
channel. It is necessary to separate all devices that issue unsolicited data to one or more channels that are
specifically for unsolicited communications. It is possible to mix protocols on an unsolicited channel as long
as the transaction keys are the same length and are unique. Users must remember that the channel's mode
cannot be changed after it has been defined. This precaution is necessary because any transactions that
have been defined previously would likely be incompatible with the newmode.

Unsolicited Message Wait Time
Specify the amount of time the device waits for an unsolicited message.

Description of the property is as follows:

l Wait Time: Specify the amount of time that the device will wait for unsolicited messages before the
_UnsolicitedPcktRcvdOnTime system tag is set to 1. The _UnsolicitedPcktRcvdOnTime Tag (which is
displayed by the client application) indicates whether an unsolicited message has been received for a
given device within the amount of time specified. The default setting is 1000 milliseconds.

Determining the _UnsolicitedPcktRcvdOnTime Tag's Status
In the client application, locate the _UnsolicitedPcktRcvdOnTime tag's Value field.

l If the Value field displays 0, the message was received within the Wait Time amount.

l If the Value field displays 1, the message was not received within the Wait Time amount.

Note: For solicited communications, the _UnsolicitedPcktRcvdOnTime Tag will always display 1. It
can be ignored.

www.ptc.com

16

User-Configurable (U-CON) Driver

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers,
users must enter a device ID for each controller.

Identification

Name: Specify the name of the device. It is a logical user-defined name that can be up to 256 characters
long andmay be used onmultiple channels.

Note: Although descriptive names are generally a good idea, some OPC client applications may have a
limited display window when browsing the OPC server's tag space. The device name and channel name
become part of the browse tree information as well. Within an OPC client, the combination of channel name
and device name would appear as "ChannelName.DeviceName".
For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server

help.

Description: Specify the user-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: Specify the user-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: Specify the type of device that is associated with this ID. The contents of the drop-downmenu
depend on the type of communications driver being used. Models that are not supported by a driver are dis-
abled. If the communications driver supports multiple device models, the model selection can only be
changed when there are no client applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model selec-
tion to the physical device. If the device is not represented in the drop-downmenu, select a model that con-
forms closest to the target device. Some drivers support a model selection called "Open," which allows users
to communicate without knowing the specific details of the target device. For more information, refer to the
driver documentation.

ID: Specify the device's driver-specific station or node. The type of ID entered depends on the com-
munications driver being used. For many communication drivers, the ID is a numeric value. Drivers that sup-
port a Numeric ID provide users with the option to enter a numeric value whose format can be changed to
suit the needs of the application or the characteristics of the selected communications driver. The format is
set by the driver by default. Options include Decimal, Octal, and Hexadecimal.

Note: If the driver is Ethernet-based or supports an unconventional station or node name, the device's
TCP/IP address may be used as the device ID. TCP/IP addresses consist of four values that are separated by
periods, with each value in the range of 0 to 255. Some device IDs are string based. There may be additional
properties to configure within the ID field, depending on the driver.

www.ptc.com

17

User-Configurable (U-CON) Driver

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not attemp-
ted when a device is disabled. From a client standpoint, the data is marked as invalid and write operations
are not accepted. This property can be changed at any time through this property or the device system tags.

Simulated: Place the device into or out of Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The data is not saved if the server removes
the item (such as when the server is reinitialized). The default is No.

Notes:
1. Updates are not applied until clients disconnect and reconnect.

2. The System tag (_Simulated) is read only and cannot be written to for runtime protection. The System tag
allows this property to be monitored from the client.

3. In Simulationmode, the item's memory map is based on client update rate(s) (Group Update Rate for OPC
clients or Scan Rate for native and DDE interfaces). This means that two clients that reference the same
item with different update rates return different data.

4. When a device is simulated, updates may not appear faster than one (1) second in the client.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production envir-
onment.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

Device Properties — Scan Mode
The ScanMode specifies the subscribed-client requested scan rate for tags that require device com-
munications. Synchronous and asynchronous device reads and writes are processed as soon as possible;
unaffected by the ScanMode properties.

www.ptc.com

18

User-Configurable (U-CON) Driver

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions
of the options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan

rate. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for sub-
scribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the OPC client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties — Ethernet Encapsulation
Ethernet Encapsulation is designed to provide communication with serial devices connected to terminal serv-
ers on the Ethernet network. A terminal server is essentially a virtual serial port. The terminal server con-
verts TCP/IP messages on the Ethernet network to serial data. Once the message has been converted to a
serial form, users can connect standard devices that support serial communications to the terminal server.

For more information, refer to "How to... Use Ethernet Encapsulation" in server help.
Ethernet Encapsulation is transparent to the driver; configure the remaining properties as if connecting to

the device directly on a local serial port.

IP Address: Enter the four-field IP address of the terminal server to which the device is attached. IPs are
specified as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0
to 255. Each serial device may have its own IP address; however, devices may have the same IP address if
there are multiple devices multi-dropped from a single terminal server.

Port: Configure the Ethernet port to be used when connecting to a remote terminal server.

www.ptc.com

19

User-Configurable (U-CON) Driver

Protocol: Set TCP/IP or UDP communications. The selection depends on the nature of the terminal server
being used. The default protocol selection is TCP/IP. For more information on available protocols, refer to the
terminal server's help documentation.

Notes

1. With the server's online full-time operation, these properties can be changed at any time. Utilize
proper user role and privilege management to prevent operators from changing properties or
accessing server features.

2. The valid IP Address range is greater than (>) 0.0.0.0 to less than (<) 255.255.255.255.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the applic-
ation's needs. In many cases, the environment requires changes to these properties for optimum per-
formance. Factors such as electrically generated noise, modem delays, and poor physical connections can
influence howmany errors or timeouts a communications driver encounters. Timing properties are specific
to each configured device.

Communications Timeouts

Connect Timeout: This property (which is used primarily by Ethernet based drivers) controls the amount of
time required to establish a socket connection to a remote device. The device's connection time often takes
longer than normal communications requests to that same device. The valid range is 1 to 30 seconds. The
default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not sup-
ported by the driver, it is disabled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout: Specify an interval used by all drivers to determine how long the driver waits for a
response from the target device to complete. The valid range is 50 to 9999999 milliseconds (167 minutes).
The default is usually 1000 milliseconds, but can vary depending on the driver. The default timeout for most
serial drivers is based on a baud rate of 9600 baud or better. When using a driver at lower baud rates,
increase the timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout: Specify howmany times the driver issues a communications request before con-
sidering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is typ-
ically 3, but can vary depending on the driver's specific nature. The number of attempts configured for an
application depends largely on the communications environment. This property applies to both connection
attempts and request attempts.

Timing

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target
device. It overrides the normal polling frequency of tags associated with the device, as well as one-time

www.ptc.com

20

User-Configurable (U-CON) Driver

reads and writes. This delay can be useful when dealing with devices with slow turnaround times and in
cases where network load is a concern. Configuring a delay for a device affects communications with all
other devices on the channel. It is recommended that users separate any device that requires an inter-
request delay to a separate channel if possible. Other communications properties (such as communication
serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may
limit the maximum value due to a function of their particular design. The default is 0, which indicates no
delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline for a specific time period, the driver can continue to
optimize its communications with other devices on the same channel. After the time period has been
reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,
the device is placed on-scan; otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted sys-

tem tag.

Timeouts to Demote: Specify howmany successive cycles of request timeouts and retries occur before the
device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is
reached. During this period, no read requests are sent to the device and all data associated with the read
requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for
another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000
milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the
off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard
writes; the server automatically fails any write request received from a client and does not post a message
to the Event Log.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation.
Select communications drivers can be configured to automatically build a list of tags that correspond to

www.ptc.com

21

User-Configurable (U-CON) Driver

device-specific data. These automatically generated tags (which depend on the nature of the supporting
driver) can be browsed from the clients.

If the target device supports its own local tag database, the driver reads the device's tag information and
uses the data to generate tags within the server. If the device does not natively support named tags, the
driver creates a list of tags based on driver-specific information. An example of these two conditions is as fol-
lows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the
tag names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/Omodule types, the com-
munications driver automatically generates tags in the server that are based on the types of I/Omod-
ules plugged into the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more
information, refer to the property descriptions below.

On Duplicate Tag
When automatic tag database generation is enabled, the server needs to know what to do with the tags that
it may have previously added or with tags that have been added or modified after the communications
driver since their original creation. This setting controls how the server handles OPC tags that were auto-
matically generated and currently exist in the project. It also prevents automatically generated tags from
accumulating in the server.

For example, if a user changes the I/Omodules in the rack with the server configured to Always Generate
on Startup, new tags would be added to the server every time the communications driver detected a new
I/Omodule. If the old tags were not removed, many unused tags could accumulate in the server's tag space.
The options are:

l Delete on Create: This option deletes any tags that were previously added to the tag space before
any new tags are added. This is the default setting.

l Overwrite as Necessary: This option instructs the server to only remove the tags that the com-
munications driver is replacing with new tags. Any tags that are not being overwritten remain in the
server's tag space.

l Do not Overwrite: This option prevents the server from removing any tags that were previously gen-
erated or already existed in the server. The communications driver can only add tags that are com-
pletely new.

l Do not Overwrite, Log Error: This option has the same effect as the prior option, and also posts an
error message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the com-
munications driver as well as any tags that have been added using names that match generated tags.

www.ptc.com

22

User-Configurable (U-CON) Driver

Users should avoid adding tags to the server using names that may match tags that are automatically
generated by the driver.

Parent Group: This property keeps automatically generated tags frommixing with tags that have been
enteredmanually by specifying a group to be used for automatically generated tags. The name of the group
can be up to 256 characters. This parent group provides a root branch to which all automatically generated
tags are added.

Allow Automatically Generated Subgroups: This property controls whether the server automatically cre-
ates subgroups for the automatically generated tags. This is the default setting. If disabled, the server gen-
erates the device's tags in a flat list without any grouping. In the server project, the resulting tags are named
with the address value. For example, the tag names are not retained during the generation process.

Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system
automatically increments to the next highest number so that the tag name is not duplicated. For example, if
the generation process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been
modified, Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be
accessed from the System tags allows a client application to initiate tag database creation.

Note: Create tags is disabled if the Configuration edits a project offline.

Driver Configuration
There are four steps required to configure the User-Configurable (U-CON) Driver. Users must define a
server channel, define a server device, define a device profile, and then test and debug the configuration.
Although the first two steps are relatively simple, the final two steps will most likely require a significant
amount of effort and attention.

For more information on a specific step, select a link from the list below.

Step One: Defining a Server Channel
Step Two: Defining a Server Device
Step Three: Defining a Device Profile
Step Four: Testing and Debugging the Configuration

See Also: Password Protection

Step One: Defining a Server Channel

1. To start, create a new server project and create a new channel. InDevice Driver, select User-Con-
figurable (U-CON) Driver from the list of installed drivers.

Note: Many devices can be connected to a single channel as long as they can all use the same pro-
tocol and driver.

2. Specify the Serial Communication properties (such as baud rate, parity, number of data bits, and so
forth) required by the devices.

3. Configure theWrite Optimization properties for the channel.

www.ptc.com

23

User-Configurable (U-CON) Driver

4. Specify the Advanced properties as required.

5. Specify theMode to indicate if the devices on this channel communicate in unsolicited mode.

6. Once the properties have been specified, clickNext.

7. Click Finish.

Step Two: Defining a Device
Users must define a device and its properties.

General
Scan Mode
Ethernet Encapsulation (if in use)
Timing
Auto-Demotion

Device IDs
The ID model supports device IDs in the range of 0 to 65535. The StringID model supports Device IDs con-
sisting of any valid string. The device ID is only meaningful if the transactions use theWrite Device ID or
Test Device ID commands.

Note: Not all devices recognize the entire range.

Step Three: Defining a Device Profile
The User-Configurable (U-CON) Driver requires that users define a device profile for each target device. A
device profile includes a definition of each tag that the driver serves as well as the sequence of commands
necessary to carry out Read andWrite requests. This work is completed using the Transaction Editor, which
is the graphical user interface of the driver. The Transaction Editor cannot be started if the device is in use.
Before accessing, disconnect all client applications.

To invoke the Transaction Editor, double-click on the “U-CON Device Profile” item under the device in the pro-
ject tree and click the Transaction Editor link. Alternatively, you can launch the Transaction Editor by right-
clicking on the ”U-CON Device Profile” item and select the Transaction Editor item.

Notes:

1. The device profile may be password protected. For more information, refer to Password Protection.

2. The Transaction Editor can be used to construct groups of tags and transaction command
sequences. Its user-defined profile is shown below.

www.ptc.com

24

User-Configurable (U-CON) Driver

Once a device profile has been created, the tag and transaction definitions can be sent to the server by click-
ing Update Server on the toolbar or main menu. If the Transaction Editor is closed, users will be given the
chance to update the server. The tags and groups previously defined with the Transaction Editor will auto-
matically be generated in the server. Remember, the changes have not been saved to file at this point: save
the server project every time one of the device profiles is edited. Device profiles are an extension of the
standard server project and are saved as part of the server project file (.opf).

At this point, the driver project may be used. Once a driver profile has been created and loaded, the User-
Configurable (U-CON) Driver should work just like any other driver plug-in for the server. Changes may be
made to the profile at any time by disconnecting all client applications and then invoking the Transaction
Editor from Device Properties. Remember to save the project in between edit sessions.

See Also: Transaction Editor

Step Four: Testing and Debugging the Configuration
Once a device profile has been created using the Transaction Editor, it should be tested. To do so, first con-
nect the devices and client application and ensure that the data can be read and written correctly. If there
are any problems, refer to the server's built-in Diagnostic Window, which can be a very useful tool in debug-
ging the profile.

For more information on debugging, refer to Tips and Tricks.

Caution: Although the User-Configurable (U-CON) Driver runtime processor makes every reasonable
effort to trap error conditions, it is still possible for certain poorly-defined configurations to cause a driver
failure. For this reason, development work should be completed on an isolated system when possible, and
the project should be tested thoroughly before going live. Users should also save work frequently.

Password Protection
Device profiles have the option of being password protected, which prevents unauthorized users from
launching the Transaction Editor and examining or modifying the profile. Each device profile can have its
own password.

Note: This feature is not the same as the OPC Server's User Manager tool.

www.ptc.com

25

User-Configurable (U-CON) Driver

1. To enable password protection for a device, double-click the “U-CON Device Profile” item under the
Device in the project tree.

2. If the device does not have a password associated with it, theManage Password field will have an
Add Password ... link in it. To invoke the Add Password dialog, click this link.

3. In Password, specify the desired password. Passwords are not case-sensitive andmay be up to 15
characters long.

4. In Confirm, retype the password. Once finished, clickOK.

Note: The server project must be saved after a password has been added.

5. 5. Now that the Device Profile has a password assigned to it, a Change Password... link will be
provided in theManage Password field. To change or remove a password, click this link.

6. Users will be required to enter the current password and the new password twice. To disable pass-
word protection, leave New password and Confirm new blank. Passwords are not case-sensitive
andmay be up to 15 characters long. Users must save the server project after a password is
changed.

7. To launch the Transaction Editor, click the Transaction Editor link. If a password has been assigned
to this Device Profile, the user will be prompted to provide the password before the Transaction
Editor launches

www.ptc.com

26

User-Configurable (U-CON) Driver

8. To automatically generate the tags that are configured in the Transaction Editor without launching it,
click Regenerate Tag Database. The link will be enabled when there is a runtime connection and dis-
abled when there is not.

9. Once finished, clickOK.

Transaction Editor
A transaction is a list of simple actions needed to Read data from or Write data to a device. Transactions
come in three varieties: Read,Write, and unsolicited.

l Read transactions normally consist of a series of Write commands that build up a Read request
string, a Transmit command that triggers the transmission of the request to the device, a Read
Response command which waits for the expected response from the device, and anUpdate Tag
command which parses and reformats the desired data from the response and updates the tag's
value. A Read response may also employ other commands, including conditionals as the application
dictates.

l Write transactions normally consist of a series of Write commands that build up a Write request
string, a Transmit command, and possibly a Read response andUpdate Tag command. One of the
Write commands will almost always be aWrite Data command that takes the desired Write value
from the client application and reformats it as required by the device.

l Unsolicited transactions are related to Read transactions, except that the first executable com-
mandmust be a Read Response command. Each unsolicited transactionmust also have a Trans-
action Key defined which will help the driver recognize what transaction should process a given
message. When the driver is in unsolicited mode, it can only have Write and unsolicited transactions.
In normal mode, it can only have Read andWrite transactions. For more information on unsolicited
transactions, refer to Unsolicited Transactions.

Transaction Editor
Normally, a driver is developed for a specific device type or family of closely related devices. The various
transaction steps are programmed directly into the driver which allows users to select a driver and go. The
User-Configurable (U-CON) Driver fills the need for a non-specific driver that can be used to communicate
with a large number of devices for which targeted drivers have not yet been developed. It is up to the user to
define the transactions necessary to communicate with the device. This work is done using the integrated
Transaction Editor application.

The Transaction Editor is the integrated development environment of the User-Configurable (U-CON) Driver.
It provides an intuitive means for configuring the driver. Tags, groupings of tags, and transactions are con-
structed using contextual pop-upmenus. This graphical user interface approach eliminates the need to
learn a driver programming or scripting language, and provides a degree of error prevention. All that is
needed is an understanding of the particular device protocol in question.

In the OPC server property group, double-click on the “U-CON Device Profile” item under the device in the
project treedevice and select the Transaction Editor link (as shown below). Alternatively, you can launch the
Transaction Editor by right-clicking on the ”U-CON Device Profile” item and select the Transaction Editor
item.

www.ptc.com

27

User-Configurable (U-CON) Driver

In the Transaction Editor property group, a Device Profile can be both created andmodified. A Device Pro-
file refers to tags' groupings and transactions andmay be password protected. For more information, refer
to Password Protection.

As shown in the image below, the left pane shows the Item View and the right pane shows the Transaction
View.

l The Item View displays the hierarchy of OPC items attached to a particular device. The fundamental
item type is the tag. Associated with each tag are one or more transactions (represented by "to" and
"from" arrow icons). These transactions can be for solicited Reads, Solicited Writes or Unsolicited
Reads, and are created automatically whenever a tag is defined. Tags may be attached to the device,
placed in tag groups (represented by plain folder icons) or in tag blocks (represented by folders with
tags). A tag block is a special kind of group where all the contained tags are updated at once with a
single Read or unsolicited transaction common to the block. Block Reads are muchmore efficient
than the functionally equivalent series of individual Reads and should be used whenever possible.

l When a transaction is selected in the item view, the Transaction View displays the currently defined
sequence of commands that are to take place. When something other than a transaction is selected
in the item view, the Transaction View is blank.

l The Edit Option at the top of the screen includes options for adding items, as well as options to cut,
paste, delete or show the selected item's properties. The menu options commonly used are also rep-
resented on the toolbar for quick access.

Adding and Modifying Transactions in the Transaction View
Right-click in the Transaction View to invoke a submenu that provides access to all the available transaction
commands. The dialog should appear as shown below.

www.ptc.com

28

User-Configurable (U-CON) Driver

For users without a mouse, individual commands can be selected from the Edit submenus with "alt-char-
acter" combinations.

Updating the OPC Server with the Device Profile
Once all of the groups, tags and transactions have been defined, the device profile must be sent to the
server. This is initiated by clicking on the Update Server icon or by selecting File| Update Server from the
main menu. The Transaction Editor also provides a chance upon its closing.

After the device profile has been transferred, the Transaction Editor will shut itself down and the driver will
automatically initiate the OPC server's auto tag database generation function. All of the tags that have been
defined will instantly appear in the OPC server project.

Note: At this point, the changes have not been saved to file. Click File| Save to save. Remember to save
the OPC server project after each edit session.

Further Information
Click on any of the following links to learn more about the main help pages for the Transaction Editor.

Tags
Tag Groups
Tag Blocks
Function Blocks
Scratch Buffers
Global Buffers

www.ptc.com

29

User-Configurable (U-CON) Driver

Rolling Buffers
Initialize Buffers
Event Counters
Buffer Pointers
Transaction Validation
Transaction Commands
Unsolicited Transactions
Updating the Server
Device Data Formats
Checksum Descriptions
ASCII Character Table

Tags
A tag item can be added to the device, a tag group or a tag block. A tag can be added using the main menu,
a device right-click menu, or the toolbar. To edit an existing tag, users can either double-click on it or select it
and choose Properties. Alternatively, utilize the tag's right-click menu or the toolbar.

l The Namemust be set first. If the tag is new, the driver will offer a valid default name that can be
changed to any valid name. Valid namesmust start with a letter or digit; consist of only letters,
digits, and underscores; be less than 32 characters long; and be unique to the parent device, group,
or tag block.

l The Description is an optional string that will be displayed along with the tag in the server. It serves
no function other than to provide the user additional information about the tag.

www.ptc.com

30

User-Configurable (U-CON) Driver

l The Data Type is the representation of the data when it is exchanged between the server and client
applications. The User-Configurable (U-CON) Driver allows any one of the basic data types to be
chosen, although the one that best suits the expected range of data values should be chosen.

l The Format Property determines the representation of the data as it is exchanged between the
server and device. Some formats, such as ASCII Integer, ASCII Real and ASCII String, require addi-
tional properties to be set. When this is the case, the Format Properties button will be enabled. The
format determines howmany data bytes will be transferred between the server and device and is
shown for reference below the Format Properties button.

Note: Whenever the format selection is changed, the user defined Format Properties, if any, will be
reset to default values appropriate for the format. Always check these settings when available. For
more information on formats, refer to Device Data Formats.

By default, a tag is set with Read/Write access, although it can be changed to Read Only by using the drop list
box at the bottom of the dialog. The tag will be created with all necessary transactions. Users must, how-
ever, define the sequence of commands necessary to carry out each transaction. The access permission can
be at any time during an edit session; however, when changing from Read/Write to Read Only, all commands
defined for the write transaction will be permanently lost.

Note: Users can create a Write Only tag by selecting Read/Write access and leaving the read transaction
empty. In unsolicited mode, tags are created with an unsolicited transaction instead of a Read. For more
information, refer to Unsolicited Transactions.

Like the server andmany OPC Clients, the tag dialog can be used to browse the tags currently defined at the
selected grouping level, duplicate tags and delete tags. This is especially useful when creating many similar
tags. These functions can be accessed through the five buttons below the help button.

Notes:

1. The tag's properties can be changed at any time during an editing session.

2. Event counter values are stored in 32-bit buffers. All tags updated from event counters must be con-
figured with 32-bit, 16-bit, or 8-bit Intel (Lo Hi) device data format. For more information, refer to
Event Counters.

Tag Groups
Tag groups are provided to organize tags. A tag group item can be added onto the device or onto another
group through the main menu, item pop-upmenu or the toolbar. An existing group can be edited by select-
ing and then clicking Properties from the main menu, the group's pop-upmenu or with the toolbar.

www.ptc.com

31

User-Configurable (U-CON) Driver

The only user-defined property that a tag group has is its name. Although a valid default name is generated
when first creating a new group, it can be changed to any valid name. Valid names must start with a letter or
digit; consist of only letters, digits, and underscores; be less than 32 characters long; and be unique to the
parent item. A tag group name may not be the same as a tag block at the same level since the server treats
blocks as groups. The group's name can be changed at any time during the editing session. Groups may be
nested up to three levels deep.

Tag Blocks
Tag blocks are a special type of group used by the Transaction Editor to contain all tags that can be
updated by a common read or unsolicited transaction. The transaction common to all tags in the block is
attached to the block item in the editor's item view. This common transaction should contain anUpdate Tag
command for each tag in the group. Block tags with Read andWrite client access permission will each have
their ownWrite transaction. A tag on group folder icon in the Transaction Editor represents tag blocks only.
The server represents tag blocks with the normal group folder icon.

A tag block item can be added to the device or a tag group. Tag blocks may be added using the main menu,
the selected item's pop-upmenu, or the toolbar. Existing blocks can be edited by selecting it then clicking
Properties from the main menu, the right-click menu, or the toolbar.

The only user-defined property that a tag block has is its name. Although a valid default name is generated
when first creating a new block, it can be changed to any valid name. Valid names must start with a letter or
digit; consist of only letters, digits, and underscores; be less than 32 characters long; and be unique to the
parent item. A tag block name may not be the same as a tag group at the same level since the server treats
blocks as groups. The block's name can be changed at any time during an editing session. Groups and
blocks may be nested up to three levels deep.

Function Blocks
Function blocks can be used to define a series of commands that can be shared by any number of trans-
actions, thus making projects more compact and easier to maintain. Function blocks reside in the U-CON
global data store, andmay be referenced by any device on any U-CON channel. To create a Function Block,
follow the instructions below.

1. Invoke the Transaction Editor for any device on a U-CON channel. Select the _Global item.

2. SelectNew Function Block from the Edit menu or toolbar.

www.ptc.com

32

User-Configurable (U-CON) Driver

Note: The Function Block dialog should appear as shown below.

Descriptions of the properties are as follows.

l Name: Valid names must start with a letter or digit; consist of only letters, digits, and underscores; be
less than 32 characters long; and be unique.

l Description: An optional description of the function block can be entered here.

3. ClickOK to create the new function block. A new function block item will appear under the _Global node
(item view, left pane). "FBTransaction item" will be displayed under the new function block. Select the trans-
action item and enter the function block command in the Transaction View as would be done for any other
transaction type. For more information, refer to Insert Function Block Command.

Notes:

1. Update Tag and Insert Function Block commands cannot be used in a function block. Update Tag
commands can only be used in Read, Write and Unsolicited transactions that are explicitly associated
to a particular tag or block of tags. Function blocks cannot be used within function blocks.

2. Be cautious when including Go To and Label commands in function blocks, as infinite loops can be
created. When a Go To command is executed, the driver will scan all commands in the current Read,
Write, or Unsolicited transaction from top to bottom looking for a matching Label. Commands in func-
tion blocks referenced in the transaction will be scanned in the order in which they appear.

Scratch Buffers
Each device has 256 scratch buffers associated with it. These buffers can be used to exchange information
between transactions defined for that device. Data cannot be copied to a scratch buffer associated with a dif-
ferent device. Data stored in a scratch buffer will exist as long as the OPC server project is running or until
the scratch buffer is overwritten in a transaction.

See Also: Global Buffers.

www.ptc.com

33

User-Configurable (U-CON) Driver

When updating a tag from a scratch buffer, be aware that the value used will be the last value stored in the
buffer. Depending on how the transaction is defined, this data may not necessarily represent the current
state of a device. If no data has been stored in the scratch buffer at the time the Update Tag command is
executed, the tag will be given a value of zero.
See Also: Update Tag Command.

No special measures are taken when a Copy Buffer Command is executed when the buffer in question has
not yet been initialized. If there is no data in the buffer, no bytes will be copied.
 For more information (and examples of how to use scratch buffers) refer to Tips and Tricks.
 For instructions on how to initialize a scratch buffer, refer to Initialize Buffers.

Global Buffers
Global buffers can be used to exchange information among devices. There are 256 global buffers. Each
global buffer is associated with all devices under every channel. This is different from a scratch buffer,
which is associated with only one device.

Important: Global buffers should be used with caution because they are associated with all devices for all
channels. To exchange device-specific information (e.g., to make device-specific changes), use scratch buf-
fers.

Note: For instructions on initializing a global buffer, refer to Initialize Buffers.

Rolling Buffer
Rolling buffers are similar to scratch buffers but differ in that writes append data rather than replace it.
Rolling buffers can be used to exchange information between transactions defined for that device. Data can-
not be copied to a rolling buffer associated with a different device. Data stored in a rolling buffer will exist as
long as the OPC server project is running or until the rolling buffer is overwritten in a transaction. Each
device has an associated Rolling Buffer.

When updating a tag from a rolling buffer, be aware that the value used will be the last value stored in the
buffer. Depending on how the transaction is defined, this data may not necessarily represent the current
state of a device. If no data has been stored in the rolling buffer at the time the Update Tag command is
executed, the tag will be given a value of zero.
See Also: Update Tag Command.

Initialize Buffers
A preset value for any scratch buffer and/or global buffer can be defined. The buffers will be loaded with
these preset values on driver startup. To define buffer presets, follow the instructions below.

1. Click Edit | Initialize Scratch and Global Buffers or click on the toolbar icon as shown below.

www.ptc.com

34

User-Configurable (U-CON) Driver

2. The buffer initialization dialog should appear as shown below.

Descriptions of the properties are as follows.

l Buffer: This property is used to specify the buffer for which a preset will be defined.

l Display mode: This property is used to specify how the preset data to be displayed in the edit box at
the bottom of the dialog. In Hex mode, the hexadecimal value of each byte is displayed. When editing,
each byte value must be entered as 2 hex digits (1-9, A-F) with a space separating each byte. If wish-
ing to preset a buffer with an ASCII string, users will find it easier to work in ASCII mode where each
data byte is displayed as the equivalent ASCII character. Users will not be able to view or edit preset
data that contains non-printable characters in ASCII mode.

l ASCII characters: This scrolling list includes all data byte values in decimal (0-255) and hexadecimal
(00 – FF), as well as the ASCII character mapped to each value. Users may utilize this as a reference.
Items may be double-clicked to insert the byte into the preset data field at the bottom of the dialog.

l Selected buffer will contain this data on startup: This property displays the preset value for the
selected buffer. It can be edited.

l Save: Clicking this button will save the preset value for the selected buffer without closing the dialog.

l OK: Clicking this button will save the preset value for the selected buffer and close the dialog.

www.ptc.com

35

User-Configurable (U-CON) Driver

Event Counters
Each transaction configured in the project automatically keeps track of howmany times it is executed. These
numbers are stored in special 32-bit buffers called Event Counters. All counter values are initialized to zero
when a U-CON project is first loaded. Counter values can reach 4294967295, at which point they wrap
around back to 0. Tags from event counters can also be updated. Transaction Event Counters can be espe-
cially useful in scanner applications. For more information on their usage, refer to Scanner Applications.

Note: Event counter values are stored in 32-bit buffers. All tags updated from event counters must be con-
figured with 32-bit, 16-bit, or 8-bit Intel (Lo Hi) device data format.

See Also: Set Event Counter Command andUpdate Tag command.

Buffer Pointers
The read buffer,write buffer, scratch buffer and global buffer each have an individual associated buf-
fer pointer. The pointer is used to store the index or position of a byte in the associated buffer. Pointers can
be moved to different bytes by using the Seek Character andMove Buffer Pointer commands. The
Update Tag command has an option where data for a tag can be parsed starting at the current buffer
pointer position. Buffer pointers are necessary when processing delimited lists. For an example, refer to
Tips and Tricks: Delimited Lists.

For convenience, the read and write buffers are automatically reset to the first byte position at the start of
each transaction. Since a major use of scratch and global buffers is to exchange data between transactions,
scratch buffer pointers and global buffer pointers are not reset. Because of this, use care with relative
moves of scratch and global buffer pointers.

Transaction Validation
The Transaction Editor performs a cursory inspection of the transaction after each edit is applied. Obvious
errors are flagged with a yellow warning icon.

If Verbose Transaction Validationmode (located under the Transaction Editor's Tools option) is selected, a
message box with a brief explanation of the problem will be shown. For the example above, the message
would look a shown below.

www.ptc.com

36

User-Configurable (U-CON) Driver

It should be emphasized that the Transaction Editor will only look for the most obvious problems. The
absence of warnings is not a guarantee that the transaction definition will work. For more information on dia-
gnosing problems, refer to Tips and Tricks: Debugging.

Transaction Commands
Each transactionmust be defined so that the driver knows how to exchange data with a device. To do so,
users create a list of commands that the driver should execute during a transaction. There are commands
for requesting strings to be sent to the device, receiving and storing devices responses, validating
responses, parsing data from responses, converting data formats, updating tag values, and so forth.

Defining a Transaction

1. To start, select the desired transaction in the Transaction Editor's Item View. Any currently-defined
steps will be shown in the Transaction View.

2. Next, add a command by right-clicking on the Transaction View. Alternatively, use the Editmenu.

Note: If the mouse pointer is on a blank portion of the Transaction View when right-clicking, the
new command will be added to the end of the list. If right-clicking on an existing command step, a
new command will be inserted at that step.

3. If the command has properties that must be specified, a dialog will be invoked before the new com-
mand is inserted into the transaction step list.

4. To edit an existing command, double-click on it. Alternatively, select it and then click Properties.

www.ptc.com

37

User-Configurable (U-CON) Driver

5. To define other transactions that require similar command sequences, select and copy the com-
mands of one transaction and paste them into the other.

Write Commands
Write Device ID Command
Gets the Device ID set in the server's Device Properties, reformats it if needed, and then places the result on
the Write buffer.

Write Event Counter Command
Appends the value of the event counter to the Write buffer, which makes it possible to use the event count
value as a Transaction ID in serial communication packets.

Write Character Command
Places a specified character on the Write buffer.

Write String Command
Places the specified string of characters on the Write buffer.

Write Data Command
Gets the Write value sent down from the client, reformats it if needed, and then places the result on the
Write buffer.

Write Checksum Command
Computes the checksum, reformats it if needed, and then places the result on the Write buffer.

Close Port Command
Closes the COM port associated with the current transaction.

Copy Buffer Command
Copies a portion of the Read buffer to the Write buffer.

Modify Byte Command
Sets one or more bits in a byte that was previously placed on the buffer (using the Write value sent down
from the client). This is used to modify a byte in the Read, Write, or Scratch buffer.

Pause Command
Delays the execution of next command.

Control Serial Line
Controls the RTS and DTR lines to assert/de-assert the line manually.

Transmit Command
Sends the contents of the Write buffer to the devices attached to the channel.

Cache Write Value Command
Caches the value written in the client.

Read Commands
Read Response

www.ptc.com

38

User-Configurable (U-CON) Driver

Stores incoming data in Read buffer.

Update Tag Command
Parses data from the Read buffer, reformats it if needed, and then updates the tag value accordingly.

Conditional Commands
Continue Command
Tells the driver to do nothing as a result of the test, and proceed to the next command in the transaction.
The Continue command has no user-defined properties.

Note: The Continue command is one of several conditional actions available under the five test com-
mands (Test String, Test Character, Test Device ID, Test Bit Within Byte, Test Checksum, and Test Frame
Length).

Test Device ID Command
Gets the Device ID set in the server's Device Properties, reformats it if needed, and then compares it with
the Device ID in Read buffer. Executes different commands depending on the result.

Test Character Command
Compares a character in the Read or Write buffer with a specified character. Executes different commands
depending on the result.

Test Bit within Byte Command
Compares a bit within a specified byte from the Read or Write buffer and compares it with a set value. Vari-
ous actions can be taken depending on the result of the comparison.

Test Checksum Command
Computes the checksum on portion of Read buffer, reformats it if needed, and then compares it with the
checksum in Read buffer. Executes different commands depending on the result.

Test String Command
Instructs the driver to parse a string from a buffer and compare it with a test value.

Test Frame Length Command
Instructs the driver to compare the length of the received frame with a test value.

Compare Buffer Command
Instructs the driver to compare two buffers. Executes different commands depending on the result.

Processing Commands
Clear Rolling Buffer Command
Sets all bytes in the rolling buffer to 0x00 and the length of the received frame to 0.

Clear RX Buffer Command
Sets all bytes in the Read buffer to 0x00 and the length of the received frame to 0.

Clear TX Buffer Command
Sets all bytes in the transmit butter to 0x00 and the current length of the Write frame to 0.

Set Event Counter Command

www.ptc.com

39

User-Configurable (U-CON) Driver

Sets the event counter of the current transaction to any valid number specified.

Deactivate Tag Command
Deactivates the tag. The transaction will not be executed again.

End Command
Terminates the transaction.

Go To Command
Processes the commands following the specified label command.

Invalidate Tag Command
Sets the tag's data as invalid. Client will report "bad quality" for tag data.

Label Command
Marks a transaction step for Go To commands.

Add Comment Command
Inserts a comment or a blank line in the Transaction Editor.

Log Event Command
Writes a message in the server's Event Log.

Seek Character Command
Instructs the driver to search for a given character in a specified buffer.

Move Buffer Pointer Command
Instructs the driver to change the current position of one of the buffer pointers. Pointers can be moved for-
ward or backward.

Handle Escape Characters Command
Defines special handling of specific escape characters. For example, adds duplicate escape characters to
Writes and removes duplicates from Reads.

Serial Line Control Commands
Control Serial Line Command
Controls the RTS and DTR lines to assert/de-assert the line manually.

Edit Menu Commands
Insert Function Block Command
Inserts a previously-defined function block into a Read, Write, or Unsolicited transaction.

See Also: Function Block

Add Comment Command
The Add Comment command can be used to insert a comment or a blank line in the Transaction View. For
example, the image below shows a blank line inserted above Step 3.

www.ptc.com

40

User-Configurable (U-CON) Driver

To add an Add Comment command, right-click on the desired step in the Transaction View and then select
Processing Commands | Add Comment from the pop-upmenu. Alternatively, select Edit | Add Com-
ment from the main menu. The comment (or blank line) will be inserted above the current step in the Trans-
action View. Comment lines have a maximum of 64 characters.

Note: To insert a blank line in the Transaction View, leave the Add Comments dialog field blank and click
OK.

Cache Write Value Command
The Cache Write Value command tells the driver to cache the value entered in a Write Data command. It
has no user-defined properties.

To add a Cache Write Value command, right-click on the desired step in the Transaction View and then select
Write Commands | Cache Write Value. Alternatively, click Edit | New Write Command. Then, select
Cache Write Value from the main menu.

Caution: This command should be used for devices that are Write Only.

Clear Rolling Buffer Command
The Clear Rolling Buffer command tells the driver to set all bytes in the rolling buffer to 0x00 and the
length of the received frame to 0. The command has no user-defined properties.

To add a Clear Rolling Buffer command, right-click on the desired step in the Transaction View and then
select Processing Commands | Clear Rolling Buffer from the resulting pop-upmenu. Alternatively, click
Edit | New Processing Command | Clear Rolling Buffer from the main menu.

Caution: It is the user's responsibility to call the Clear Rolling Buffer Command. Failure to do so could res-
ult in buffer overflows.

www.ptc.com

41

User-Configurable (U-CON) Driver

Clear RX Buffer Command
The Clear RX Buffer command tells the driver to set all bytes in the read buffer to 0x00 and the length of
the received frame to 0. The command has no user-defined properties.

To add a Clear RX Buffer command, right-click on the desired step in the Transaction View and then select
Processing Commands | Clear RX Buffer from the resulting pop-upmenu. Alternatively, click Edit | New
Processing Command and then select Clear RX Buffer from the main menu.

Notes:

1. The Clear RX Buffer command does not clear the COM buffer. It only clears the data that has been
read by a Read Response Command.

2. The RX buffer is automatically cleared before each Read Response command is processed.

Clear TX Buffer Command
The Clear TX Buffer command tells the driver to set all bytes in the transmit buffer to 0x00 and the current
length of the write frame to 0. The command has no user-defined properties.

To add a Clear TX Buffer command, right-click on the desired step in the Transaction View and then select
Processing Commands | Clear TX Buffer from the resulting pop-upmenu. Alternatively, click Edit | New
Processing Command and then select Clear TX Buffer from the main menu.

Note: The TX buffer is automatically cleared at the beginning of each transaction and after each Transmit
and Read Response command.

Close Port Command
The Close Port command tells the driver to close the COM port associated with the current transaction. The
port will be reopened automatically the next time something is written out of that port. The Close Port com-
mand has no user-defined properties.

To add a Close Port command, right-click on the desired step in the Transaction View and then selectWrite
Commands | Close Port from the resulting pop-upmenu. Alternatively, click Edit | New Write Command
and then select Close Port from the main menu.

Compare Buffer Command
The Compare Buffer command tells the driver to compare specified sections of bytes in two buffers. Vari-
ous actions can be taken depending on the result of that comparison.

To add a Compare Buffer command, right-click on the desired step in the Transaction View and then select
Conditional Commands | Compare Buffer. Alternatively, click Edit | New Conditional Command and
then select Compare Buffer from the main menu.

www.ptc.com

42

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Buffer A and Buffer B: The Read buffer, Write buffer, Scratch buffer or Global buffer may be com-
pared. When selecting the Scratch or Global buffer options, users must also specify the buffer
indexes, data source buffers, and the Start Byte within each buffer.

l Start byte: Specify the 1-based index of the first character to be parsed from the buffer.

l Use Current Buffer Position: When checked, the current position for the specified buffer will be
used in the test.

l Number of bytes to compare: This control specifies the total number of bytes to compare from
each buffer.

l True Action: Specify the action that will occur if the parse bytes from Buffer A equal the parsed bytes
from Buffer B.

www.ptc.com

43

User-Configurable (U-CON) Driver

l False Action: Specify the action that will occur if the bytes do not agree.

l Action properties: If the specified action requires that additional properties be defined, this button
will become activated.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very useful when reviewing the transaction
definition later.

Note: The TX buffer is automatically cleared at the beginning of each transaction and after each Transmit
and Read Response command. Following any of these conditions, the TX buffer must be copied to either a
scratch buffer or a global buffer before being used in a comparison.

Continue Command
The Continue command is one of several conditional actions available under the five test commands (Test
String, Test Character, Test Device ID, Test Bit Within Byte, and Test Checksum). Continue tells the driver to
do nothing as a result of the test, and to proceed to the next command in the transaction. The Continue com-
mand has no user-defined properties.

Control Serial Line Command
The Control Serial Line command allows for manual control of the RTS and DTR lines.

To add a Control Serial Line command, right-click on the desired step in the Transaction View and then select
Write Commands | Control Serial Line from the resulting pop-upmenu. Alternatively, click Edit | New
Write Command and then select Control Serial Line from the main menu.

Important: This command should be used with caution. Before setting the RTS or DTR line high or low, be
sure to set the line's default setting before the start of any transaction. Set the line back to default when the
transaction completes and whenever there is a failure.

Descriptions of the properties are as follows:

l Line: These options specify the type of line. Options include RTS or DTR. Users must select only one
at a time. After completing this dialog window for one line, it can be accessed again to select the
other line.

l Check to Assert and uncheck to De-Assert:When checked, the line will be asserted. When
unchecked, the line will be de-asserted.

www.ptc.com

44

User-Configurable (U-CON) Driver

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Copy Buffer Command
The Copy Buffer command tells the driver to copy a number of bytes from one buffer to another buffer.
Bytes copied to the read, write, or rolling buffers are placed after any data currently in that buffer. Scratch
buffers and global buffers are flushed before new data is placed in them.

This command is normally used in conjunction with aModify Byte command to construct a bit field or to
store off data from a Read Response that will be used in subsequent transactions. When using this com-
mand, users should be aware that the selected source buffer will have valid data. For more information,
refer to Tips and Tricks.

To add a Copy Buffer command, right-click on the desired step in the Transaction View and then select
Write Commands | Copy Buffer from the resulting pop-upmenu. Alternatively, select Edit | New Write
Command | Copy Buffer from the main menu.

www.ptc.com

45

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Data source: These options specify the data source. Options include Read buffer, Write buffer,
Scratch buffer, Global buffer, or Rolling Buffer.

Note: If either the scratch or global buffer is selected, the buffer index must be specified. If there
are not enough bytes of data in the buffer, this command is cancelled and the transaction fails. An
error message is written to the OPC server's Event Log. Users should be aware of this when using
scratch, global, or rolling buffers as the data source.

l Start byte: This control specifies at what byte in the source buffer to start the copy operation. The
byte positions are addressed using a 1-based index.

l Copy to end: This control tells the driver to copy all of the data from the specified start byte to the
last byte of data currently stored in the source buffer.

l Number of bytes to copy: This control tells the driver the total number of bytes to copy from the
source buffer.

l Data destination: Specify the data destination buffer. Options include Read buffer, Write buffer,
Scratch buffer, Global buffer, or Rolling buffer.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Deactivate Tag Command
The Deactivate Tag command tells the driver to set the tag's data quality to bad and to perform nomore
read or writes for that tag. It has no user-defined properties. Once a tag has been deactivated, it will stay
deactivated. The server project must be restarted to reactivate a tag; as such, this command should be used
with care.

To add a Deactivate Tag command, right-click on the desired step in the Transaction View and then select
Processing Commands | Deactivate Tag from the resulting pop-upmenu. Alternatively, select Edit | New
Processing Command | Deactivate Tag from the main menu.

Note: A Deactivate Tag command does not end the current transaction. The tag will remain active until
the transaction has completed, thus giving users the chance to do any clean-up work (such as logging a mes-
sage or writing additional information to the device). To terminate the transaction at the time of tag deac-
tivation, place an End command immediately after the Deactivate Tag command.

End Command
The End command tells the driver to stop processing the current transaction, and is generally used in con-
junction with Go To and Label commands. A typical use of the end command is to prevent the driver from
executing steps in a transaction that should only be executed as the result of a conditional command with a
Go To. For more information, refer to Branching: Using the conditional, Go To, Label and End Com-
mands. This command has no user-defined properties.

To add an End command, right-click on the desired step in the Transaction View and then select Pro-
cessing Commands | End from the resulting pop-upmenu. Alternatively, select Edit | New Processing
Command | End from the main menu.

www.ptc.com

46

User-Configurable (U-CON) Driver

Go To Command
The Go To command tells the driver to search for the specified Label command in the current transaction
and proceed from there. For more information, refer to Branching: Using the conditional, Go To, Label
and End Commands.

To add a Go To command, right-click on the desired step in the Transaction View and then select Pro-
cessing Commands | Go To from the resulting pop-upmenu. Alternatively, select Edit | New Processing
Command | Go To from the main menu.

Descriptions of the properties are as follows:

l Label: This property identifies the Label command for which the driver will search upon encountering
this command. If the Label command is not found, an error message will be logged and the trans-
action will terminate.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Note: Go To commands should be used with caution. It is possible to set up "infinite loops" that will cause
the driver to become stuck in a transaction. A simple example of an infinite loop is as follows:

1. Label "Jump to here".

2. Go To "Jump to here".

It may be necessary to terminate the server in this event by pressing the "Ctrl-Alt-Del" key combination.
Make sure that any transaction that uses a Go To command will always terminate, either by running to the
last defined command step or to an End command.

Handle Escape Characters Command
The Handle Escape Characters command is used to provide data transparency as required by some binary
protocols. Some protocols assign a special meaning to certain character sequences. For example, the end of
a variable length frame may be indicated by the sequence DLE ETX (0x10 0x03). A potential problem would
exist if the data value 4099 (0x1003) must be transmitted in one of these frames. The receiving application
would not know whether these two bytes were part of the data payload or indicate the end of the frame.

This type of ambiguity would typically be resolved or made transparent by doubling all occurrences of the
DLE character within the data portion of the frame. Throughout the frame, DLE acts as an escape character,
andmust be interpreted in the context of what follows. In the example above, the value 4099 would be
encoded as "DLE DLE ETX". The receiving application would then interpret all doubled DLE characters as a
single data byte with the value 0x10. The Handle Escape Characters command allows the User-Configurable
(U-CON) Driver to add escape characters to outgoing frames, and to remove them from received frames.

www.ptc.com

47

User-Configurable (U-CON) Driver

To add a Handle Escape Characters command, right-click on the desired step in the Transaction View and
then select Processing Commands | Handle Escape Characters from the resulting pop-upmenu. Altern-
atively, select Edit | New Processing Command | Handle Escape Characters from the main menu.

See Also: Transaction View

Descriptions of the properties are as follows:

l Add/Remove escape characters: This property is used to add or remove escape characters. To
add escape characters as needed to the specified section of an outgoing frame, select Add escape
characters. To remove escape characters from the specified section of a received frame, select
Remove escape characters. Once the escape characters have been removed from a received
frame, data values may be parsed by subsequent calls to the Update Tag command.

l Data buffer: Specify the buffer in which the frame that will be processed by this command is stored.
The Handle Escape Characters operation is done "in place." If choosing the Scratch or Global Buffer
option, specify the buffer index in the box to the right.

www.ptc.com

48

User-Configurable (U-CON) Driver

l ASCII characters and Control characters: These properties specifies the control characters by
selecting entries in the ASCII characters box and then clicking Add >>. If multiple control characters
are selected, they will be processed independently: they will not be added or removed as a sequence.
Users may select up to five control characters, althoughmultiple Handle Escape Characters com-
mands can be included in the transactions for protocols that require more.

l Escape character: Specify either Duplicate control character or Selected ASCII character.

l Start (bytes from frame start): Specify the position of the first byte (relative to the start of the
frame) of data to be processed by this command. The byte positions are addressed using a 1-based
index. For example, specify 0 to include the first byte, specify 1 to skip the first byte, and so forth.

l End (bytes from current frame end): Specify the position of the last byte (relative to the end of the
frame) of data to be processed by this command. The byte positions are address using a 1-based
index. For example, specify 0 to include the last byte, specify 1 to process up to but not including the
last byte, and so forth.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Descriptions are optional, but can be very helpful when reviewing the transaction definition
later.

Insert Function Block
Use the Insert Function Block command to include the commands that were defined in a previously-
defined function block of a Read, Write, or Unsolicited transaction. For more information, refer to Function
Blocks.

To add an Insert Function Block command, right-click on the desired step in the Transaction View and then
select Insert Function Block from the resulting pop-upmenu. Alternatively, select Edit | Insert Function
Block from the main menu.

Descriptions of the properties are as follows:

l Function block: This drop-down list is used to select from the previously defined function blocks.

l Description: Specify a notation that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Important: Use caution when including Go To and Label commands in function blocks, as infinite loops
can be created. When a Go To command is executed, the driver will scan all commands in the current Read,
Write, or Unsolicited transaction from top to bottom looking for a matching Label. Commands in function
blocks referenced in the transaction will be scanned in the order in which they appear.

www.ptc.com

49

User-Configurable (U-CON) Driver

Invalidate Tag Command
The Invalidate Tag command tells the driver to set the tag's data quality to bad. This command has no
user-defined properties.

To add an Invalidate Tag command, right-click on the desired step in the Transaction View and then select
Processing Commands | Invalidate Tag from the resulting pop-upmenu. Alternatively, select Edit | New
Processing Command | Invalidate Tag from the main menu.

Notes:

1. An Invalidate Tag command does not end a transaction. To terminate the transaction when the tag is
invalidated, place an End command immediately after the Invalidate Tag command.

2. The Invalidate Tag command is intended for use in a read transaction only. If an Invalidate Tag com-
mand is included in a write transaction, it will have no effect on the quality of the tag.

Label Command
The Label command is used in conjunction with the Go To command. It does nothing other than serve as a
target for Go To commands. For more information, refer to Branching: Using the conditional, Go To,
Label and End Commands.

To add a Label command, right-click on the desired step in the Transaction View and then select Pro-
cessing Commands | Label from the resulting pop-upmenu. Alternatively, select Edit | New Processing
Command | Label from the main menu.

Descriptions of the properties are as follows:

l Label: Specify the identifier for which Go To commands can search.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Note: The Transaction Editor will not allow duplicate labels to be created in a transaction.

Log Event Command
The Log Event command tells the driver to send a message to the server's Event Log.

To add a Log Event command, right-click on the desired step in the Transaction View and then select Pro-
cessing Commands | Log Event from the resulting pop-upmenu. Alternatively, select Edit | New Pro-
cessing Command | Log Event from the main menu.

www.ptc.com

50

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Message: Specify the text that the driver will write to the Event Log. Options for the special values
include <tag>, <RBuffer>, and <WBuffer>. Descriptions of the options are as follows:

l <tag>: This will output the value of the tag.

l <RBuffer>: This will output the data in the read buffer.

l <WBuffer>: This will output the data in the write buffer.

l Event Type: Specify the message-type icon, which will be associated with the message in the Event
Log.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Modify Byte Command
TheModify Byte command tells the driver to modify a number of bits within a byte in the read buffer, write
buffer, scratch buffer, or global buffer without changing the state of the other bits. The modified byte must
have been placed in the buffer by a previous command in the transaction. The modified bits are set to zero
or one, depending on the write value sent down from the client.

This command can be used in conjunction with the Copy Buffer command. The Copy Buffer andModify Byte
commands are used to change device properties that are represented by bit fields. For more information,
refer to Bit Fields: Using the Modify Byte and Copy Buffer Commands.

To add aModify Byte command, right-click on the desired step in the Transaction View and then select
Write Commands | Modify Byte from the resulting pop-upmenu. Alternatively, select Edit |Write Com-
mands | Modify Byte from the main menu.

www.ptc.com

51

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Data source: Specify the data source. Options include Read buffer, Write buffer, Scratch buffer, or
Global buffer. If scratch or global buffer is chosen, the buffer index must also be specified.

l Byte position: This control specifies what byte in the buffer will be modified. Byte positions are
addressed using a 1-based index.

l Start bit: This control sets the index of the first bit to modify. As is customary, bits are numbered
such that the least significant bit has index 0, and the most significant bit has index 7.

l Number of bits: This control sets the number of bits that can be modified by this command.

l Format: Specify the data format. Options include Binary or ASCII Hex. If Binary is selected, this com-
mand will modify a single byte in the transmit buffer. If ASCII Hex is selected, two characters
(assumed to be ASCII Hex "0" - "9", "A" - "F") will be taken from the transmit buffer, converted to their
binary equivalent, modified, converted back to two ASCII Hex characters, and then copied back into
the transmit buffer.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Note: Bits are changed to zero or one depending on the write value sent down from the client. The bits are
set to the binary representation of the write value. If the write value exceeds the maximum value that can be
represented by that number of bits, all changeable bits will be set to 1.

Example 1 (Binary Data)
For this example, Byte Position points to a byte in the write buffer with an initial value of 10110110. The Start
Bit is 1 and Number of Bits is 2. The table below displays what the byte value would be after this command is
executed for various write values.

www.ptc.com

52

User-Configurable (U-CON) Driver

Initial Byte Value Write Value Final Byte Value

10110110 0 10110000

10110110 1 10110010

10110110 2 10110100

10110110 3 or greater 10110110

Example 2 (ASCII Hex Data)
For this example, Byte Position points to the first of 2 ASCII hex characters in the write buffer with an initial
value of "B6". The Start Bit is 1 and Number of Bits is 2. The table below shows what the value would be after
this command is executed for various write values. The actual ASCII Hex data in the transmit buffer is in
quotes, and the binary equivalent is in parentheses.

Initial Byte Value Write Value Final Byte Value

"B6" (10110110) 0 "B0" (10110000)

"B6" (10110110) 1 "B2" (10110010)

"B6" (10110110) 2 "B4" (10110100)

"B6" (10110110) 3 or greater "B6" (10110110)

Move Buffer Pointer
Each buffer has its own, independent pointer that can be used to reference a particular byte in data pro-
cessing commands (such as Update Tag). TheMove Buffer Pointer command tells the driver to change the
current position of one of the buffer pointers. Pointers can be moved forward or backward. The read and
write buffer pointers are automatically reset to 1 at the start of each transaction. Scratch and global buffer
pointers do not get reset automatically. The pointer position will not be changed if the specified move would
place it beyond the current data content of the buffer. This command is especially useful for parsing delim-
ited lists of variables. For more information, refer to Delimited Lists.

To add a Move Buffer Pointer command, right-click on the desired step in the Transaction View and then
select Processing Commands | Move Buffer Pointer from the resulting pop-upmenu. Alternatively,
select Edit | New Processing Command | Move Buffer Pointer from the main menu.

See Also: Buffer Pointers andUpdate Tag.

www.ptc.com

53

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Data source: These options specify the data source. Options include Read buffer, Write buffer,
Scratch buffer or Global buffer. If selecting the Scratch or Global buffer option, users must also spe-
cify the buffer index in the box to the right.

l Move type: Specify the type of move. Options include Relative and Absolute. The default setting is Rel-
ative. Descriptions of the options are as follows:

l Relative: This move is a specified number of bytes from the current pointer position.

l Absolute: This move places the buffer pointer at the specified byte position, where the first
byte is number 1 (and so forth).

l Backward:When checked, the pointer will move backward. The default setting is unchecked (for-
ward).

l Number of bytes: Specify the number of bytes to advance the pointer in a relative move or the byte
position in an absolute move.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

See Also:Moving the Buffer Pointer

Important: Use care with scratch and global buffer pointers. Unlike the read and write buffer pointers,
scratch and global buffer pointers are not automatically reset at the start of each transaction.

Pause Command
The Pause command tells the driver to wait a specified period of time before processing the next command,
which can be invaluable when communicating with slower devices. Normally, the Pause command is used in

www.ptc.com

54

User-Configurable (U-CON) Driver

multiple Write Character/Transmit/Pause combinations. For more information, refer to Slowing Things
Down: Using the Pause Command.

To add a Pause command, right-click on the desired step in the Transaction View and then selectWrite
Commands | Pause from the resulting pop-upmenu. Alternatively, select Edit | New Write Command |
Pause from the main menu.

Descriptions of the properties are as follows:

l Pause: Specify the number of milliseconds that the driver will wait before processing the next com-
mand. Any value between 10 and 1000 milliseconds can be selected (in increments of 10).

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Caution: The Pause command should not be used with Unsolicited UDP.

Read Response Command
The Read Response command tells the driver to receive data from the device and place it in the read buf-
fer. The driver will continue to wait for data until either the user-specified termination criteria has beenmet
or the device Timeout Period has elapsed.

To add a Read Response command, right-click on the desired step in the Transaction View and then select
Read Commands | Read Response from the resulting pop-upmenu. Alternatively, select Edit | New Read
Command | Read Response from the main menu.

www.ptc.com

55

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Frame type: Specify the frame type, which is distinguished by its receive terminationmethod. This
tells the driver when the last byte of the message has been received. Options include Frame has
known length, Frame is terminated by stop characters, and Frame contains data length field. Descrip-
tions of the options are as follows:

l Frame has known length:When selected, users must enter a value inNumber of bytes
for which the driver should wait. The amount of time that the driver will wait for the specified
number of bytes is set in the server's Device Properties under Request Timeout. If the
request times out, the driver will execute the transaction again up to the number of attempts
that was specified. Any bytes in excess to that value specified will be ignored.

l Frame is terminated by stop characters:When selected, users must define the character
sequence that will mark the end of a response using the ASCII characters box and the >>
button. The driver will wait until the specified stop character sequence is received or the
request times out (whichever occurs first).

www.ptc.com

56

User-Configurable (U-CON) Driver

l Frame contains data length field:When selected, users must specify where in the frame
the Data Length field is located and what bytes are included in that count. The driver will try
to receive bytes up to the end of the Frame Length field and then calculate howmany more
bytes to expect after that.

l Data length start position: Specify the 1-based byte position of the first byte in the Data Length
field.

l Data length format: Specify the format options available for the Data Length field.

l String length: Specify the total number of characters in the Data Length field.

l Data start position: Specify the 1-based byte position of the first data byte to include in the count.
This will often be the first byte after the Data Length field. For example, if the protocol has the field
length at byte 6 followed by the data, then the Data Start Position would be byte 7.

l Number of trailing bytes: Specify the number of bytes that the driver should expect after the indic-
ated number of data bytes has been received. This can be used to handle cases where the checksum
bytes are not included in the Data Length.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

l Clear RX buffer before read:When checked, this option disables the command's default behavior
of automatically clearing the read buffer before it accepts the next incoming byte. For example, a
user needs to receive a frame that contains a variable number of data bytes, followed by an ETX byte
that marks the end of the data, and a checksum byte. Such a frame must be received in two steps.
First, the users must issue a read response command configured to wait for an ETX stop character,
and clear the RX buffer before read. This would get everything except the checksum byte. To receive
the checksum and append it to the read buffer, the user must issue a second read response com-
mand configured to wait for a single byte, and not clear the RX buffer before read.

l Log timeout errors:When checked, this option suppresses timeout error logging. This is helpful
because a device may occasionally produce responses that are shorter than expected: such a con-
dition may occur if the device is in an error state or if the protocol allows for headers of non-uniform
length. The driver will timeout when attempting to read these short responses and will place a mes-
sage to that effect in the server's Event Log. Over time, these messages can fill up the Event Log and
obscure other log entries that may be of more interest.

Seek Character Command
Each buffer has its own, independent pointer that can be used to reference a particular byte in data pro-
cessing commands (such as the Update Tag command). The Seek Character command tells the driver to
search for a given character in the specified buffer. The search will begin at the current buffer pointer pos-
ition. The buffer pointer position will be relocated to the next instance of the specified character, if the char-
acter is found. If the character is not found, the pointer will not be changed. An optional Go To label may be
executed on failure. For more information, refer to Buffer Pointers.

Note: This command is especially useful for parsing delimited lists of variables. For more information,
refer to Delimited Lists.

To add a Seek Character command, right-click on the desired step in the Transaction View and then select
Processing Commands | Seek Character from the resulting pop-upmenu. Alternatively, select Edit | New
Processing Command | Seek Character from the main menu.

www.ptc.com

57

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Data source: Specify the data source. Options include Read buffer, Write buffer, Scratch buffer, or
Global buffer. If the Scratch or Global buffer options are selected, the buffer index must also be spe-
cified.

l Character: This drop-downmenu specifies the character for which to search. Any ASCII character in
the range of 0x00 to 0xFF may be specified.

l Search for character in ASCII Hex format: This option specifies whether the data is in ASCII or
ASCII Hex format. For example, a comma in ASCII format will be a single byte with value 0x2C (","). A
comma in ASCII Hex format will be two bytes with values 0x32 ("2") 0x43 ("C"). The default setting is
unchecked.

Note: When searching for a character in ASCII Hex format, users must make sure that the search
starts from the first byte of a string of ASCII Hex characters or an even number of bytes preceding
them. TheMove Buffer Pointer commandmay need to be used to initialize the pointer.

l Goto on failure: Specify a label that execution should proceed to if the specified characters are not
found. This property is optional. If no label is specified, the buffer pointer is left unchanged on seek
failure and the driver executes the next command in the transaction. If a label is specified, but not
found on seek failure, the current transaction is cancelled. The Transaction Editor warns users of this
condition. For more information, refer to Label Command.

l Description: Specify notations displayed next to the command type in the Transaction View. Although
descriptions are optional, they can be very helpful when reviewing the transaction definition later.

See Also:Moving the Buffer Pointer

Important: Use care with scratch and global buffer pointers. Unlike the read and write buffer pointers,
scratch and global buffer pointers are not automatically reset at the start of each transaction.

www.ptc.com

58

User-Configurable (U-CON) Driver

Seek String Command
Each buffer has its own independent pointer that can be used to reference a particular byte in data pro-
cessing commands (such as the Update Tag command). The Seek String command tells the driver to search
for a given string in the specified buffer. The search begins at the current buffer pointer position. If the string
is found, the buffer pointer position is relocated to the first character in the next instance of the specified
string. If the string is not found, the pointer is not changed. An optional Go To label may be executed on fail-
ure.

See Also: Buffer Pointers andUpdate Tag Command.

To add a Seek String command, right-click on the desired step in the Transaction View and select Pro-
cessing Commands | Seek String from the resulting pop-upmenu. Alternatively, select Edit | New Pro-
cessing Command | Seek String from the main menu.

Descriptions of the properties are as follows:

l Data Source: Specify the data source. Options include Read buffer, Write buffer, Scratch buffer, or
Global buffer. If the Scratch or Global buffer options are selected, the buffer index must also be spe-
cified. The default setting is Read buffer.

l String: Specify the String that will be searched. Any ASCII characters can be specified.

l Format: This drop-downmenu specifies the string format. Options include ASCII String, ASCII Hex
String, Alternating Byte ASCII, Unicode String, and Unicode String with Lo Hi Byte Order. The default
setting is ASCII String.

www.ptc.com

59

User-Configurable (U-CON) Driver

l Case sensitive: When checked, the string comparison will be case sensitive. When unchecked, the
string comparison will not be case sensitive. The default setting is checked.

l Goto on failure: Specify a label that execution should proceed to if the specified characters are not
found. This property is optional. If no label is specified, the buffer pointer is left unchanged on seek
failure and the driver executes the next command in the transaction. If a label is specified but not
found on seek failure, the current transaction is cancelled. The Transaction Editor warns users of this
condition. For more information, refer to Label Command.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

See Also: Moving the Buffer Pointer

Important: Use care with scratch and global buffer pointers. Unlike the read and write buffer pointers,
scratch and global buffer pointers are not automatically reset at the start of each transaction.

Set Event Counter Command
The Set Event Counter command is used to reset the value for the event counter of the current transaction.

To add a Set Event Counter command, right-click on the desired step in the Transaction View and then
selectNew Processing Commands | Set Event Counter from the resulting pop-upmenu. Alternatively,
select Edit | New Processing Command | Set Event Counter from the main menu.

Descriptions of the properties are as follows:

l Set event counter to: Specify a number to which the event counter of the current transaction will be
reset.

l Set block event counter: The Set Event Counter command can reset the event counter of the trans-
action in which the command is used, or the counter of the read/unsolicited transaction of its parent
block. Event counters are typically used in tag blocks, where one or more tags are updated from
received data and another tag is updated from the block's read or unsolicited transaction's event
counter. When unchecked, the counter of the transaction in which the command is used will be reset
to the number that was entered. When checked, the counter of the read/unsolicited transaction of the
parent block will be reset.

Note: This option should be checked when the Set Event Counter Command is used in the event
counter tag's write transaction. In the example shown below, the tag is within a parent block (Block_
1). Set block event counter should be checked so that the event counter of Block_1's unsolicited

www.ptc.com

60

User-Configurable (U-CON) Driver

transaction will be reset (that is, the counter of the parent block transaction is reset).

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

See Also: Event Counters andWrite Event Counter Command.

Test Bit within Byte Command
The Test Bit within Byte command tells the driver to parse a bit within a specified byte from the read or
write buffer (or one of the scratch or global buffers) and compare the bit value with a test value. Various
actions can be taken depending on the result of that comparison. This command is useful for detecting com-
munication errors in read transactions or for issuing different commands based on a write value in write
transactions.

To add a Test Bit within Byte command, right-click on the desired step in the Transaction View and then
select Conditional Commands | Test Bit within Byte from the resulting pop-upmenu. Alternatively,
select Edit | New Conditional Command | Test Bit within Byte from the main menu.

www.ptc.com

61

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Test Value: Specify 0 or 1. The test value will be compared with a bit within byte in the data source.

l Data Source: Specify the data source. Options include Read buffer, Write buffer, Scratch buffer, or
Global buffer. The Byte Position and Bit Position within that buffer must also be specified.
Note: If either the Scratch or Global buffer options are selected, the buffer index must also be spe-

cified.

l Use Current Buffer Position: When checked, the current position for the specified buffer will be
used in the test. This property overrides the Start Byte property.

l True Action: Specify the action that will occur if the parsed bit within byte is the same as the test
value.

l False Action: Specify the action that will occur when the values do not agree.

l Action properties: This button will be activated for actions that require additional properties to be
defined.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can be very helpful when reviewing the transaction
definition later.

www.ptc.com

62

User-Configurable (U-CON) Driver

Test Character Command
The Test Character command tells the driver to parse a character/byte from the read or write buffer, a
scratch or a global buffer, and compare the character/byte with a test value. Various actions can be taken
depending on the result of that comparison. This command is useful for detecting communication errors in
read transactions or for issuing different commands based on a write value in write transactions.

To add a Test Character command, right-click on the desired step in the Transaction View and then select
Conditional Commands | Test Character from the resulting pop-upmenu. Alternatively, select Edit |
New Conditional Command | Test Character from the main menu.

Descriptions of the properties are as follows:

l Test value: This drop-downmenu provides the complete list of characters that may be added. The
choices are listed with the decimal value, followed by the hex equivalent, andmay be followed by the
keyboard equivalent andmnemonic if applicable. Users may drop the list and select an item from it
or take advantage of the auto-complete feature, which is used to type in a decimal or hex value (in
0x?? format), or a character, and the indicated item will be selected from the list automatically. To
clear the entry, press Delete or Backspace on the keyboard.

l Data Source: Specify the data source. The Test value may be compared with characters in the Read
buffer,Write buffer, Scratch buffer or Global buffer. If either the Scratch or Global buffer options
are selected, the buffer index must also be specified. In addition to the data source buffer, the

www.ptc.com

63

User-Configurable (U-CON) Driver

Position within that buffer must also be specified. This is the 1-based index of the character to be
parsed from the buffer.

l True action: Specify the action that will occur if the parsed byte is the same as the standard value.

l Use Current Buffer Position: When checked, the current position for the specified buffer will be
used in the test. This property overrides the Start Byte property.

l False action: Specify the action that will occur (and will define what the driver should do) if the bytes
do not agree.

l Action properties: This button will become activated for actions that require additional properties to
be defined.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Test Checksum Command
The Test Checksum command tells the driver to compute the checksum for a range of bytes in the read buf-
fer, reformat it if necessary, and compare the result with the checksum value in the read buffer. Various
actions can be taken depending on the result of that comparison. This command is useful for detecting com-
munication errors.

To add a Test Checksum command, right-click on the desired step in the Transaction View, and select
Conditional Commands | Test Checksum from the resulting pop-upmenu. Alternatively, select Edit |
New Conditional Command | Test Checksum from the main menu.

www.ptc.com

64

User-Configurable (U-CON) Driver

Descriptions of the property are as follows:

l Type: This drop-downmenu provides the complete list of supported checksum algorithms. For more
information on the checksum options, refer to Checksum Descriptions.

l Format: This drop-downmenu provides the format options available for the selected checksum type.
The Format Properties button will be enabled if the selected format has properties that must be set.
The appropriate format configuration dialog will be displayed when the button is clicked.

Note: For more information on formats, refer to Device Data Formats.

l Start (bytes from frame start) and End (bytes from frame end): These properties tell the driver
what bytes to include in the checksum calculation. The start value is given as a number of bytes from
the beginning of the received frame. The end value is given as a number of bytes from the end of
received frame. Generally, the checksum value will immediately follow the last byte included in the
calculation, but not necessarily.

Note: The end value here has a different meaning than in the Write Checksum command. In this
case, it is defined relative to the frame end to allow for processing of variable length frames. For
more information, refer toWrite Checksum Command.

l Start at Current Position: When checked, the checksum calculation will begin at the current read
buffer position. This property overrides the Start (bytes from frame start) property.

l End at Current Position: When checked, the checksum calculation will complete at the current read
buffer position. This property overrides the End (bytes from frame end) property.

l Result offset: This property indicates howmany bytes are between the last byte included in the cal-
culation and the checksum value.

l True action: Specify what actions will occur if the received checksum is the same as the calculated
value.

l False action: Specify what actions will occur if the checksum values do not agree.

l Action properties: This button will be activated for actions that require additional properties to be
set.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Example
Test the checksum in a received frame with the following structure: [SOH] [Data 1] [Data 2] … [Data N] [ETX]
[BCC].

This frame contains an unknown number of data bytes, but has an ETX byte to mark the end of the data. The
BCC is a single byte XOR checksum that includes just the data bytes, not the SOH and ETX characters. To test
the BCC byte, users would configure a test checksum command to use the following:

Property Setting

Type XOR (8-bit)

Format 8-bit Intel

Format Properties N/A

Start 1 (skip the SOH at start of frame)

End 2 (skip ETX and BCC at end of frame)

Result offset 1 (skip ETX between Data N and BCC)

www.ptc.com

65

User-Configurable (U-CON) Driver

True action
Action to take if calculated XOR of Data 1 to Data N is the same as received
BCC.

Action properties
(true)

Depends on True action selection.

False action
Action to take if calculated XOR of Data 1 to Data N is not the same as received
BCC.

Action properties
(false)

Depends on False action.

Description Comment

Test Device ID Command
The Test Device ID command tells the driver to get the Device ID set in the server's Device Properties,
reformat it if needed, and compare the result with the Device ID value in the read buffer. Various actions can
be taken depending on the result of that comparison. This command is useful for detecting communication
and physical device configuration errors.

To add a Test Device ID command, right-click on the desired step in the Transaction View and then select
Conditional Commands | Test Device ID from the resulting pop-upmenu. Alternatively, select Edit |
New Conditional Command | Test Device ID from the main menu.

Descriptions of the properties are as follows:

l Format: This drop-downmenu provides a list of the available format options. For more information,
refer to Device Data Formats.

l Format Properties: This button will become enabled if the selected format has properties that must
be set.

www.ptc.com

66

User-Configurable (U-CON) Driver

l Use Current Buffer Position: When checked, the current position for the specified buffer will be
used in the test. This property overrides the Start Byte property.

l Start Byte: This value tells the driver where in the read buffer the Device ID begins. This number is a
1-based index. The number of bytes parsed is based on the format specification.

l True action: Specify what actions will occur if the Parsed ID is the same as the correct value.

l False action: Specify what actions will occur if the IDs do not agree.

l Action properties: This button will be activated for actions that require additional properties to be
set.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Test Frame Length Command
The Test Frame Length command tells the driver to compare the length of the received frame with a test
value. Various actions can be taken depending on the result of that comparison. This command is especially
useful when the incoming frame was received based on a sequence of stop characters.

To add a Test Frame Length command, right-click on the desired step in the Transaction View and then
select Conditional Commands | Test Frame Length from the resulting pop-upmenu. Alternatively, select
Edit | New Conditional Command | Test Frame Length from the main menu.

Descriptions of the properties are as follows:

l Enter Frame Length: Specify the value that will be tested against.

l True action: Specify what actions will occur if the received frame length is the same as the entered
frame length value.

l False action: Specify what the driver should do if the comparison fails.

l Action properties: This button will be activated for actions that require additional properties to be
set.

www.ptc.com

67

User-Configurable (U-CON) Driver

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Test String Command
The Test String command tells the driver to parse a string from a buffer and compare it with a test value.
Various actions can be taken depending on the result of that comparison. This command is useful for detect-
ing communication errors in read transactions or for issuing different commands based on a write value in
write transactions.

To add a Test String command, right-click on the desired step in the Transaction View and then select
Conditional Commands | Test String from the resulting pop-upmenu. Alternatively, select Edit | New
Conditional Command | Test String from the main menu.

Descriptions of the properties are as follows:

www.ptc.com

68

User-Configurable (U-CON) Driver

l Test Value: Specify the value for which the string will be tested. This string may be up to 64 char-
acters in length. The test value may be compared with characters in the Read buffer, Write buffer,
Global buffer, or any Scratch buffer associated with the device. If the Scratch or Global buffer options
are selected, the buffer index must also be specified.

Note: In addition to the data source buffer, the Start position within that buffer must also be spe-
cified. The Start position is the 1-based index of the first character to be parsed from the buffer. The
number of characters parsed from the buffer will be the number of characters specified in the Test
Value. If the buffer does not contain the required number of characters, the transaction will fail and
an error message will be posted in the server's Event Log.

l Use Current Buffer Source: When checked, the current position for the specified buffer will be used
in the test. This property overrides the Start Byte property.

l Search whole string:When checked, the entire string will be tested or searched. This option ignores
the value in the Start Position so that the whole string is tested for a string that matches the Test
Value.

l Format: This drop-downmenu specifies the string format. Options include ASCII String, ASCII Hex
String, Alternating Byte ASCII, Unicode String, Unicode String with Lo Hi Byte Order, ASCII Hex String
From Nibbles, and ASCII String (packed 6-bit). The default setting is ASCII String.

l Case sensitive:When checked, the string comparison will be case sensitive. When unchecked, the
string comparison will not be case sensitive. The default setting is checked.

l True Action: Specify the action that will occur if the string parsed from the buffer is the same as the
Test value.

l False Action: Specify the action that will occur if the strings are not the same.

l Action properties: This button will be activated if the specified action requires that additional prop-
erties be defined.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Transmit Command
The Transmit command tells the driver to output the contents of the write buffer. The Transmit command
has no user-defined properties.

To add a Transmit command, right-click on the desired step in the Transaction View, and selectWrite Com-
mands | Transmit from the resulting pop-upmenu. Alternatively, select Edit | New Write Command |
Transmit from the main menu.

Transmit Byte Command
The Transmit Byte command tells the driver to output a single byte from the write buffer. Only the byte
transmitted is removed from the buffer: any other bytes will remain in the write buffer. The Transmit Byte
command has no user-defined properties.

To add a Transmit Byte command, right-click on the desired step in the Transaction View and then select
Write Commands | Transmit Byte from the resulting pop-upmenu. Alternatively, click Edit | New Write
Command | Transmit Byte from the main menu.

Note: The write buffer is not cleared after a transmit byte command.

www.ptc.com

69

User-Configurable (U-CON) Driver

Update Tag Command
The Update Tag command tells the driver to parse the data value from a read buffer, scratch buffer, global
buffer, cache, the transaction's event counter, or the rolling buffer. It then reformats as needed and updates
the tag value accordingly.

To add an Update Tag command, right-click on the desired step in the Transaction View and then select
Read Commands | Update Tag. Alternatively, select Edit | New Read Command | Update Tag from the
main menu.

Note: If the transaction belongs to a tag block member, the tag must be selected to update from the Tag
drop list. Otherwise, the transaction's parent tag will be selected automatically.

Descriptions of the properties are as follows:

l Data Source: Specify the data source. Options include Read Buffer (default), Scratch Buffer, Global
Buffer, Cache, Event Counter, or Rolling Buffer. If the scratch or global buffer option is selected, users
must specify which buffer index using the spin control to the right of the radio button. If no data has
been stored in the scratch or global buffer when this command is executed, the tag value will be set
to zero or a null string. If the event counter option is selected, the tag will be updated with the trans-
action's current event count. If the cache option is selected, the tag will be updated with the last value
written to the tag.

l Data Starts at Current Buffer Pointer: This option should be checked if data for the selected tag
begins at the current pointer position of the selected data source. The pointer must have been set
prior to the execution of this command with eitherMove Buffer Pointer or Seek Character com-
mands. For more information, refer to Buffer Pointers andDelimited Lists.

www.ptc.com

70

User-Configurable (U-CON) Driver

Note: If unchecked, use the Data start byte property.

l Data Start Byte: Specify where the tag's data begins. The first byte in the buffer is number 1.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can be very helpful when reviewing the transaction
definition later.

Note: The format of the data to be parsed is taken from the selected tag's definition. For example, if the
device data format 16-bit Intel [lo hi] was specified for the selected tag, the driver will attempt to parse two
bytes from the specified source buffer and construct a 16-bit integer value from those bytes. The low byte of
the integer will be the byte pointed to or given by the Data Start Byte setting. The high byte will be the fol-
lowing byte in the source buffer. This integer will then be converted to the tag's data type and stored. The
stored value will be sent up to the client application as called.

Caution: The cache option should only be selected for Write Only applications.

See Also: Tags andDevice Data Formats.

Write Character Command
The Write Character command tells the driver to append a single byte character to the write, read, scratch,
or global buffer. The character does not need to be a printable ASCII character (such as a letter, number, or
punctuationmark): anything with a binary equivalent of 0 to 255 is acceptable. Users that need to write a
sequence of printable characters may find it easier to use theWrite String command instead.

To add a Write Character command, right-click on the desired step in the Transaction View and then select
Write Commands |Write Character from the resulting pop-upmenu. Alternatively, select Edit | New
Write Command |Write Character from the main menu.

Descriptions of the properties are as follows:

l Value: This drop-downmenu provides a complete list of characters that may be added. Each entry in
the list provides the ASCII character code in decimal followed by its hex equivalent. Some entries may

www.ptc.com

71

User-Configurable (U-CON) Driver

have a third and forth column giving the keyboard equivalent andmnemonic when applicable. Users
may drop the list and select an item from it. They can also take advantage of the auto-complete fea-
ture. The auto-complete feature is used to type in a decimal, hex value (in 0x?? format), or character,
and the indicated item will be selected from the list automatically. The entry can be cleared by press-
ing Delete or Backspace on the keyboard.

l Data destination: Specify the data destination. Options include Read buffer, Write buffer, Scratch
buffer, or Global buffer. If the Scratch or Global buffer options are selected, users must also specify
the buffer index in the box to the right. If there are not enough bytes of data in the buffer, this com-
mand is cancelled, the transaction fails, and an error message is written to the OPC server's Event
Log.

Note: Data will be appended to TX and RX buffers, but not scratch or global buffers. To append
data to the current contents of a scratch or global buffer, copy that data to either the RX or TX buffer,
append that buffer, and then copy the contents back to the scratch or global buffer. For more inform-
ation, refer to Copy Buffer Command.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Write Checksum Command
TheWrite Checksum command tells the driver to compute a checksum, reformat it if needed, and append
the result to the write buffer. There are several choices for common checksum types and device data
formats.

To add a Write Checksum command, right-click on the desired step in the Transaction View and then select
Write Commands |Write Checksum from the resulting pop-upmenu. Alternatively, select Edit | New
Write Command |Write Checksum from the main menu.

www.ptc.com

72

User-Configurable (U-CON) Driver

Descriptions of the properties are as follows:

l Data Destination: Specify the destination. Options include Read buffer, Write buffer, Scratch buffer,
and Global buffer. If the Scratch or Global buffer options are selected, users must also specify the buf-
fer index.

Note: If there are not enough bytes of data in the buffer, the command is cancelled and the trans-
action fails. An error message is written to the OPC server's Event Log.

l Checksum Type: This drop-downmenu provides a complete list of supported algorithms. For more
information, refer to Checksum Descriptions.

l Format: This drop-downmenu defines the format of the selected checksum type. If the selected
format has properties that must be set, the Format Properties button becomes enabled. For a com-
plete discussion of available formats, refer to Device Data Formats.

All checksum calculations are performed over a range of bytes in a message frame. The Start and
End fields tell the driver what bytes to include in the calculation. The start value is given as a number
of bytes from the beginning of the frame. The end value is given as a number of bytes from the cur-
rent end of the frame; that is, the last byte placed on the write frame before the Write Checksum com-
mand is processed. The end value has a slightly different meaning than in the Test Checksum
command. The Start and End values will almost always be zero. For example, suppose the trans-
action consists of aWrite String command followed by a Write Checksum and a Transmit. Suppose
the string is "0123456789ABC", and users need to compute a checksum over all of the characters in
the string and place the result after the "C". In this case, both the Start and End values would have to
be zero. Or, if the checksum calculation needs to go from the "1" to "9" inclusively, then the Start
value must be 1 and the End value must be 3. Any additional characters added to the frame by com-
mands placed after the Write Checksum command cannot be included in the calculation.

www.ptc.com

73

User-Configurable (U-CON) Driver

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Write Data Command
TheWrite Data command tells the driver to get the write value sent down from the client application, con-
vert it to the specified device data format, and then do any of the following:

l Append the write buffer with the result.

l Store the result in a scratch buffer. The scratch buffer will be cleared first.

l Store the result in a global buffer. The global buffer will be cleared first.

l Alternatively, any combination of the actions listed above.

To add a Write Data command, right-click on the desired step in the Transaction View and then select
Write Commands |Write Data from the resulting pop-upmenu. Alternatively, select Edit | New Write
Command |Write Data from the main menu.

See Also: Device Data Formats

Descriptions of the properties are as follows:

l Write buffer: This check box tells the driver to append the write buffer with the formatted write
value. The default setting is checked. To place the formatted write value in a scratch or global buffer,
click the Scratch buffer or Global buffer checkbox. The buffer index is selected with the spin control
to the right of the check box. The scratch or global buffer chosen will be cleared before the formatted
write value is stored.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

Write Device ID Command
TheWrite Device ID command tells the driver to get the ID number set in the server's Device Properties,
reformat it if needed, and append the result to the write buffer.

www.ptc.com

74

User-Configurable (U-CON) Driver

To add a Write Device ID command, right-click on the desired step in the Transaction View and then select
Write Commands |Write Device ID from the resulting pop-upmenu. Alternatively, select Edit | New
Write Command |Write Device ID from the main menu.

Descriptions of the properties are as follows:

l Data Destination: Specify the data destination. Options include Read buffer, Write buffer, Scratch
buffer, and Global buffer. If the Scratch or Global buffer options are selected, users must also specify
the buffer index.

Note: If there are not enough bytes of data in the buffer, the command is cancelled and the trans-
action fails. An error message is written to the OPC server's Event Log.

l Format: This drop-downmenu is used to define the device data format in which the ID will be written.
If the selected format has properties that must be set, the Format Properties button will become
enabled. For a complete discussion of available formats, refer to Device Data Formats.

l Description: This property is used to enter notations that will be displayed next to the command type
in the Transaction View. Although descriptions are optional, they can also be very helpful when
reviewing the transaction definition later.

Note: Although users may hard code a Device ID using Write Character orWrite String commands,
those Device IDs would not be dynamic. If a Write Device ID command is used in all of the transactions, chan-
ging a Device ID is as simple as bringing up the server's Device Properties and changing the ID. The change
will automatically take effect in all transactions associated with the device.

Write Event Counter Command
TheWrite Event Counter command tells the driver to append the value of the event counter to the write
buffer. This makes it possible to use the event count value as a Transaction ID in serial communication pack-
ets.

www.ptc.com

75

User-Configurable (U-CON) Driver

To add a Write Event Counter command, right-click on the desired step in the Transaction View and then
selectWrite Commands | Write Event Counter from the resulting pop-upmenu. Alternatively, select Edit
| New Write Command |Write Event Counter from the main menu.

Descriptions of the properties are as follows:

l Data Destination: Specify the data destination. Options include Read buffer, Write buffer, Scratch
buffer, and Global buffer. If the Scratch or Global buffer options are selected, users must also specify
the buffer index.

Note: If there are not enough bytes of data in the buffer, the command is cancelled and the trans-
action fails. An error message is written to the OPC server's Event Log.

l Format: This drop-downmenu defines the format of the Event Counter. If the selected format has
properties that must be set, the Format Properties button will become enabled. For a complete dis-
cussion of available formats, refer to Device Data Formats.

l Write block event counter: This checkbox should be selected if the event counter is from a block
transaction. It should be left unchecked if the event counter is from a regular transaction.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can also be very helpful when reviewing the trans-
action definition later.

See Also: Event Counters and Set Event Counter Command.

Write String Command
TheWrite String command tells the driver to append a string of ASCII characters to the write buffer, read
buffer, scratch buffers or global buffer. Only printable characters (such as letters, number and punctuation
marks) may be used. To add a control-character or some other non-printable character, use theWrite Char-
acter command.

www.ptc.com

76

User-Configurable (U-CON) Driver

To add a Write String command, right-click on the desired step in the Transaction View and then select
Write Commands |Write String from the resulting pop-upmenu. Alternatively, select Edit | New Write
Command |Write String from the main menu. The dialog should appear as shown below.

Descriptions of the properties are as follows:

l Value: This property appends a series of characters to be appended to the buffer. The string may be
of any length. A NULL terminator will not be assumed; only the characters explicitly entered will be
appended to the buffer.

l Data destination: Specify the destination. Options include Read buffer, Write buffer, Scratch buffer,
or Global buffer. If the Scratch or Global buffer options are selected, users must also specify the buf-
fer index in the box to the right.
Notes:

1. If there are not enough bytes of data in the buffer, this command is cancelled and the trans-
action fails, and an error message is written to the OPC Server's Event Log.

2. Data is appended to TX and RX buffers, but not scratch or global buffers. To append data to
the current contents of a scratch or global buffer, copy that data to either the RX or TX buf-
fer. Then append that buffer and copy the contents back to the scratch or global buffer. For
more information, refer to Copy Buffer Command.

l Format: This drop-downmenu specifies the string format. Options include ASCII String, ASCII Hex
String, Alternating Byte ASCII, Unicode String, Unicode String with Lo Hi Byte Order, ASCII Hex String
From Nibbles, and ASCII String (packed 6-bit). The default setting is ASCII String.
Note: For ASCII Hex String From Nibbles, only even numbers of characters are allowed. Fur-

thermore, only hex characters ('0'-'9' and ''A'-'F') are allowed. Characters 'a'-'f' are automatically con-
verted to valid hex 'A'-'F' by the driver.

l Description: Specify notations that will be displayed next to the command type in the Transaction
View. Although descriptions are optional, they can be very helpful when reviewing the transaction
definition later.

www.ptc.com

77

User-Configurable (U-CON) Driver

Unsolicited Transactions
An unsolicited transaction is a set of commands that is to be carried out when the driver receives a par-
ticular type of unsolicited message. (The driver will ignore unsolicited data unless it is configured to be in
unsolicited mode.) Unlike with normal query/receive transactions, the driver does not have the benefit of
knowing ahead of time what device and tag it is dealing with. Instead, the driver must determine from the
message itself what device it came from and what tag the data should be sent to. To facilitate this, the user
must define unsolicited transaction keys.

Unsolicited Transaction Keys
An unsolicited transaction key is a series of ASCII characters (or binary bytes) that match the first few char-
acters of the message type the transaction is intended for. It is the user's responsibility to ensure that there
is a one-to-one relationship between all of the transaction keys and all of the possible message types asso-
ciated with a given channel.

For example, assume two devices are on a channel dedicated to unsolicited communication. Further,
assume that these devices use the same, simple protocol. Suppose our hypothetical protocol has two pos-
sible unsolicited message types of the form:

[@] [A] [Device ID high digit] [Device ID low digit] [data] [data] [data] [data] [^M]
[@] [B] [Device ID high digit] [Device ID low digit] [data] [data] [^M]

where each character is surrounded with square brackets for notational clarity. If the two devices are con-
figured as device 01 and 02, we have four possible message types that could be received on this channel:

[@] [A] [0] [1] [data] [data] [data] [data] [^M]
[@] [B] [0] [1].[data] [data] [^M]
[@] [A] [0] [2].[data] [data] [data] [data] [^M]
[@] [B] [0] [2].[data] [data] [^M]

To process all four possible message types, we need to define a channel using the driver in unsolicited
mode. Next, we need to add two devices to that channel. The transaction editor must be used to create two
tags for each device, one tag for the @A messages and another for the @B messages. Each of these tags
will be created with an unsolicited transaction that must be defined by the user. The complete definition of
an unsolicited transaction consists of two things, the transaction key, and the series of commands that are
required to receive and process the message. We will consider the transaction keys first.

For this hypothetical protocol, we need to look at the first four bytes of an incoming message to know which
transaction should be used to process it. Thus, the four transaction keys need to be assigned as:

DEVICE TAG KEY
--
01 A @A01
01 B @B01
02 A @A02
02 B @B02

If we made our keys only three characters long in this example, there would be an ambiguous message-to-
transaction relationship. The driver would have no way of knowing which device the data came from since
this is indicated by the fourth character in the messages. If we made one of the keys longer than four bytes,
it would extend into the variable data portion of some (in this case all) of the messages. Such a key would
only be matched by pure coincidence depending on the data value.

www.ptc.com

78

User-Configurable (U-CON) Driver

With normal (not unsolicited) communication, it is generally not possible to place devices using different pro-
tocols on the same channel. It is possible to mix protocols on an unsolicited channel, so long as the trans-
action keys are of the same length and are unique.

In practice, a tag and its unsolicited transaction does not need to be defined for every possible message on a
channel. The only constraint is that defined tags' unsolicited transactions have keys that are specific enough
to match only the message types that users want to process.

To define the unsolicited transaction key, bring up the Transaction Editor and double-click on the unso-
licited transaction item (or select the transaction and then select properties from the main menu, the trans-
action's pop-upmenu, or the toolbar). The unsolicited transaction key editor should then appear as
shown below.

To define the transaction key, double-click on the desired ASCII character in the left ASCII characters box or
select it and click Add >. The key character sequence will appear in the right Key characters box. If a mis-
take is made, the < Remove button can be used to remove selected items in key characters box. The num-
ber of characters that must be entered was set when the channel was defined. All unsolicited transaction
associated with a given channel must have the same key length. See Also: Configuration.

Note: In the case of multiple unsolicited devices on a single channel, the Device ID must be hard coded
into the transaction key. Therefore, the Device ID as set in the server's device property page has no bearing
on how incoming data is sorted out to the various tags. Make sure that the IDs configured in the physical
devices match the corresponding fields in the transaction keys at all times.

In cases where the protocol does not lend itself to use of such keys, this driver can still be used. A scanner
that sends packets starting with the raw data values would be an example. In these cases, the transaction
key length must be set to zero. This will force the driver to use the first unsolicited transaction defined on the
channel to interpret all incoming packets. Because of this, there should be only one device on the channel.
Furthermore, that device should have a single block tag or a single non-block tag defined. That tag or tag
block may be placed in a group.

All tags belonging to an unsolicited channel will have an initial value of zero. Client applications will see this
initial value until the first unsolicited update for that tag is received by the driver.

Commands in Unsolicited Transactions
Although an unsolicited transactionmay start with comments and/or insert function block, the first execut-
able commandmust be a Read Response command. This is so the driver will know where the end of the cur-
rent message should be. After the Read Response command, almost any other command type can be
placed. However, a second Read Response should not be issued in an unsolicited transaction, because it

www.ptc.com

79

User-Configurable (U-CON) Driver

would imply that users know what the next message received on the channel will be. This is generally a bad
assumption when dealing with unsolicited communications.

See Also: "Unsolicited Message Wait Time" inDevice Setup.

Updating the Server
Once all work within the Transaction Editor is finished, users must transfer the updates to the server. To do
so, select the Transaction Editor's main menu option File | Update Server. Alternatively, click on the
Update Server icon on the toolbar. Users will be given a chance to update the server when the Transaction
Editor is closed. After the server has received the device profile updates, it will automatically invoke the tag
database generation feature. All of the new tags and groups will instantly appear on the server. Any tags
and groups removed during the transaction edit session will be removed from the server. At this point, the
Transaction Editor will shut itself down. To resume communication, reconnect the client application to the
device.

Device Data Formats
The User-Configurable (U-CON) Driver offers a large set of device data format options which describe how
data values will be transmitted between the driver and the device. This should not be confused with the data
type, which describes the binary format of data as transmitted between the client and server applications.
The device and protocol determine the device data format. Care should be taken to choose a compatible tag
data type. The combination of data type and format determines the range of values that can be transmitted.
Truncation errors are possible with many combinations.

Binary Formats
ASCII Formats
ASCII Hex Formats
Date/Time
Legend

Binary Formats
Format Data

Length
Notes

8-bit Intel [hi] 1 Example: The value 10 (0x0A) would be
encoded as a single byte 0x0A.

16-bit Intel [lo hi] 2 Example: The value 258 (0x0102) would be
encoded as two bytes 0x02 0x01.

16-bit Motorola [hi lo] 2 Example: The value 258 (0x0102) would be
encoded as two bytes 0x01 0x02.

24-bit Motorola [Hilo LOhi Lolo] 3 Example: The value 66051 (0x010203) would
be encoded as three bytes 0x01 0x02 0x03.

32-bit Intel [LOlo LOhi HIlo HIhi] 4 Example: The value 16909060 (0x01020304)
would be encoded as four bytes 0x04 0x03
0x02 0x01.

32-bit Intel (word swap) [HIlo HIhi LOlo LOhi] 4 Example: The value 16909060 (0x01020304)
would be encoded as four bytes 0x02 0x01
0x04 0x03.

32-bit Motorola [HIhi HIlo LOhi LOlo] 4 Example: The value 16909060 (0x01020304)

www.ptc.com

80

User-Configurable (U-CON) Driver

Format Data
Length

Notes

would be encoded as four bytes 0x01 0x02
0x03 0x04.

32-bit Motorola (word swap) [LOhi LOlo HIhi
HIlo]

4 Example: The value 16909060 (0x01020304)
would be encoded as four bytes 0x03 0x04
0x01 0x02.

32-bit IEEE float*,** 4 Also known as single precision real.

Example: The value 1.23456 would be
encoded as four bytes 0x3F 0x9E 0x06 0x10

32-bit IEEE float (byte swap)*,** 4 Similar to 32-bit IEEE float, but in byte swapped
order.

Example: The value 1.23456 would be
encoded as four bytes 0x9E 0x3F 0x10 0x06

32-bit IEEE float (word swap)*,** 4 Similar to 32-bit IEEE float, but in word
swapped order.

Example: The value 1.23456 would be
encoded as four bytes 0x06 0x10 0x3F 0x9E

32-bit IEEE float (reversed)*,** 4 Similar to 32-bit IEEE float, but with bytes in
reverse order (word and byte swap).

Example: The value 1.23456 would be
encoded as four bytes 0x10 0x06 0x9E 0x3F

64-bit IEEE float** 8 Also known as double precision real

Example: The value 1.2345559999999999
would be encoded as eight bytes 0x0A 0x4A
0xD1 0xCA 0xBD 0xC0 0xF3 0x3F.

1-byte packed BCD 1 Integers between 0-99 are encoded as Binary
Coded Digits data. Behavior is undefined for
values beyond this range.

Example: The value 12 would be encoded as a
single byte 0x12.

2 byte packed BCD 2 Integers between 0-9999 are encoded as Bin-
ary Coded Digits data. Behavior is undefined
for values beyond this range.

Example: The value 1234 would be encoded as
two bytes 0x12 0x34.

2 byte packed BCD (byte swap) 2 Similar to 2 byte packed BCD, but in byte
swapped order.

Example: The value 1234 would be encoded as
two bytes 0x34 0x12.

www.ptc.com

81

User-Configurable (U-CON) Driver

Format Data
Length

Notes

4 byte packed BCD 4 Integers between 0-99999999 are encoded as
Binary Coded Digits data. Behavior is
undefined for values beyond this range.

Example: The value 12345678 would be
encoded as four bytes 0x12 0x34 0x56 0x78.

4 byte packed BCD (byte swap) 4 Similar to 4 byte packed BCD, but in byte
swapped order.

Example: The value 12345678 would be
encoded as four bytes 0x34 0x12 0x78 0x56.

4 byte packed BCD (word swap) 4 Similar to 4 byte packed BCD, but in word
swapped order.

Example: The value 12345678 would be
encoded as four bytes 0x56 0x78 0x12 0x34.

4 byte packed BCD (reversed) 4 Similar to 4 byte packed BCD, but with bytes in
reverse order (word and byte swap).

Example: The value 12345678 would be
encoded as four bytes 0x78 0x56 0x34 0x12.

Bit 0 from byte [00000001]
Bit 1 from byte [00000010]
Bit 2 from byte [00000100]
Bit 3 from byte [00001000]
Bit 4 from byte [00010000]
Bit 5 from byte [00100000]
Bit 6 from byte [01000000]
Bit 7 from byte [10000000]

1 When reading, a whole byte is received from
the device. The state (0 or 1) of the specified bit
is then passed to the tag.

When writing, a whole byte is sent to the
device. The specified bit is set if the write value
is non-zero, all other bits will be zero.

Example: Receive the byte 0x01, would cause
a tag with Bit 0 format take a value of 1 or
TRUE. Tags with any other bit format would
take a value of 0 or FALSE.

Example:Write the value 1 (or any other non-
zero value), would result in the byte 0x01 being
sent if Bit 0 format, 0x02 if Bit 1 format, and so
forth.

Multi-Bit Integer 1, 2, or 4 When reading, a whole 8, 16, or 32-bit integer
is received from the device. The equivalent
integer value of a subset of the bits within this
data is then passed to the tag.

When writing, a whole 8, 16, or 32-bit integer is
sent to the device. The specified bits will be set
to the binary equivalent of the write value, with

www.ptc.com

82

User-Configurable (U-CON) Driver

Format Data
Length

Notes

all other bits set to zero. If the write value
exceeds the maximum value that can be rep-
resented by the specified number of bits, the
specified bits will all be set to one.

For Boolean data types, all specified bits are
set to one if the write value is non-zero with all
other bits being a zero.

See Also: Format Multi-Bit Integer

*When a floating point value is written to this format, clamping will be applied to both the positive and neg-
ative directions. If the value written is less than -3.402823466e+38, then the value will be clamped to -
3.402823466e+38. If the value written is greater than 3.402823466e+38, then the value will be clamped to
3.402823466e+38.
**When a Signaling NaN is written, it will be converted to a Quiet NaN.

ASCII Formats
Format Data

Length
Notes

ASCII Integer [+ddd] F/V/D Integer values encoded as ASCII strings.

See Also: Format ASCII Integer

ASCII Integer Hex [hhh] F/V/D Integer values encoded as ASCII hex strings.

See Also: Format ASCII HEX Integer

ASCII Real [+ddd.dddE+ddd] F/V/D Real (or floating point) values encoded as ASCII
strings.

See Also: Format ASCII Real

ASCII String [ccc...] F/V/D Strings encoded as ASCII characters.

See Also: Format ASCII String

ASCII Multi-Bit Integer [xxxxxxxx] 8 The 8 bits in a byte value are represented as a
string of 8 ASCII "0" or "1" characters.

See Also: Format ASCII Multi-bit Integer

ASCII String - Alternating Byte [0 c 0 c] F/V/D Strings encoded as ASCII characters where
each of the characters is preceded by a char-
acter containing 0 (zero). For example, the
string "TEST" will be 0x00 0x54 0x00 0x45 0x00
0x53 0x00 0x54 in this format.

See Also: Format Alternating Byte ASCII
String

www.ptc.com

83

User-Configurable (U-CON) Driver

Format Data
Length

Notes

ASCII Hex String From Nibbles [hh hh hh...] F/V/D Nibbles encoded as ASCII hex strings.

See Also: Format ASCII Hex String From
Nibbles

Unicode String [u1u2u3u4...] F/V/D Strings encoded in the Unicode format.

See Also: Format Unicode String

Unicode String with Lo Hi Byte Order
[u2u1u4u3...]

F/V/D Strings encoded in the Unicode format with the
order reversed – Lo Hi (Least significant byte
first).

See Also: Format Unicode LoHi String

Byte from 2 Offset Nibble chars 2 The value is represented as two ASCII char-
acters with values: [low nibble + 0x30] [high
nibble + 0x40].

Example: The value 168 (0xA8) is represented
as the characters "8J". (Low nibble = 0x08, 0x08
+ 0x30 = 0x38 = "8". High nibble = 0x0A, 0x0A +
0x40 = 0x4A = "J".)

Float from 8 Offset Nibble chars*,** 8 The value is represented as an IEEE float with
reversed byte order, where each byte is
encoded using the "Byte from 2 Offset Nibble
chars" format described above.

Example: The value 1.23456, which is
0x3F9E0610 in normal IEEE form and
0x10069E3F in reversed byte order form,
would be encoded as the characters
"0A6@>I?C". (Low nibble of first byte = 0x00,
0x00 + 0x30 = 0x30 = "0". High nibble of first
byte = 0x01, 0x01 + 0x40 = 0x41 = "A". The
other three bytes are encoded in a similar man-
ner.)

Use dynamic ASCII format table V This format option is provided for devices that
represent values as a fixed number of ASCII
digits and a format character that specifies the
decimal placement and sign. To use this
option, the user must define a table of format
characters.

See Also: Dynamic ASCII Formatting

ASCII String (packed 6 bit) [cccc...] F/V Strings encoded as ASCII (packed 6 bit) char-
acters.

See Also: Format ASCII String (packed 6
bit)

www.ptc.com

84

User-Configurable (U-CON) Driver

Format Data
Length

Notes

ASCII Integer (packed 6 bit) [+dddd...] F/V Strings encoded as ASCII (packed 6 bit) char-
acters.

See Also: Format ASCII Integer (packed 6
bit)

ASCII Real (packed 6 bit) [+ddd.dddE+ddd] F/V Strings encoded as ASCII (packed 6 bit) char-
acters.

See Also: Format ASCII Real (packed 6
bit)

*When a floating point value is written to this format, clamping will be applied to both the positive and neg-
ative directions. If the value written is less than -3.402823466e+38, then the value will be clamped to -
3.402823466e+38. If the value written is greater than 3.402823466e+38, then the value will be clamped to
3.402823466e+38.
**When a Signaling NaN is written, it will be converted to a Quiet NaN.

ASCII Hex Formats
Format Data

Length
Notes

NIBBLE from 1 ASCII Hex char [h] 1 Example: The value 10 (0x0A) would be sent
as a single ASCII Hex character "A" (0x41).

Byte from 2 ASCII Hex chars [hh] 2 Example: The value 26 (0x1A) would be sent
as two ASCII Hex characters "1A" (0x31 0x41).

Byte from 2 ASCII Hex chars (LC) [hh] 2 Example: The value 26 (0x1A) would be sent
as two lower-case ASCII Hex characters "1a"
(0x31 0x61).

Word from 4 ASCII Hex chars [hh hh] 4 Example: The value 4666 (0x123A) would be
sent as four ASCII Hex characters "123A" (0x31
0x32 0x33 0x41).

Word from 4 ASCII Hex chars (LC BS) [hh hh] 4 Example: The value 4666 (0x123A) would be
sent as four lower-case ASCII Hex characters
with bytes swapped "3a12" (0x33 0x61 0x31
0x32).

DWORD from 8 ASCII Hex chars [hh hh hh
hh]

8 Example: The value 305419898 (0x1234567A)
would be sent as eight ASCII Hex characters
"1234567A" (0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x41).

ASCII Hex String [hh hh hh...] F/V/D Strings encoded as ASCII Hex values.

Example: The string "AB12" would be sent as
eight ASCII Hex characters "AB12" (0x34 0x31
0x34 0x32 0x30 0x31 0x30 0x32).

See Also: Format ASCII Hex String

www.ptc.com

85

User-Configurable (U-CON) Driver

Format Data
Length

Notes

Bit 0 from 2 ASCII Hex chars [hh]
Bit 1 from 2 ASCII Hex chars [hh]
Bit 2 from 2 ASCII Hex chars [hh]
Bit 3 from 2 ASCII Hex chars [hh]
Bit 4 from 2 ASCII Hex chars [hh]
Bit 5 from 2 ASCII Hex chars [hh]
Bit 6 from 2 ASCII Hex chars [hh]
Bit 7 from 2 ASCII Hex chars [hh]

2 When reading, two ASCII Hex values are
received from the device. They are converted
to a Byte, and the state (0 or 1) of the specified
bit is sent to the tag.

When writing, the specified bit in a Byte is set if
the write value is non-zero, all other bits will be
zero. The Byte is converted to 2 ASCII Hex char-
acters and sent to the device.

Example: Receive the bytes 0x30 0x31 (the bin-
ary value 0x01), would cause a tag with Bit 0
format take a value of 1 or TRUE. Tags with any
other bit format would take a value of 0 or
FALSE.

Example:Write the value 1 (or any other non-
zero value), would result in the bytes 0x30
0x31 (the binary value 0x01) being sent if Bit 0
format, 0x30 0x32 (the binary value 0x02) if Bit
1 format, and so forth.

ASCII coded IEEE float [hh hh hh hh]*,** 8 This format option is provided for devices that
encode each nibble of a 32-bit IEEE float value
as an ASCII Hex character.

Example: The binary representation of 1.0 is
0x3F800000. This value would be encoded as
an 8 character string "3F800000". This value
would be sent as eight ASCII Hex characters
"3F800000" (0x33 0x46 0x38 0x30 0x30 0x30
0x30 0x30).

This format is not to be confused with "ASCII
Real" described above which would send this
value as a 3 character string "1.0".

ASCII coded IEEE float (LC) [hh hh hh hh]*,** 8 This is the same as ASCII Coded IEEE float,
except lower-case ASCII hex characters are
used.

Example: The value 1.0 (0x3F800000) would
be sent as: "3f800000" (0x33 0x66 0x38 0x30
0x30 0x30 0x30 0x30).

ASCII coded IEEE float (Rev) [hh hh hh
hh]*,**

8 This is the same as ASCII Coded IEEE float,
except the byte order is reversed.

Example: The value 1.0 (0x3F800000) would
be sent as: "0000803F" (0x30 0x30 0x30 0x30

www.ptc.com

86

User-Configurable (U-CON) Driver

Format Data
Length

Notes

0x38 0x30 0x33 0x46).

ASCII coded IEEE float (LC Rev) [hh hh hh
hh]*,**

8 This is the same as above, except lower-case
ASCII hex characters are used, and the byte
order is reversed.

Example: The value 1.0 (0x3F800000) would
be sent as: "0000803f" (0x30 0x30 0x30 0x30
0x38 0x30 0x33 0x66).

*When a floating point value is written to this format, clamping will be applied to both the positive and neg-
ative directions. If the value written is less than -3.402823466e+38, then the value will be clamped to -
3.402823466e+38. If the value written is greater than 3.402823466e+38, then the value will be clamped to
3.402823466e+38.
**When a Signaling NaN is written, it will be converted to a Quiet NaN.

Date/Time
Short Date [MM/DD/YYYY]
Short Date [MM/DD/YY]
Short Date [DD/MM/YYYY]
Short Date [DD/MM/YY]
Short Date [YY/MM/DD]
Short Date [YYYY/MM/DD]
Time [HH:MM:SS]
Standard [DD/MM/YY hh:mm:ss]
Standard [DD/MM/YYYY hh:mm:ss]
Standard [MM/DD/YY hh:mm:ss]
Standard [MM/DD/YYYY hh:mm:ss]
Standard [YY/MM/DD hh:mm:ss]
Standard [YYYY/MM/DD hh:mm:ss]

Note: The length of the formats are variable.

See Also: Format Date Time

LEGEND
h = ASCII Hex digit ("0" to "F")
d = ASCII decimal digit ("0" to "9")
x = ASCII binary digit ("0" or "1")
c = ASCII character
LO = LowWord
lo = Low byte in a Word
HI = HighWord
hi = High byte in a Word
0 = low binary bit
1 = high binary bit
+ = Optional sign ("+" or "-")
F = Fixed data length support
V = Variable data length support
D = Delimited list support

www.ptc.com

87

User-Configurable (U-CON) Driver

See Also: Delimited Lists

Dynamic ASCII Formatting
Many ASCII devices utilize a formatting scheme where values are represented by a fixed number of ASCII
digits and a format character. No decimal point or sign characters are used. Instead, the format character
determines decimal placement and sign. For example, a device may represent the value -12.3 as 0123D
where D means multiply the transmitted integer value, 123 in this case, by -0.1. The format character is
dynamic, meaning that it could be different for each read and write transaction, depending on the data
value.

The Use Dynamic ASCII Format Table device data format option tells the driver to use this type of
formatting. By clicking on the Format Properties button on the tag dialog, the following dialog will come up.

In this dialog, users can specify howmany digits to the right of the decimal point should be used when writ-
ing to the device. Most devices that utilize this type of formatting, zero digits are expected for integer types,
and a specific non-zero number is expected for real types. For example, the value 1.2 could possibly be rep-
resented as 1200A, 0120B, or 0012C, where A means multiply by 0.001, B 0.01, and C 0.1. However, the
device may only accept 0012C for a particular register. In this case, users would set the number of digits to
right of decimal to 1 to force the driver to choose the C format. In general, if the device is expecting an
integer, this value should be 0. When attempting a read, the value has no significance. The driver parses the
format character from the read buffer, looks up its corresponding multiplier and then converts the data
digits accordingly.

In order for this option to work, the user must also define a table of format characters and their cor-
responding multipliers. Such a table must be defined for each device that uses this format option. To edit the
table, click on the Edit Format Table button, or select Edit Dynamic ASCII Format Table from the main
menu or device pop-upmenu.

The Dynamic ASCII Format Table editor, shown below, includes a list of formats currently defined for the
device. Clicking on a table entry will select it; double-clicking will bring up a dialog that can be used to edit the
format item. To the left of the format list are three buttons. The top one is used to add a new format to the
table. The middle and bottom ones allow users to edit or delete the selected format item respectively. There
must be a one-to-one relationship between each format character andmultiplier. In addition to the format
characters, users must specify the number of data characters the device uses and whether the format char-
acter will precede or follow the data.

www.ptc.com

88

User-Configurable (U-CON) Driver

Table entries are edited using the following dialog.

Format Alternating Byte ASCII String
The Alternating Byte ASCII String device data format option can be used to define the format of string data.
For example, when the Alternating Byte ASCII String [0 c 0 c] format is selected, the Format Prop-
erties button in the tag dialog will become enabled. After clicking this button, the dialog should appear as
shown below.

www.ptc.com

89

User-Configurable (U-CON) Driver

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String lengthmust be set. The number entered sets the total number of
characters (two bytes per character) that will be written to or read from the device. Null characters
are not added to the end of strings written to the device, however: they are added to strings read
from the device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII strings, each pad character is
encoded as two ASCII bytes (high byte 0). For example, if the string length was set to 8 and Spaces
was chosen as the pad type, writing the string ABC would cause the driver to send 0x00 0x41, 0x00
0x42, 0x00 0x43, 0x00, 0x20. There are many options for pad characters: spaces (0x00 0x20), zeros
(0x00 0x30), and NULL (0x00 0x00). The pad character option applies to writes only: the driver can
read any valid ASCII hexadecimal string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. Either of the following can be used for variable length ASCII data:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF may be chosen. The driver
will search for this character as ASCII hexadecimal data. For example, the two bytes 0x00 0x20 would
be considered a space character.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

Format ASCII Integer
The ASCII integer device data format option allows the user to specify how ASCII integer data should be
formatted. For example, when a format of ASCII Integer [+ddd] is selected, the Format Properties button
in the tag dialog will become enabled. After clicking this button, the dialog should appear as shown below.

www.ptc.com

90

User-Configurable (U-CON) Driver

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII integer strings, the String lengthmust be specified. As its name suggests, this
sets the total number of characters (one byte per character) that will be written to or read from the
device. A minus sign counts as one character.

l For fixed length ASCII integer strings, the Pad typemust be specified. Pad characters are used to fill
out the string for integer values that do not require the full string length. For example, if the string
length was set to 4, and a value of 12 is to be written to the device, the driver will create a string con-
sisting of two pad characters, followed by 1 then 2. There are many options for pad characters:
spaces (0x20), zeros (0x30), and NULL (0x00). The pad character option applies to writes only: the
driver can read any valid ASCII integer string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For
example, if string length is set to 4, then writing 12345 results in the string 9999 and writing -1234 results in
the string -999.

Format ASCII HEX Integer
The ASCII Hex Integer device data format option allows the user to specify how ASCII hex integer data
should be formatted. For example, when a format of ASCII Hex Integer [hhh] is selected, the Format Prop-
erties button in the tag dialog will become enabled. After clicking this button, the dialog should appear as
shown below.

www.ptc.com

91

User-Configurable (U-CON) Driver

The Fixed length check box determines if the string data is fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII hex integer strings, the String lengthmust be specified. As its name suggests,
this sets the total number of characters (one byte per character) that will be written to or read from
the device. A minus sign counts as one character.

l For fixed length ASCII hex integer strings, the Pad typemust be specified. Pad characters are used
to fill out the string for integer values that do not require the full string length. For example, if the
string length was set to 4 and a value of 12 is to be written to the device, the driver will create a string
consisting of two pad characters, followed by 1 then 2. There are many options for pad characters:
spaces (0x20), zeros (0x30), and NULL (0x00). The pad character option applies to writes only: the
driver can read any valid ASCII integer string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For
example, if string length is set to 4, then writing 12345 results in the string FFFF and writing -1234 results in
the string FFFF.

Format ASCII Multi-Bit Integer
The ASCII Multi-Bit Integer device data format option reads or writes a specified number of bit characters
represented in an ASCII multi-bit integer. An ASCII multi-bit integer is an 8 character long string, where each
character can be either 0 or 1. This format option requires the user to specify two Format Properties, the

www.ptc.com

92

User-Configurable (U-CON) Driver

start bit, and number of bits. For example, when a format of ASCII Multi-Bit Integer [xxxxxxxx] is selected,
the Format Properties button in the tag dialog will become enabled. After clicking this button, the dialog
should appear as shown below.

l The Start bit control sets the index of the first bit that the driver will read from or write to. As is stand-
ard practice, the least significant bit (LSB) is referred to as bit index 0, and the most significant bit
(MSB) has a bit index of 7.

l The Number of bits control sets howmany bits to read or write, starting at the start bit index.

If a value is to be written that exceeds the maximum value that the can be represented by the spe-
cified number of bits, then all of the specified bits will be set to one. All bits other than those specified
by this format will be set to zero in writes. If this format is used with a Boolean data type, then all spe-
cified bits are set to one, if the write value is non-zero. If wishing to set a number of bits in a pre-
defined byte, preserving the state of the other bits, use another device data format and theModify
Byte command.

Read Example
Say the device returns 11001010, and this format specifies a start bit of 3 and number of bits of 4. The value
returned to the tag is 9 decimal (1001 binary).

Write Example
Say a value of 1 is to be written, and this format specifies a start bit of 3 and number of bits of 2. The value
sent to the device will be 00001000. If a value of 3 or greater is to be written using the same Format Prop-
erties, then the value sent to the device will be 00011000.

Format ASCII Real
The ASCII Real device data format option allows the user to specify how ASCII Real data should be format-
ted. For example, when a format of ASCII Real [+ddd.dddE+ddd] is selected, the Format Properties but-
ton in the tag dialog will become enabled. After clicking this button, the dialog should appear as shown
below.

www.ptc.com

93

User-Configurable (U-CON) Driver

Precision sets the number of digits to the right of the decimal point. The precision property applies to writes
only: the driver can read any valid ASCII real value of the specified length. WhenUse decimal comma in
place of decimal point is checked, a comma will be used as the decimal separator.

The Fixed length check box determines if string data is fixed or variable length. This box must be checked if
a device will only accept strings of a given length in write transactions. If the length of a string returned from
a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII real strings, the String lengthmust be specified. As its name suggests, this
sets the total number of characters (one byte per character) that will be written to or read from the
device. The decimal point and possible minus sign each count as one character.

l For fixed length ASCII real strings, the Pad typemust also be specified. Pad characters are used to
fill out the left hand side of the string for real values that do not require the full string length. Zeros
are added as needed to fill out the specified precision. For example, if the string length was set to 8,
and the precision was set to 3, and a value of 12.3 is to be written to the device, the driver will create
a string consisting of two pad characters, followed by "12.300". There are many options for pad char-
acters: spaces (0x20), zeros (0x30), and NULL (0x00). The pad character option applies to writes only:
the driver can read any valid ASCII real string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For

www.ptc.com

94

User-Configurable (U-CON) Driver

example, if string length is set to 6 and the precision is set to 2, then writing 1234.567 results in the string
"999.99" and writing -123.456 results in the string "-99.99".

Format ASCII String
The ASCII String device data format option allows the user to specify how string data should be formatted.
When a format of ASCII String [ccc...] is selected, in the tag dialog for example, the Format Properties but-
ton will become enabled. After clicking this button, the dialog should appear as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String lengthmust be set. The number entered here sets the total num-
ber of characters (one byte per character) that will be written to or read from the device. Null char-
acters are not added to the end of strings written to the device, however: they are added to strings
read from the device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer and ASCII real formats,
the pad characters are added as needed to the right. For example, if the string length was set to 4,
and a value of ABC is to be written to the device, the driver will create a string consisting of the char-
acters, ABC, followed by one pad character. There are many options for pad characters: spaces
(0x20), zeros (0x30), and NULL (0x00). The pad character option applies to writes only: the driver can
read any valid ASCII string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

See Also: Tips and Tricks: Delimited Lists

www.ptc.com

95

User-Configurable (U-CON) Driver

Format ASCII Hex String
The ASCII Hex String device data format option allows the user to specify how string data should be format-
ted. For example, when a format of ASCII Hex String [hh hh hh...] is selected, the Format Properties but-
ton in the tag dialog will become enabled. After clicking this button, the dialog should appear as shown
below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String lengthmust be set. The number entered sets the total number of
characters (two bytes per character) that will be written to or read from the device. Null characters
are not added to the end of strings written to the device, however: they are added to strings read
from the device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII strings, each pad character is
encoded as two ASCII Hex bytes. For example, if the string length was set to 8 and Spaces was
chosen as the pad type, writing the string ABC would cause the driver to send eight bytes 0x34 0x31
0x34 0x32 0x34 0x33 0x32 0x30. There are many options for pad characters: spaces (0x32 0x30),
zeros (0x33 0x30), and NULL (0x30 0x30). The pad character option applies to writes only: the driver
can read any valid ASCII Hex string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen. The driver
will search for this character as ASCII hexadecimal data. For example, the two bytes 0x32 0x30 would
be considered a space character.

www.ptc.com

96

User-Configurable (U-CON) Driver

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

Format ASCII Hex String From Nibbles
The ASCII Hex String From Nibbles device data format option allows the user to specify how string data
should be formatted. For example, when a format of ASCII Hex String From Nibbles [hh hh hh...] is selec-
ted, the Format Properties button in the tag dialog will become enabled. After clicking this button, the dia-
log should appear as shown below.

The Fixed length check box determines if string data is fixed or variable length. This box must be checked if
a device will only accept strings of a given length in write transactions. If the length of a string returned from
a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String length must also be set. The number entered sets the total number
of bytes (one byte per two characters) that will be written to or read from the device. Only even
lengths are allowed. Null characters are not added to the end of strings written to the device, how-
ever: they are added to strings read from the device and passed to the client application.

l For fixed length strings, when writing through a client, the driver adds pad character ('0':0x30) at the
end of the string up to the set length. For example, if the string length was set to 8, writing the string
ABC would cause the driver to send four bytes 0xAB 0xC0 0x00 0x00 (for a driver recreated string
ABC00000). The pad character option applies to writes only: the driver can read any valid ASCII Hex
string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame. For variable length strings,
when writing through a client, the driver adds a single pad character ('0':0x30) at the end of the string

www.ptc.com

97

User-Configurable (U-CON) Driver

if the length of the string is odd. For example, writing the string ABC would cause the driver to send
two bytes 0xAB 0xC0 (for a driver recreated string ABC0).

Note: When writing through a client only hex characters ('0'-'9' and ''A'-'F') are allowed. Characters 'a'-'f'
are automatically converted to valid hex 'A'-'F' by the driver.

Format ASCII Integer (Packed 6 Bit)
The ASCII integer (packed 6 bit) device data format option can be used to specify how ASCII integer data
should be formatted. For example, when a format of ASCII Integer (packed 6 bit) [+dddd] is selected, the
Format Properties button in the tag dialog will become enabled. After clicking this button, the dialog
should appear as shown below.

The Fixed length check box determines whether the string data is a fixed or variable length. This box must
be checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII integer (packed 6 bit) strings, the String lengthmust be specified. As its name
suggests, this sets the total number of characters (one byte per character) prior to conversion that
will be written to or read from the device. A minus sign counts as one character. The number of bytes
sent over the wire is equal to three fourths the String length.

l For fixed length ASCII integer (packed 6 bit) strings, the Pad typemust also be specified. Pad char-
acters are used to fill out the string for integer values that do not require the full string length. For
example, if the string length was set to 4 and a value of 12 is to be written to the device, the driver will
create a string consisting of two pad characters followed by 1 then 2. There are many options for pad
characters: spaces (0x20) and zeros (0x30). The pad character option applies to writes only: the
driver can read any valid ASCII integer (packed 6 bit) string of the specified length.

For variable length ASCII integer (packed 6 bit) data, the driver must have some way of knowing where
a tag's data ends when executing anUpdate Tag command. This is accomplished by specifying an end point
relative to the frame end. The Read up to xxx bytes from frame end box can be used to define the end of
a tag's data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For
example, if string length is set to 4, then writing 12345 results in the string 9999 and writing -1234 results in
the string -999.

www.ptc.com

98

User-Configurable (U-CON) Driver

Note: Due to packing, ASCII (packed 6 bit) data uses a reduced ASCII (packed 6 bit) Character Table.
Attempting to use characters not in the ASCII (packed 6 bit) Character Table will result in data conversion
failures.

Format ASCII Real (Packed 6 Bit)
The ASCII Real (Packed 6 Bit) device data format option can be used to specify how ASCII Real data should
be formatted. For example, when a format of ASCII Real (packed 6 bit) [+ddd.dddE+ddd] is selected, the
Format Properties button in the tag dialog will become enabled. After clicking this button, the dialog
should appear as shown below.

Precision sets the number of digits to the right of the decimal point. The precision property applies to writes
only: the driver can read any valid ASCII real (packed 6 bit) value of the specified length. When checked, Use
decimal comma in place of decimal point allows a comma to be used as a decimal.

The Fixed length check box determines whether the string data is a fixed or variable length. This box must
be checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII real (packed 6 bit) strings, the String lengthmust be specified. As its name
suggests, this sets the total number of characters (one byte per character) prior to conversion that
will be written to or read from the device. The decimal point and possible minus sign each count as
one character. The number of bytes sent over the wire is equal to three fourths the string length.

l For fixed length ASCII real (packed 6 bit) strings, the Pad typemust also be specified. Pad characters
are used to fill out the left hand side of the string for real values that do not require the full string
length. Zeros are added as needed to fill out the specified precision. For example, if the string length
is set to 8, the precision is set to 3, and a value of 12.3 is to be written to the device, the driver will cre-
ate a string consisting of two pad characters followed by 12.300. There are many options for pad
characters: spaces (0x20) and zeros (0x30). The pad character option applies to writes only: the
driver can read any valid ASCII real (packed 6 bit) string of the specified length.

For variable length ASCII real (packed 6 bit) data, the driver must have some way of knowing where a
tag's data ends when executing anUpdate Tag command. This is accomplished by specifying an end point
relative to the frame end. The Read up to xxx bytes from frame end box can be used to define the end of
a tag's data field relative to the end of a frame.

www.ptc.com

99

User-Configurable (U-CON) Driver

ROUND OFF:When writing values that require more characters than allotted by String length, the driver
will write the largest positive or smallest negative value that can be expressed in the allotted space. For
example, if string length is set to 6 and the precision is set to 2, then writing 1234.567 results in the string
999.99 and writing -123.456 results in the string -99.99.

Note: Due to packing, ASCII (packed 6 bit) data uses a reduced ASCII (packed 6 bit) Character Table.
Attempting to use characters not in the ASCII (packed 6 bit) Character Table will result in data conversion
failures.

Format ASCII String (Packed 6 Bit)
The ASCII String (Packed 6 Bit) device data format option allows the user to specify how string data should
be formatted. For example, when a format of ASCII String (packed 6 bit) [cccc...] is selected, the Format
Properties button in the tag dialog will become enabled. After clicking this button, the dialog should appear
as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the string length must also be set. The number entered sets the total number
of characters (one byte per character) prior to conversion that will be written to or read from the
device. The number of bytes sent over the wire is equal to three fourths the string length. Null char-
acters are not added to the end of strings written to the device, however: they are added to strings
read from the device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer (packed 6 bit) and ASCII
real (packed 6 bit) formats, the pad characters are added as needed to the right. For example, if the
string length was set to 4 and a value of ABC is to be written to the device, the driver will create a
string consisting of the characters ABC, followed by one pad character. There are many options for
pad characters: spaces (0x20), and zeros (0x30). The pad character option applies to writes only: the
driver can read any valid ASCII (packed 6 bit) string of the specified length.

For variable length ASCII (packed 6 bit) string data, the driver must have some way of knowing where a
tag's data ends when executing anUpdate Tag command. This is accomplished by specifying an end point
relative to the frame end. The Read up to xxx bytes from frame end box can be used to define the end of
a tag's data field relative to the end of a frame.

www.ptc.com

100

User-Configurable (U-CON) Driver

Note: Due to packing, ASCII (packed 6 bit) data uses a reduced ASCII (packed 6 bit) Character Table.
Attempting to use characters not in the ASCII (packed 6 bit) Character Table will result in data conversion
failures.

Format Multi-Bit Integer
The Multi-Bit Integer device data format option is used to associate the tag with a subset of bits in a longer
integer value which is read from or written to the hardware. The tag's data type will determine how the
integer equivalent of these bits will be communicated to or from the client application. For example, when a
format ofMulti-Bit Integer is selected, the Format Properties button in the tag dialog will become
enabled. After clicking this button, the dialog should appear as shown below.

l The Raw data format control can be used to specify the length and byte order of the integer data as
read from or written to the device. The quantity will be represented by one or more of the bits within
this integer.

l The Start bit control sets the index of the first bit of interest with the integer. As is standard practice,
the least significant bit (LSB) is referred to as bit index 0.

l The Number of bits control sets howmany bits are within the integer, starting at the start bit index.

Read example
Say we have a device that measures an analog quantity which can range in value from 1 to 63. This value is
reported by the device as the first 6 bits in a byte. The seventh bit in this byte indicates the status of the asso-
ciated sensor, and the remaining bit is not used. We could create a tag blockwith a value tag using this
Multi Bit Integer format, and a status tag using one of the single bit within byte formats. Both tags could be
updated from a single block read transaction. For the value tag, set the Raw data format to 8-bit Intel, Start
bit to 0, and Number of bits to 6. If the device returned [01100111], the value tag would then be updated with
a value of 39 (binary 100111).

Write example
Assume we have a tag using this format with Raw data format set to 8-bit Intel, Start bit set to 3, and Number
of bits set to 2. If a value of 1 is written to the tag, the device will receive the byte [00001000]. If a value of 3
or greater is written, the device will receive the byte [00011000].

Boolean Data types
The above examples assume the tag's data type is one of the integer types, Byte, Char, Word, and so forth.
Boolean tags behave a bit differently. On reads, if any of the specified bits is set, the tag will receive a value
of TRUE. All of the specified bits will be set if TRUE is written, and all bits will be cleared if FALSE is written.

www.ptc.com

101

User-Configurable (U-CON) Driver

Format Unicode String
The Unicode String device data format option allows the user to specify how string data should be format-
ted. For example, whenUnicode String [u1u2u3u4...] is selected, the Format Properties button in the tag
dialog will become enabled. Click Format Properties to display the Unicode String Format Properties dia-
log box, as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String lengthmust be set. The number entered here sets the total num-
ber of characters (two bytes per character) that will be written to or read from the device. Null char-
acters are not added to the end of strings written to the device, however: they are added to strings
read from the device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer and ASCII real formats,
the pad characters are added as needed to the right. For example, if the string length was set to 4
and a value of ABC is to be written to the device, the driver will create a string consisting of the char-
acters, ABC in Unicode form, followed by one pad character. There are many options for pad char-
acters: spaces (0x00 0x20), zeros (0x00 0x30), and NULL (0x00 0x00). The pad character option
applies to writes only: the driver can read any valid ASCII string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF may be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

www.ptc.com

102

User-Configurable (U-CON) Driver

Format UnicodeLoHi String
The Unicode String device data format option allows the user to specify how string data should be format-
ted. For example, whenUnicode String with Lo Hi Byte Order (u2u1u4u3...) is selected, the Format Prop-
erties button in the tag dialog will become enabled. Click Format Properties to display the UnicodeLoHi
String Format Properties dialog box, as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String lengthmust be set. The number entered here sets the total num-
ber of characters (two bytes per character) that will be written to or read from the device. Null char-
acters are not added to the end of strings written to the device, however: they are added to strings
read from the device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer and ASCII real formats,
the pad characters are added as needed to the right. For example, if the string length was set to 4
and a value of ABC is to be written to the device, the driver will create a string consisting of the char-
acters, ABC in Unicode form, followed by one pad character. There are many options for pad char-
acters: spaces (0x20 0x00), zeros (0x30 0x00), and NULL (0x00 0x00). The pad character option
applies to writes only: the driver can read any valid ASCII string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing anUpdate Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the
tag's data will be marked by a known character, as would be the case in a delimited list of values. For
more information, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delim-
iter drop down list will be enabled. An ASCII character from 0x00 to 0xFF may be chosen. The driver
will search for this character as ASCII hexadecimal data. For example, the two bytes 0x32 0x30 would
be considered a space character.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

www.ptc.com

103

User-Configurable (U-CON) Driver

Format Date / Time
The Date device data format option allows the user to specify how date or date/time data will be format-
ted. When Date is selected, the Format Properties button in the tag dialog will become enabled. Click
Format Properties to display the Date Format Properties dialog box as shown below.

First, select the Date Data Format. The default setting is Binary Data. Options are as follows:

l Binary Data:When selected, the date value will be sent as a binary value. For example, if no sep-
arators or delimiters are selected and the Date/Time format is set to Standard [MM/DD/YY hh:mm:ss],
the value "09-11-09 02:15:50" would be sent as "09 0B 09 02 0F 32".

l ASCII Data: When selected, the date value will be sent as an ASCII string (including separators and
delimiters). With the example shown for Binary Data above, if the Date delimiter is set to "-", the Time
delimiter is set to ":", and the separating delimiter is set to <space>, the value would be sent as "30 39
2D 31 31 2D 30 39 20 30 32 3A 31 35 3A 35 30".

l ASCII Hex Data: When selected, the binary data will be sent so that each hex byte's nibble is sent as
a printable ASCII character. With the example shown for Binary Data above with no separators or
delimiters selected, the value would be sent as "30 39 30 42 30 39 30 32 30 46 33 32".

The remaining options in the dialog box can be used to further refine the date format.

l Date Delimited: When checked, delimiters will be included in the date value. Use the Date Delim-
iter drop-downmenu to select the delimiter character. The default setting is None.

l Time Delimited: When checked, delimiters will be included in the time value. Use the Time Delim-
iter drop-downmenu to select the delimiter character. The default setting is None.

www.ptc.com

104

User-Configurable (U-CON) Driver

l Separating Delimiter: When checked, a separating delimiter will be included in the date or date/-
time value. Use the Separating Delimiter drop-downmenu to select the delimiter character. The
default setting is None.

l Year Prefix: This property is used to specify a 99 year range. Users canmanually type the range or
use the slider to resolve date/time data to the correct millennium. For example, if the year prefix
range is set to 1970 to 2069, year values between "00" and "69" would resolve to 2000 and 2069.
Year values between "70" and "99" would resolve to 1970 and 1999. This setting is only enabled for
date/time formats that contain 1-byte binary years, 2 character ASCII years, or 2-byte Hex ASCII
years.

Check the Followed by AM/PM? box to have the value be followed by "AM" or "PM". The default setting is
unchecked.

Checksum Descriptions
The User-Configurable (U-CON) Driver offers a variety of checksum options. Here is a brief description of
each. Custom checksums can be created for a small fee. For more information, refer to Technical Support.

2's Complemented sum (8-bit)
The checksum is the 2's complement of the data received. The checksum is 8 bit.

2's Complemented sum (16-bit)
Same as 2's Complemented sum (8-bit) except the checksum is 16 bit.

CRC-CCITT (16-bit)
Cyclical Redundancy Check using: X^16 + X^12 + X^5 + 1 generator polynomial. Commonly used in XMODEM
protocol.

CRC-CCITT-INITO (16-bit) (Reflected in/out)
Same as CRC-CCITT (16-bit) except input and output bytes are reflected and CRC is initialized to 0.

CRC-CCITT-INIT-0xFFFF
Same as CRC-CCITT (16-bit) except that the initialization = 0xFFFF.

CRC-CCITT-INIT-0xFFFF (16-bit)(Reflected)
Same as CRC-CCITT (16-bit) except input and output bytes are reflected and CRC is initialized to 0xFFFF.

CRC-16 (16-bit)
For more information, refer to Custom #3 (16-bit).

CRC-16 (16-bit)(Reflected)
Cyclical Redundancy Check using: X^16 + X^15 + X^2 + 1 generator polynomial. Commonly used in MODBUS
protocol.

CRC-16-INIT1 (16-bit) (Reflected)
Same as CRC-16 (16-bit) except that the initialization = 1.

CRC-32 (32-bit)
Cyclic Redundancy Check using x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 +
X^4 + x^2 + x^1 + 1 generator polynomial (Modbus "CRC-32" version).

www.ptc.com

105

User-Configurable (U-CON) Driver

CRC-32 (32-bit) (Reflected)
Same as CRC-32 (32-bit) except it uses reflected* polynomial.

LRC (8-bit)
Longitudinal Redundancy Check - two's complement of sum of all bytes.

DCE3 (16-bit)
Similar to CRC-16 (16-bit) (Reflected); used by the DCE3 protocol (generally in wind turbine devices).

LRC ASCII (8-bit)
Like LRC, but for ASCII Hex data. Pairs of bytes, assumed to be ASCII Hex values, are converted to their bin-
ary equivalent before being added to the sum.

MLEN (8-bit)
Adds the number of bytes in the message. The checksum is 8 bit.

MLEN (16-bit)
Same as MLEN (8-bit) except the checksum is stored in 16 bit. For example, if a message is received that has
4 bytes, MLEN (16-bit) would be 4 and it would be stored in a 16-bit field as 0x00 0x04 or 0x04 0x00 (depend-
ing on the format, Hi-Lo or Lo-Hi).

MLEN_INCL (8-bit)
Adds the number of bytes in the message including itself which is 1-byte long (8-bit). For example, if a mes-
sage is received that has 4 bytes, thenMLEN_INCL would be 4 + 1 = 5.

MLEN_INCL (16-bit)
Same as MLEN_INCL (8-bit) except the checksum is stored in 16 bit. For example, if a message of 4 bytes is
received, MLEN_INCL (16-bit) would be 4 + 2 = 6. MLEN_INCL (16-bit) would be stored as 0x00 0x06 or 0x06
0x00 (depending on the format, Hi-Lo or Lo-Hi).

SUM (7-bit)
Adds the least 7 bits from each byte. The checksum is 8 bit.

SUM (8-bit)
Sum of all bytes.

SUM (16-bit)
Sum of all bytes.

Sum of [Hi Lo] Word Data (16-bit)
Sum of all words. Words are read in 16-bit Motorola [hi lo] format.

XOR (8-bit)
Bit wise exclusive OR of all bytes.

*CRC Reflected:When reflected polynomials are used, the CRC is computed by processing data from the
least significant bit to the most significant bit. Reflected or reciprocal polynomials are reversed. For example,
if the regular polynomial is:

www.ptc.com

106

User-Configurable (U-CON) Driver

 x^16 + x^15 + x^2 + 1 (0x8005) which in binary is 1000 0000 0000 0101

then the reflected polynomial will be:

1010 0000 0000 0001 x^16 + x^15 + x^13 + 1

Custom #1 (8-bit)
The C code used to calculate this custom checksum is as follows:

Byte CheckSumCustom_1 (Byte *pData, int nLength)
{
Byte byCS = 0xFF;

for (int nByte = 0; nByte < nLength; nByte ++)
{
 Byte byTemp = pData [nByte];

 byCS = byCS ^ byTemp;
 byTemp = byCS;
 byTemp = (byTemp > 3) & 0x1F;
 byCS = byCS ^ byTemp;
 byTemp = (byTemp > 3) & 0x1F;
 byCS = byCS ^ byTemp;
 byTemp = byCS;
 byTemp = byTemp < 5;
 byCS = byCS ^ byTemp;
 }

return (byCS);
}

Custom #2 (8-bit)
This is a variation of the LRC (8-bit) checksum type - binary complement of the sum of all bytes.
This can be expressed as:

byCS = ~bySum, or

byCS = 0xFF - bySum,

where byCS is the result and bySum is the sum of all bytes.

Custom #3 (16-bit)
This is a variation of the CRC-16 (16-bit) checksum type. Here, the sum is initialized to 0x0000, instead of
0xFFFF as it is in CRC-16 (16-bit)(Reflected).

Custom #4 (16-bit)
This is a variation of the CRC-16 (16-bit) checksum type. Here, the sum is initialized to 0x0000, instead of
0xFFFF as it is in CRC-16. Also, this checksummethod searches the frame for a start sequence and end
sequence. DLE characters are used for data transparency.

www.ptc.com

107

User-Configurable (U-CON) Driver

When using this checksummethod, make sure that the whole frame is included in the calculation range. This
driver will search for the start and end sequence within the frame. If the end points are not located, a check-
sum of 0x00 0x00 will be used.

The checksum calculation begins after <DLE><SOH> or <DLE><STX>. The characters of the start sequence
are not included in the calculation. The calculation ends after <DLE><ETB>, <DLE><ETX>, or <DLE><ENQ>.
The DLE characters in the end sequence are not included in the calculation.

Character Sequence Included in CRC Not Included in CRC

<DLE><SYN> - <DLE><SYN>

<DLE><SOH> - <DLE><SOH>

<DLE><STX>* - <DLE><STX>

<DLE><STX>** <STX> <DLE>

<DLE><ETB> <ETB> <DLE>

<DLE><ETX> <ETX> <DLE>

<DLE><DLE> <DLE> <DLE> (one)

*If not preceded in same block by transparent header data.
**If preceded in same block by transparent header data.

Custom #5 (8-bit)
This is a variation of the LRC (8-bit) checksum type. Here, control characters (0x00 - 0x1F) are not included in
the summation.

Custom #6 (8-bit)
This is a variation of the SUM (8-bit) checksum type. Here, the raw data is assumed to be in lower-case ASCII
Hex format (0 - 9, a - f). Each pair of ASCII Hex characters is converted to a byte value and summed. Users
will typically want to select the "Byte from 2 ASCII Hex chars (lower-case) [hh]" device data format so that
the resulting byte value is placed in lower-case ASCII Hex format.

Custom #7 (16-bit)
The C code used to calculate this custom checksum is as follows:

Word CheckSumCustom_7 (Byte *pData, int nLength)
{
C. CRC and checksum calculation
Use, including checksum:
void CheckSumCustom_7(unsigned char MessageOut[28])
{
unsigned char i;
Word wCRCNChkSum = 0;
MessageOut[26] = 0xFF;
for (i = 0; i < 26; i ++)
 MessageOut[26] = CRC_Byte(MessageOut[26],
 MessageOut[i]);
 MessageOut[27] = 0;

 for (i = 0; i < 27; i ++)
 MessageOut[27] += MessageOut[i]);

www.ptc.com

108

User-Configurable (U-CON) Driver

wCRCNChkSum = MessageOut [26];

wCRCNChkSum <= 8;

wCRCNChkSum |= MessageOut [27];

return (wCRCNChkSum);

}
CRC algorithm:
unsigned char CRC_Byte(unsigned char Seed, unsigned char Data)
{
unsigned char j;
for (j = 0; j < 8; j++)
{
 if (((Data ^ Seed) & 1)!= 0)
{
 Seed ^= 0x18;
 Seed >= 1;
 Seed |= 0x80;
 }
 else Seed >= 1;
 Data >= 1;
}
return (Seed);
}

Caution: If using a variable length data format, this custom checksum command requires an extra byte
position for the CRC byte in the checksum field. Therefore, while setting up this checksum in the Transaction
Editor, users must specify double the data length in the checksum data length field.

Custom #8 (16-bit)
This is a variation of the SUM (8-bit) checksum type where the output is 2 bytes: [0x30 + high nibble of sum]
[0x30 + low nibble of sum]. For example, the 8-bit sum of the frame [1B 43 30 31] is 0xBF. Thus, the Custom
#8 checksum of this frame would be [3B 3F].

Custom #9 (8-bit)
Takes the sum of data bytes, and bitwise ORs the result with 0x80. For example, set the most significant bit
to 1.

Custom #10 (16-bit)
16-bit version of LRC. Takes the sum of the data bytes, and returns the 2's complement of result.

Custom #11 (8-bit)
This is a variation of the XOR (8-bit) checksum. With this Custom #11, the intermediate result of each XOR
operation is rotated left by 1 bit.

Custom #12 (8-bit)
This is a variation on the Sum (8-bit) checksum. Input data is assumed to be in ASCII Hex. The data is con-
verted to hex before the sum, which is then subtracted from 0xFF.

Custom #13 (8-bit)

www.ptc.com

109

User-Configurable (U-CON) Driver

This is a variation on the Sum (8-bit) checksum. It sums the bytes and subtracts the sum from zero.

Custom #14 (8-bit)
This is determined by subtracting the valid hex numbers and the ASCII values of non-valid hex numbers from
0x00, and swapping the Hi and Low nibbles.

Custom #15 (8-bit)
This performs an 8-bit CRC on one data byte using the CRC polynomial: x^7 + x^3 + 1.

Custom #16 (8-bit)
Sums all bytes, inverts all bits, truncates the result to one byte, then adds 1. This supports communication
with Emerald Processor/ Industrial Indexing Systems.

Custom #17 (8-bit)
This is a variation on the SUM (8-bit) checksum. Input data is assumed to be in ASCII HEX. The data is con-
verted to HEX before the SUM.

ASCII Character Table

Dec Hex ASCII Key Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

0 0x00 NUL Ctrl-@ 32 0x20 Space 64 0x40 @ 96 0x60 `

1 0x01 SOH Ctrl-A 33 0x21 ! 65 0x41 A 97 0x61 a

2 0x02 STX Ctrl-B 34 0x22 " 66 0x42 B 98 0x62 b

3 0x03 ETX Ctrl-C 35 0x23 # 67 0x43 C 99 0x63 c

4 0x04 EOT Ctrl-D 36 0x24 $ 68 0x44 D 100 0x64 d

5 0x05 ENQ Ctrl-E 37 0x25 % 69 0x45 E 101 0x65 e

6 0x06 ACK Ctrl-F 38 0x26 & 70 0x46 F 102 0x66 f

7 0x07 BEL Ctrl-G 39 0x27 ' 71 0x47 G 103 0x67 g

8 0x08 BS Ctrl-H 40 0x28 (72 0x48 H 104 0x68 h

9 0x09 HT Ctrl-I 41 0x29) 73 0x49 I 105 0x69 i

10 0x0A LF Ctrl-J 42 0x2A * 74 0x4A J 106 0x6A j

11 0x0B VT Ctrl-K 43 0x2B + 75 0x4B K 107 0x6B k

12 0x0C FF Ctrl-L 44 0x2C , 76 0x4C L 108 0x6C l

13 0x0D CR Ctrl-M 45 0x2D - 77 0x4D M 109 0x6D m

14 0x0E SO Ctrl-N 46 0x2E . 78 0x4E N 110 0x6E n

15 0x0F SI Ctrl-O 47 0x2F / 79 0x4F O 111 0x6F o

16 0x10 DLE Ctrl-P 48 0x30 0 80 0x50 P 112 0x70 p

17 0x11 DC1 Ctrl-Q 49 0x31 1 81 0x51 Q 113 0x71 q

18 0x12 DC2 Ctrl-R 50 0x32 2 82 0x52 R 114 0x72 r

19 0x13 DC3 Ctrl-S 51 0x33 3 83 0x53 S 115 0x73 s

20 0x14 DC4 Ctrl-T 52 0x34 4 84 0x54 T 116 0x74 t

21 0x15 NAK Ctrl-U 53 0x35 5 85 0x55 U 117 0x75 u

22 0x16 SYN Ctrl-V 54 0x36 6 86 0x56 V 118 0x76 v

www.ptc.com

110

User-Configurable (U-CON) Driver

Dec Hex ASCII Key Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

23 0x17 ETB Ctrl-W 55 0x37 7 87 0x57 W 119 0x77 w

24 0x18 CAN Ctrl-X 56 0x38 8 88 0x58 X 120 0x78 x

25 0x19 EM Ctrl-Y 57 0x39 9 89 0x59 Y 121 0x79 y

26 0x1A SUB Ctrl-Z 58 0x3A : 90 0x5A Z 122 0x7A z

27 0x1B ESC Ctrl-[59 0x3B ; 91 0x5B [123 0x7B {

28 0x1C FS Ctrl-\ 60 0x3C < 92 0x5C \ 124 0x7C |

29 0x1D GS Ctrl-] 61 0x3D = 93 0x5D] 125 0x7D }

30 0x1E RS Ctrl-^ 62 0x3E > 94 0x5E ^ 126 0x7E ~

31 0x1F US Ctrl-_ 63 0x3F ? 95 0x5F _ 127 0x7F Del

ASCII Character Table (Packed 6 Bit)

Dec Hex ASCII Dec Hex ASCII
0 00 @ 32 20 Space

1 01 A 33 21 !

2 02 B 34 22 ‘

3 03 C 35 23 #

4 04 D 36 24 $

5 05 E 37 25 %

6 06 F 38 26 &

7 07 G 39 27 ‘

8 08 H 40 28 (

9 09 I 41 29)

10 0A J 42 2A *

11 0B K 43 2B +

12 0C L 44 2C ,

13 0D M 45 2D -

14 0E N 46 2E .

15 0F O 47 2F /

16 10 P 48 30 0

17 11 Q 49 31 1

18 12 R 50 32 2

19 13 S 51 33 3

20 14 T 52 34 4

21 15 U 53 35 5

22 16 V 54 36 6

23 17 W 55 37 7

24 18 X 56 38 8

25 19 Y 57 39 9

www.ptc.com

111

User-Configurable (U-CON) Driver

Dec Hex ASCII Dec Hex ASCII
26 1A Z 58 3A :

27 1B [59 3B ;

28 1C \ 60 3C <

29 1D \ 61 3D =

30 1E ^ 62 3E >

31 1F _ 63 3F ?

Tips and Tricks
For more information, select a link from the list below.

Bit Fields: Using the Modify Byte and Copy Buffer Commands
Branching: Using the conditional, Go To, Label and End Commands
Dealing with Echoes
Debugging: Using the Diagnostic Window and Quick Client
Delimited Lists
Moving the Buffer Pointer
Scanner Applications
Slowing Things Down: Using the Pause Command
Transferring Data Between Transactions: Using Scratch Buffers

Bit Fields: Using the Modify Byte and Copy Buffer Commands
For efficiency, sometimes protocols pack several device settings into a single byte, sometimes called a bit
field. For example, consider a process control device that has four outputs R0, R1, R2, and R3. Each of these
outputs can operate in either alarmmode or proportional control mode. It is typical for such devices to allow
the mode of all four outputs to be read using a single command that returns all four settings in a single byte
bit field. For example, bit 0 may represent output R0, bit 1 represents R1, and so forth. If a bit is 0, then the
output is in alarmmode, and if the bit is 1 the output is in proportional mode. Likewise, the mode of all four
outputs is usually set with a single command that takes a bit field as an argument.

To read the mode of each output, users should create a tag block with four tags: Mode_R0, Mode_R1, Mode_
R2, andMode_R3. These tags should have Read/Write access and have a data type of Boolean. The device
data formats should be "Bit 0 from byte (00000001)" for Mode_R0, "Bit 1 from byte (00000010)" for Mode_
R1, and so forth. The block read transactionmust issue the appropriate read command and then update all
four tags. All four of the update tag commands must have the same data "start position" which points to the
byte containing the output mode settings.

Setting the mode of a single output requires a bit more work. Since our hypothetical set output mode func-
tion takes a bit field that sets the mode of all four outputs, users need to know what mode the other three
outputs are in. This way, users can construct the bit field used in the set output mode command such that all
other outputs are unchanged. For example, to be able to set the mode of output R0, users define the write
transaction attached to the Mode_R0 tag. The first thing that must occur in this transaction is to issue the get
output mode command string and receive the response. The current output mode settings are encoded
somewhere in the RX buffer and are available to users for the remainder of the transaction. After this read
response, users need to construct the set output mode command string in the TX buffer. Somewhere in that
command string users will need to place the output mode bit field. Users get this by issuing a Copy Buffer

www.ptc.com

112

User-Configurable (U-CON) Driver

command that will copy the current settings from the RX buffer to the TX buffer. Next, users need to modify
bit 0 of this byte to set the mode of output R0. The "Modify Byte" function does just that. It will take the value
to be written to the device andmodify a bit or set of bits in the specified byte accordingly. In this case, users
can use it to modify bit 0 of the byte by specifying the bit mask "00000001". Writing 0 to the Mode_R0 tag
then results in bit 0 being set to 0, setting R0 to alarmmode. Writing 1 results in bit 0 being set to 1, setting
R0 to proportional control mode. All other bits remain unchanged, and therefore outputs R1, R2, and R3
remain in the same mode.

Branching: Using the conditional, Go To, Label and End Commands
The User-Configurable (U-CON) Driver is used to create transactions that branch off and execute different
sets of commands depending on the data received from a device. Error handling is the most common use
for branching. If data is judged to be good, one set of commands will be executed; if it is judged to be bad,
another set of commands will be executed. In the example below, the device is sent a read request of some
sort. The device will return an error code of 0x00 or 0x01. If the error code is 0x00, the device successfully
processed the read request but requires the driver to send back the acknowledgment code 0x06. If the error
code is 0x01, the device failed to process the request. In the example transaction, the error code is
examined, the tag is updated and the acknowledgment is sent if the read request succeeds. If it fails, the
request is repeated. If it fails a second time, the tag is invalidated and requests are stopped.

STEP COMMAND COMMAND PARAMS DESCRIPTION

1 Write String AB1 Place read request string in TX buffer

2 Transmit Send the request

3
Read
Response

Wait for terminator 0x0D Get response from device

4 Test Character

Position = 4
Test Character = 0x00
TRUE action = Go To
"Good"
FALSE action = Continue

ACK receipt of good data or retry

5 Log Event "Retrying AB1 command" Post message to server's Event Log

6 Transmit Send the last command again

7
Read
Response

Wait for terminator 0x0D Get response from device

8 Test Character

Position = 4
Test Character = 0x00
TRUE action = Go To
"Good"
FALSE action = Invalidate
Tag

ACK receipt of good data or invalidate tag and give
up.

9 End Do not proceed into next section

10 Label Label = Good Marks beginning of good data processing section

11 Update Tag Tag = This tag Update tag with good data

12
Write Char-
acter

0x06 Place acknowledgment code in TX buffer

13 Transmit Send acknowledgment

Note: Steps 10-13 are executed only when the device returns an error code of 0x00 (success).

www.ptc.com

113

User-Configurable (U-CON) Driver

Dealing with Echoes
Some devices operate in echo mode, which is when every byte sent to it is echoed back. Unless told oth-
erwise, the User-Configurable (U-CON) Driver ignores such echoes. It is usually perfectly okay to ignore
these echoes. However, some devices do not accept the next byte sent to it until it has sent back the pre-
vious character. To make sure that the driver and device remain in sync in these cases, users must process
each echoed byte. For example, if the command string "AB1" needs to be sent to such a device, it should
then send a nine-character response. A transaction would need to be created like as is shown below.

STEP COMMAND
COMMAND
PARAMS

DESCRIPTION

1
Write Char-
acter

A Place "A" in TX buffer

2 Transmit Send the "A"

3
Read
Response

Wait for 1 char-
acter

Wait for echoed "A"

4
Write Char-
acter

B Place "B" in TX buffer

5 Transmit Send the "B"

6
Read
Response

Wait for 1 char-
acter

Wait for echoed "B"

7
Write Char-
acter

1 Place "1" in TX buffer

8 Transmit Send the "1"

9
Read
Response

Wait for 10 char-
acters

Wait for echoed "1" and nine character command response

10 Update Tag This tag
Parse response, accounting for echoed "1" at the beginning of
the RX buffer, and update tag

Note: The reason some devices echo is to provide a means of error checking. To actually perform such
error checking, a Test Character command will need to be included after each Read Response command
to make sure that the returned character is what it is supposed to be. If it is not, users could "Go To" an error
handling section of the transaction. Keep in mind that additional transaction commands will decrease the
performance of the driver.

Debugging: Using the Diagnostic Window and Quick Client
The server's Diagnostic Window and the Quick Client application are indispensable tools for debugging trans-
actions. The Diagnostic Window shows users exactly what was sent and received by the driver during a trans-
action. Common errors (such as a Read Response command configured to receive an incorrect number of
bytes or an incorrect device data format selection) are apparent with the Diagnostic Window. The Quick Cli-
ent is tightly integrated with the server, so that users invoke a powerful test client with all of the tags auto-
matically loaded with one click. With the Quick Client, users canmanually control the execution of each
transaction.

www.ptc.com

114

User-Configurable (U-CON) Driver

Follow the instructions below for the recommendedmethod of debugging a new transaction. Note that the
server project should be saved after each edit session.

1. Double-click on the desired channel in the server andmake sure that the Enable diagnostics box is
checked.

2. Next, click on the Quick Client icon on the server's toolbar.

3. Disable all tags in the Quick Client except for the ones in the "_System" and "_Statistics" groups. By
doing this, the Diagnostic Window will not fill up with data from transactions that users are not inter-
ested in.

Note: If users have a lot of tags, it may be easier to launch the Quick Client directly fromWindows
instead of from the server. This way, users canmanually add the tags they want to test and also spe-
cify when they are tested.

4. Return to the server and right-click on the channel. Select the Diagnostics item to bring up the Dia-
gnostics Window. Then, return to the Quick Client and right-click on the tag to which the transaction
belongs.

5. Issue a read or write request, depending on what type of transaction is being tested. The Diagnostic
Window will show users the bytes the driver sent to the device and any response.

Note: For more information, refer to the "Diagnostic Window" help topic in the OPC Server's help
documentation.

Important: If a change must be made to the transaction, users must disconnect the Quick Client
from the server before invoking the Transaction Editor.

6. Next, minimize the Quick Client and perform the edits. Close the dialog only to disable the tags again.

7. After all changes have beenmade, users can bring the previous instance of the Quick Client back up
and reconnect. The tags should not all need to be disabled again.

8. Check the transaction as before by issuing an asynchronous read or write.

Delimited Lists
Many protocols provide data for multiple values in a list format, generally providing a separate tag for each
value. In these cases, it makes sense to create a Tag Block. A tag block will have a single, common read
transaction that can be used to read data for all its member tags in a single shot. This read transaction will
contain a number of Update Tag commands, one for each of its member tags. If the number of bytes of
each data field are fixed, then parsing the frame is easy. Users must specify the data start byte in each
Update Tag command and the data length in the tag definition. It is more complicated if the length of the
data fields is variable: in these cases, the protocol must provide some sort of delimiter character to mark the
end of one field and the beginning of the next. The driver provides Buffer Pointers and associated com-
mand options to aid in parsing delimited lists.
See Also: Tags and Device Data Formats

Example
For example, users expect the response to a read request to be of the form:

[STX] [value 1 bytes], [value 2 bytes], [value 3 bytes] [ETX]

www.ptc.com

115

User-Configurable (U-CON) Driver

where the values are ASCII integers of unknown length and the values could range from -100 to 1000.

1. Start by creating a tag block with three tags in it: Tag_1, Tag_2, and Tag_3 for values 1, 2, and 3
respectively. Choose a data type of short for each tag since its range is sufficient to cover the expec-
ted range of values. Next, select the ASCII Integer device data format for each tag. For more inform-
ation, refer to Tags and Tag Blocks.

Some of the specialized options of the ASCII Integer device data format must be used in this case. For
Tag_1 and Tag_2, choose the Parse to next delimiter format option and then choose the comma
(0x2C) as the delimiter. The Format Properties should appear as shown below.

2. Since value 3 does not precede a comma, it must have a different terminationmethod. Two equally
good options exist here: users can choose to parse to the next delimiter, where this time the delim-
iter would be the end ETX character. Or, users could leave the "Parse to next delimiter" box
unchecked and specify "Read up to..." 1 byte from frame end.

3. Next, define the block read transaction. The first set of commands in the transaction will build the
read request in the write buffer. The details of the request are not important for this example. Fol-
lowing these commands will be a Transmit command to send the write buffer to the device.

4. Next, define a Read Response command to gather the response and store it in the read buffer. In
this example, users do not know howmany bytes to expect but they do know that the response will
end with the ETX character. The command properties will look as shown below.

www.ptc.com

116

User-Configurable (U-CON) Driver

5. Once the response has been received and copied into the read buffer, commands must be added to
parse the data and send the result to the appropriate tag. The Update Tag command does just that.
There must be an Update Tag command for each tag in the block. For Tag_1, users know the data
starts at byte 2 in the read buffer. The device data format defined for Tag_1 tells the driver to parse
up to the next comma. The command properties for Tag_1 will look as shown below.

www.ptc.com

117

User-Configurable (U-CON) Driver

6. Users cannot predict what byte the data for Tag_2 will start on because of the variable length ASCII
values, but they do know value 2 will follow the first comma in the frame. This is where buffer point-
ers come into play. The objective is to move the read buffer pointer to the start of value 2. This is
done in two steps, the first of which is accomplished with a Seek Character command. This com-
mand is used to move the pointer to the first comma in the frame.

7. If there was some question of where the delimiter will be found, users can specify a "Go To on fail-
ure" Label to handle the situation.

8. Next, move the pointer past the comma to the first byte of value 2. This is done using aMove Buffer
Pointer command. In this case, users should perform a relative move one byte from the current pos-
ition.

www.ptc.com

118

User-Configurable (U-CON) Driver

9. 9. If users expected values to be separated by a comma space, then they would have entered 2 in
Number of bytes. Now the read buffer pointer points to the first byte of value 2. The Update Tag
command for Tag_2 should appear as shown below.

10. To parse value 3, issue another Seek Character,Mover Buffer Pointer, andUpdate Tag sequence
just like what was done for Tag_2. The full read transaction should appear as shown below.

www.ptc.com

119

User-Configurable (U-CON) Driver

Moving the Buffer Pointer
Many devices send data packets that contain multiple pieces of variable length data delimited with some
characters.

Example
A read transaction receives the string "01,0010,1.5" with a start byte of 0x02 and an end byte of 0x03. The
transaction places it into the Read Buffer.

1. If no other buffer pointer operations have been performed, the pointer will point to 0x02 (the first
byte). This is displayed as Packet 02, Byte 1 in the table below.

2. A Seek Character Command searching for a comma would place the read buffer pointer at byte 4. A
second, identical Seek Character Command (which did not move the buffer pointer forward by 1 byte)
would result in the pointer remaining on byte 4. This is displayed as Packet ',' Byte 4 in the table
below.

3. A Move Buffer Command relative 1 would place the buffer pointer at byte 5. This is displayed as
Packet 0, Byte 5 in the table below.

4. A Move Buffer Command relative 1 with the negative box checked (after the Seek Character Com-
mand) would place the puffer pointer at byte 3. This is displayed as Packet 1, Byte 3 in the table
below.

5. A Move Buffer Command absolute places the buffer pointer at the absolute byte referenced. This dif-
fers from the relative movement, which adds or subtracts the specified number of bytes to/from the
current buffer location.

a. A Move Buffer Command absolute 8 would place the buffer pointer on byte 8 regardless of the
pointer's current location. This is displayed as Packet 0, Byte 8 in the table below.

b. A Move Buffer Command relative 8 on byte 1 would place the buffer pointer on byte 9. This is dis-
played as Packet ',' Byte 9 in the table below.

Packet 02 0 1 , 0 0 1 0 , 1 . 5 03

Byte 1 2 3 4 5 6 7 8 9 10 11 12 13

www.ptc.com

120

User-Configurable (U-CON) Driver

Note: When working with Read andWrite buffers, the buffer pointer will always start at byte 1. When work-
ing with Scratch and Global buffers, the buffer pointer will start where it was left after the last interaction
with the buffer. Users should always move the buffer to byte 1 before starting anything with those Scratch or
Global buffers.

Important: Users should be careful when changing the position of the buffer pointer. A buffer bounds
error will occur if the buffer pointer is moved past the beginning or end of the buffer.

Scanner Applications
Transaction event counters can be especially useful in scanner applications. Typically, scanners will issue a
notification each time an item is scanned – they are not usually designed to be polled. The U-CON can be con-
figured to receive and process this sort of data with an unsolicited transaction. The primary function of
this transaction would be to parse the data of interest from a message and update a tag with it.

This simple design works fine, unless it is possible for the same item or code to be scannedmultiple times.
The client will get no indication that multiple scans have occurred. All it knows is that the tag's value has not
changed since the last timestamp. To get around this issue, event counters were introduced into the U-CON.
Each time an item is scanned, the unsolicited transaction that was defined for that scanner will be triggered
and its event counter incremented. Users should update two tags in the transaction: one with the data
parsed from the unsolicited message and the other with the transaction's event counter value. These tags
must belong to a tag block. The client application will see the event counter tag change each time an item is
scanned.

Note: Event counter values are stored in 32-bit buffers. All tags updated from event counters must be con-
figured with 32-bit, 16-bit, or 8-bit Intel (Lo Hi) device data format.

Slowing Things Down: Using the Pause Command
Users may encounter devices that are not capable of operating at the same speed as the server. In these
cases, Pause commands can be added to the transactions to slow things up. In the example below, the
device requires a short pause between each character in the read request "AB1":

STEP COMMAND COMMAND PARAMS DESCRIPTION

1 Write Character "A"

2 Transmit Send first character

3 Pause Time = 50 ms Wait before sending next character

4 Write Character "B"

5 Transmit Send second character

6 Pause Time = 50 ms Wait before sending next character

7 Write Character "1"

8 Transmit Send third and last character of request

9 Read Response Wait for 10 characters Wait for 10 character response to AB1 command

10 UpdateTag Tag = This tag Parse response and update tag

Note: Omitting the Transmit commands in steps 2 and 5 would not produce the desired effect. In that
case, the driver would slowly build up the TX buffer internally, then send all three characters in the usual
rapid succession.

www.ptc.com

121

User-Configurable (U-CON) Driver

Transferring Data Between Transactions: Using Scratch Buffers
Some protocols require that a special type of Device Identifier be used in all requests. This Identifier can
be read directly from the device using a special command. A read transaction could be defined to issue this
Get Device Identifier command, and store the returned value in a scratch buffer. All other transactions
defined for that device could copy this value from the scratch buffer to the write buffer. The client application
would have to make sure that the Get Device Identifier tag be read before any other read or write trans-
action takes place.

Scratch buffers can also be used inWrite Only tags. The User-Configurable (U-CON) Driver does not sup-
port Write Only tags as such, but a tag can be created with both read and write transactions, where only the
write transactionmakes a request of the physical device. If the read transaction is empty, the client will
report bad data quality for that tag. A better situation would be for the read transaction to return the last
value written to the device. To do this, select both theWrite buffer and a Scratch buffer in the write trans-
action'sWrite Data command. In the read transaction, use anUpdate Tag command with the data source
being the scratch buffer. Keep in mind that this is not a value just read from the device, it is the last value
written to the device. If an Update Tag command is executed before any data has been saved in the scratch
buffer, the tag value will be set to zero.

Important: Unlike a scratch buffer which is associated with one device only, a global buffer is associated
with multiple devices and should be used with caution.

www.ptc.com

122

User-Configurable (U-CON) Driver

Data Types Description
The User-Configurable (U-CON) Driver can be used to represent a tag's data as any one of the basic types
described below. Choose a data type that is recognized by the client application and will accommodate the
expected range of data values.

Data Type Description

Boolean Single bit

Byte

Unsigned 8-bit value

bit 0 is the low bit
bit 7 is the high bit

Char

Signed 8-bit value

bit 0 is the low bit
bit 6 is the high bit
bit 7 is the sign bit

Word

Unsigned 16-bit value

bit 0 is the low bit
bit 15 is the high bit

Short

Signed 16-bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord

Unsigned 32-bit value

bit 0 is the low bit
bit 31 is the high bit

Long

Signed 32-bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD
Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD
Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.

Float

32-bit floating point value

The driver interprets two consecutive 16-bit registers as a floating point value by making
the second register the high word and the first register the low word.

Double 64-bit floating point value

String Null-terminated character array

www.ptc.com

123

User-Configurable (U-CON) Driver

Note: "Data Type" refers to the representation of data values that the server and client applications
exchange. Data exchanged between the server and a device can be formatted in a wide variety of ways,
depending on the data type. For more information, refer to Device Data Formats.

Address Descriptions
The User-Configurable (U-CON) Driver does not use the tag address in the usual manner. Normally, a driver
"knows" how to interpret an address string specified by the user, and build read and write requests accord-
ingly. This is not possible with this driver because it was not developed for a specific device. It is up to the
user to properly encode an address in each transaction defined in the driver profile. (In many devices a com-
mand code is sufficient, in others, a command code andmemory location are required to access a given
piece of data.) The User-Configurable (U-CON) Driver uses the "address" to describe the path relationship
between the tag and device as defined in the Transaction Editor. "Group dot tag" notation is used.

Example
An address of "Group_1.Registers.Register_1" means the tag "Register_1" is in the group "Registers", which
is in a group called "Group_1". "Group_1" is attached to the device. Thus, a user canmanually add a tag to
the server, so long as it was previously defined with the Transaction Editor and the path is known. However,
this is generally not necessary since the Transaction Editor automatically invokes the server's auto-tag data-
base generation feature.

www.ptc.com

124

User-Configurable (U-CON) Driver

Error Descriptions
The following categories of messages may be generated. Click on the link for a list of messages.

Address Validation
Missing address.
Device address <address> contains a syntax error.
Address <address> is out of range for the specified device or register.
Device address <address> is not supported by model <model name>.
Data Type <type> is not valid for device address <address>.
Device address <address> is read only.
Array support is not available for the specified address: <address>.

Serial Communications
COMn does not exist.
Error opening COMn.
COMn is in use by another application.
Unable to set comm properties on COMn.
Communications error on <channel name> [<error mask>].
Unable to create serial I/O thread.

Device Status Messages
Device <device name> is not responding.
Unable to write to <address> on device <device name>.

Driver Error Messages
RX buffer overflow. Stop characters not received.
RX buffer overflow. Full variable length frame could not be received.
Unable to locate Transaction Editor executable file.
Copy Buffer command failed for address <address.transaction> - <source/destination>
buffer bounds.
Failed to load the global file.
Go To command failed for address <address.transaction> - label not found.
Mod Byte command failed for address <address.transaction> - write buffer bounds.
Test Character command failed for address <address.transaction> - source buffer bounds.
Test Checksum command failed for address <address.transaction> - read buffer bounds.
Test Checksum command failed for address <address.transaction> - data conversion.
Test Device ID command failed for address <address.transaction> - read buffer bounds.
Test Device ID command failed for address <address.transaction> - data conversion.
Test String command failed for address <address.transaction' - source buffer bounds.
Update Tag command failed for address <address.transaction> - <read/scratch/event
counter> buffer bounds.
Write Character command failed for address <address.transaction> - destination buffer
bounds.

www.ptc.com

125

User-Configurable (U-CON) Driver

Write Checksum command failed for address <address.transaction> - write buffer
bounds.
Write Checksum command failed for address <address.transaction> - data conversion.
Write Data command failed for address <address.transaction> - write buffer bounds.
Write Data command failed for address <address.transaction> - data conversion.
Write Device ID command failed for address <address.transaction> - write buffer bounds.
Write Device ID command failed for address <address.transaction> - data conversion.
Write String command failed for address <address.transaction> - destination buffer
bounds.
Tag update for address <address> failed due to data conversion error.
Unsolicited message receive timeout.
Unsolicited message dead time expired.
Move Pointer command failed for address <address.transaction>.
Seek Character command failed for address <address.transaction> - label not found.
Insert Function Block command failed for address <address.transaction> - Invalid FB.
Unable to save password protected device profile in XML format.

XML Errors
XML Loading Error: The number of unsolicited transaction keys exceeds the set key
length: <key length>.
XML Loading Error: The two buffers of a <command> are the same. The buffers must be
unique.
XML Loading Error: The string <string> entered for a Write String command with format
<format> is invalid.
XML Loading Error: Range exceeds source buffer size of <max buffer size> bytes for a
<command>.

Missing address.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has no length.

Solution:
Re-enter the address in the client application.

Device address <address> contains a syntax error.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains one or more invalid characters.

www.ptc.com

126

User-Configurable (U-CON) Driver

Solution:
Re-enter the address in the client application.

Address <address> is out of range for the specified device or register.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is beyond the range of supported
locations for the device.

Solution:
Verify the address is correct; if it is not, re-enter it in the client application.

Device address <address> is not supported by model <model name>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is valid for the communications
protocol but not supported by the target device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application. Verify that the selectedmodel
name for the device is correct.

Data type <type> is not valid for device address <address>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address <address> is read only.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has a requested access mode that is not compatible with
what the device supports for that address.

www.ptc.com

127

User-Configurable (U-CON) Driver

Solution:
Change the access mode in the client application.

Array support is not available for the specified address: <address>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains an array reference for an address type that doesn't
support arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

COMn does not exist.
Error Type:
Fatal

Possible Cause:
The specified COM port is not present on the target computer.

Solution:
Verify that the proper COM port has been selected in the Channel Properties.

Error opening COMn.
Error Type:
Fatal

Possible Cause:
The specified COM port could not be opened due to an internal hardware or software problem on the target
computer.

Solution:
Verify that the COM port is functional andmay be accessed by other Windows applications.

COMn is in use by another application.
Error Type:
Fatal

Possible Cause:
The serial port assigned to a channel is being used by another application.

Solution:

www.ptc.com

128

User-Configurable (U-CON) Driver

1. Verify that the correct port has been assigned to the channel.

2. Close the other application that is using the requested COM port.

Unable to set comm properties on COMn.
Error Type:
Fatal

Possible Cause:
The serial properties for the specified COM port are not valid.

Solution:
Verify the serial properties andmake any necessary changes.

Communications error on <channel name> [<error mask>].
Error Type:
Warning

Error Mask Definitions:
B = Hardware break detected.
F = Framing error.
E = I/O error.
O = Character buffer overrun.
R = RX buffer overrun.
P = Received byte parity error.
T = TX buffer full.

Possible Cause:

1. The serial connection between the device and the host PC is bad.

2. The communication properties for the serial connection are incorrect.

3. There is a noise source disrupting communications somewhere in the cabling path between the PC
and the device.

Solution:

1. Verify the cabling between the PC and the device.

2. Verify that the specified communication properties match those of the device.

3. Reroute cabling to avoid sources of electrical interference such as motors, generators or high
voltage lines.

Unable to create serial I/O thread.
Error Type:
Warning

Possible Cause:

www.ptc.com

129

User-Configurable (U-CON) Driver

The OPC Server process has no more resources available to create new threads.

Solution:
Remember that each tag group takes up a thread, and that the typical limit for a single process is about
2000 threads. Reduce the number of tag groups in the project.

Device <device name> is not responding.
Error Type:
Serious

Possible Cause:

1. The serial connection between the device and the host PC is broken.

2. The communication properties for the serial connection are incorrect.

3. The named device may have been assigned an incorrect Network ID.

4. One or more transactions are not configured properly.

5. The response from the device took longer to receive than the amount of time specified in the
"Request Timeout" device property.

Solution:

1. Verify the cabling between the PC and the device.

2. Verify that the specified communication properties match those of the device.

3. Verify that the Network ID given to the named device matches that of the actual device.

4. Check that all Read Response command properties are correct. A very common cause for "Device
not responding" errors from this driver is a Read Response command set to wait for more bytes that
the device actually sends. It may also be necessary to place a pause command at the end of trans-
actions that write to the device but do not get a response. In such cases, the device may need a short
period of time to process the write before it will accept the next request from the driver.

5. Increase the Request Timeout property so that the entire response can be handled.

Unable to write to <address> on device <device name>.
Error Type:
Serious

Possible Cause:

1. The serial connection between the device and the host PC is broken.

2. The communication properties for the serial connection are incorrect.

3. The named device may have been assigned an incorrect Network ID.

Solution:

www.ptc.com

130

User-Configurable (U-CON) Driver

1. Verify the cabling between the PC and the device.

2. Verify that the specified communication properties match those of the device.

3. Verify that the Network ID given to the named device matches that of the actual device.

RX buffer overflow. Stop characters not received.
Error Type:
Serious

Possible Cause:
The read buffer filled to capacity while waiting for the stop characters specified in the transaction's Read
Response command.

Solution:
Make sure that the correct stop characters are specified in the Read Response command. If the receive
frame is of known length, use the "Wait for Number of Bytes" command option instead.

See Also:
Read Response Command

RX buffer overflow. Full variable length frame could not be received.
Error Type:
Serious

Possible Cause:
The read buffer filled to capacity while receiving a frame containing a data length field described in the trans-
action’s Read Response command.

Solution:
Make sure that the data length start position, format, and trailing bytes specified in the Read Response com-
mand are correct.

See Also:
Read Response Command

Unable to locate Transaction Editor executable file.
Error Type:
Serious

Possible Cause:
The Transaction Editor executable file is not in the expected location.

Solution:

www.ptc.com

131

User-Configurable (U-CON) Driver

Make sure that the Transaction Editor executable (UserConfigDrv_GUI_u.exe) is located in the server's "util-
ities" subdirectory. Reinstall the driver if not.

Copy Buffer command failed for address <address.transaction> -
<source/destination> buffer bounds.
Error Type:
Serious

Possible Cause:
The combination of "start byte" and "number of bytes" properties of the Copy Buffer command have
caused to driver to attempt to access non-existent source buffer elements.

Solution:
Make sure that the Copy Buffer command property settings are correct and that the source buffer contains
valid data when the offending Copy Buffer command is executed.

Failed to load the global file.
Error Type:
Serious

Possible Cause:
Driver was unable to create or open a temporary file used to transfer function block data between driver
and Transaction Editor. The file may have become corrupted or was removed while driver was running.

Solution:
Restart the server and retry the last edits with the Transaction Editor.

 Note:
Contact Technical Support if error occurs again.

Go To command failed for address <address.transaction> - label not
found.
Error Type:
Serious

Possible Cause:
The specified label does not exist in the present transaction.

Solution:
Make sure the transaction has a Label command of exactly the same name as that of the Go To command's
label property. Labels are case sensitive.

See Also:
Label Command
Go To Command

www.ptc.com

132

User-Configurable (U-CON) Driver

Mod Byte command failed for address <address.transaction> - write buffer
bounds.
Error Type:
Serious

Possible Cause:
The byte position property of the Mod Byte command is not within the current bounds of the write buffer.

Solution:
This command can only operate on bytes placed on the write buffer prior to the execution of this command.
Make sure that the byte position setting is within this range of bytes.

See Also:
Mod Byte Command

Test Character command failed for address <address.transaction> - source
buffer bounds.
Error Type:
Serious

Possible Cause:
The "Position" property of the Test Character command is not within the current bounds of the source buf-
fer.

Solution:
This command can only operate on bytes received by the last Read Response command when the data
source is specified as the read buffer. Make sure that the position value is not larger than the number of
bytes received.

See Also:
Read Response Command
Test Character Command

Test Checksum command failed for address <address.transaction> - read
buffer bounds.
Error Type:
Serious

Possible Cause:
The start byte or number of bytes properties of the Test Checksum command are incorrect and have caused
to driver to attempt to access non-existent read buffer elements.

Solution:

www.ptc.com

133

User-Configurable (U-CON) Driver

This command can only operate on bytes received by the last Read Response command. Make sure that the
sum of start byte and number of bytes does not exceed the number of bytes received.

See Also:
Read Response Command
Test Checksum

Test Checksum command failed for address <address.transaction> - data
conversion.
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used,
make sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Test Device ID command failed for address <address.transaction> - read
buffer bounds.
Error Type:
Serious

Possible Cause:
The "start byte" property of the Test Device ID command is incorrect and has caused to driver to attempt to
access non-existent read buffer elements.

Solution:
This command can only operate on bytes received by the last Read Response command. Make sure that the
start byte value does not exceed the number of bytes received.

See Also:
Test Device ID
Read Response Command

Test Device ID command failed for address <address.transaction> - data
conversion.
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

www.ptc.com

134

User-Configurable (U-CON) Driver

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used,
make sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Test String command failed for address <address.transaction> - source buf-
fer bounds.
Error Type:
Serious

Possible Cause:
The data source buffer does not currently contain enough characters to perform the string comparison
described in a Test String command.

Solution:
Verify that the transaction has been properly configured and that the driver is receiving the data as expec-
ted.

See Also:
Test String Command

Update Tag command failed for address <address.transaction> -
<read/scratch/event counter> buffer bounds.
Error Type:
Serious

Possible Cause:
The combination of "data start byte" property of the Update Tag command and tag data size have caused to
driver to attempt to access non-existent source buffer elements.

Solution:
This command can only operate on bytes received by the last Read Response command, previously stored in
a Scratch buffer or global buffer, or the 16-bit values stored in event counter buffers. Make sure the sum of
data start byte and the data length (2 for word, 4 for float, and so forth) does not exceed the number of bytes
in the source buffer.

See Also:
Update Tag
Read Response Command
Scratch Buffer
Global Buffer
Event Counter

www.ptc.com

135

User-Configurable (U-CON) Driver

Write Character command failed for address <address.transaction> - des-
tination buffer bounds.
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximum destination buffer limit of 8192
bytes.

Solution:

1. The destination buffer should be of ample size for all but the most unusual circumstance. Ensure
that the byte count of the message being constructed is less than 8192 bytes. If it is, examine the
command properties in the offending transaction. The most common cause of this sort of error is
an incorrect Start Byte, End Byte, or Number of Bytes value.

2. Make sure that the number of bytes written by a Write Data command are considered. This is set by
the tag's device data format specification.

Write Checksum command failed for address <address.transaction> -
write buffer bounds.
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximum write buffer limit of 8192 bytes.

Solution:

1. The write buffer should be of ample size for all but the most unusual circumstance. Ensure that the
byte count of the message being constructed is less than 8192 bytes. If it is, examine the command
properties in the offending transaction. The most common cause of this sort of error is an incorrect
Start Byte, End Byte, or Number of Bytes value.

2. Make sure that the number of bytes written by a Write Data command are considered. This is set by
the tag's device data format specification.

Write Checksum command failed for address <address.transaction> - data
conversion.
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used,
make sure all necessary format characters are present in the table.

www.ptc.com

136

User-Configurable (U-CON) Driver

See Also:
Dynamic ASCII Formatting

Write Data command failed for address <address.transaction> - write buf-
fer bounds.
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximum write buffer limit of 8192 bytes.

Solution:

1. The write buffer should be of ample size for all but the most unusual circumstance. Ensure that the
byte count of the message being constructed is less than 8192 bytes. If it is, examine the command
properties in the offending transaction. The most common cause of this sort of error is an incorrect
Start Byte, End Byte, or Number of Bytes value.

2. Make sure that the number of bytes written by a Write Data command are considered. This is set by
the tag's device data format specification.

Write Data command failed for address <address.transaction> - data con-
version.
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used,
make sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Write Device ID command failed for address <address.transaction> - write
buffer bounds.
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximum write buffer limit of 8192 bytes.

Solution:

www.ptc.com

137

User-Configurable (U-CON) Driver

1. The write buffer should be of ample size for all but the most unusual circumstance. Ensure that the
byte count of the message being constructed is less than 8192 bytes. If it is, examine the command
properties in the offending transaction. The most common cause of this sort of error is an incorrect
Start Byte, End Byte, or Number of Bytes value.

2. Make sure that the number of bytes written by a Write Data command are considered. This is set by
the tag's device data format specification.

Write Device ID command failed for address <address.transaction> - data
conversion.
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used,
make sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Write String command failed for address <address.transaction> - des-
tination buffer bounds.
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximum destination buffer limit of 8192
bytes.

Solution:

1. The destination buffer should be of ample size for all but the most unusual circumstance. Ensure
that the byte count of the message being constructed is less than 8192 bytes. If it is, examine the
command properties in the offending transaction. The most common cause of this sort of error is
an incorrect Start Byte, End Byte, or Number of Bytes value.

2. Make sure that the number of bytes written by a Write Data command are considered. This is set by
the tag's device data format specification.

Tag update for address <address> failed due to data conversion error.
Error Type:
Serious

Possible Cause:

www.ptc.com

138

User-Configurable (U-CON) Driver

A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is
used, make sure all necessary format characters are present in the table.

Unsolicited message receive timeout.
Error Type:
Warning

Possible Cause:
The unsolicited mode "Receive timeout" expired while the channel was receiving a message. This could be
caused by a delay in part of the message due to network traffic or gateway device, the data source, or an
incorrectly configured transaction.

Solution:
Verify that the driver has been configured correctly for the expectedmessages. In particular, make sure the
Read Response command at the beginning of each unsolicited transaction is set to terminate correctly. The
use of Pause commands in the unsolicited transactions must be accounted for in the timeout property. If the
problem is due to wire time or hardware issues, increase the "Receive timeout" period accordingly. These
messages can only be seen if the "Log unsolicited message timeouts" property is checked.

See Also:
Define a Server Channel
Read Response Command
Pause Command

Unsolicited message dead time expired.
Error Type:
Warning

Possible Cause:
This is caused when the driver receives an unsolicited message with an unknown key. Once the driver has
received an unknown key, it waits one dead time period for the remainder of the message to come in.

Solution:
This is not necessarily a problem unless the driver was expected to process the message that caused this
warning. If this is the case, users should check that the unsolicited transaction keys are properly defined. If
choosing to ignore messages of this type, be aware that the driver will ignore all other incoming data for one
dead time period after receiving each unhandledmessage. These messages can only be seen if the "Log
unsolicited message timeouts" setting is checked.

See Also:
Unsolicited Transactions
Define a Server Channel

www.ptc.com

139

User-Configurable (U-CON) Driver

Move Pointer command failed for address <address.transaction>.
Error Type:
Serious

Possible Cause:
An attempt was made to move a buffer pointer past the current frame bounds.

Solution:
Check the transaction definition.

Seek Character command failed for address <address.transaction> - label
not found.
Error Type:
Serious

Possible Cause:
The specified character was not found, and the given "Go to on failure" label was not found.

Solution:
Check the transaction definition. Make sure the label specified in the "Seek Character" command has been
defined in that transaction.

Insert Function Block command failed for address <address.transaction> -
Invalid FB.
Error Type:
Serious

Possible Cause:
The function block inserted into the specified transactionmay have since been deleted or renamed.

Solution:
Use the Transaction Editor to recreate the function block if necessary or to correct the name of the function
block referenced in the transaction.

Unable to save password protected device profile in XML format.
Error Type:
Serious

Possible Cause:
The device profile of one or more devices is password protected.

Solution:

www.ptc.com

140

User-Configurable (U-CON) Driver

The purpose of the password is to restrict unauthorized users from viewing and editing a device profile. Sav-
ing a project as XML will expose the information. Thus, save the project as an .opf file or remove all pass-
words to save as an XML file.

See Also:
Transaction Editor

XML loading error: The number of unsolicited transaction keys exceeds
the set key length: <key length>.
Error Type:
Serious

Possible Cause:

1. The key length is incorrect.

2. There are extra unsolicited transaction keys in the XML.

Solution:

1. Verify that the key length is valid.

2. Verify that the keys are valid.

 Note:
The project will not load.

XML loading error: The two buffers of a <command> are the same. The
buffers must be unique.
Error Type:
Serious

Possible Cause:
A buffer is being used twice in a single command.

Solution:
Verify that the buffers are unique.

 Note:
The project will not load.

XML loading error: The string <string> entered for a Write String com-
mand with format <format> is invalid.
Error Type:
Serious

Possible Cause:

www.ptc.com

141

User-Configurable (U-CON) Driver

1. Invalid ASCII Hex String from Nibble string.

2. Invalid ASCII String (packed 6 bit) string.

Solution:

1. For ASCII Hex String from Nibble string, only hex characters ('0' - '9' and 'A' - 'F') are allowed in the
string. The string must be an even number of characters.

2. For ASCII String (packed 6 bit) string, the string must consist of characters supported in the ASCII
Packed 6-bit table. The string length must be a multiple of four.

 Note:
The project will not load.

XML loading error: Range exceeds source buffer size of <max buffer size>
bytes for a <command>.
Error Type:
Serious

Possible Cause:
The start byte plus the number of bytes exceeds the max buffer size.

Solution:
Verify that the sum of the start byte and the number of bytes is less than the max buffer size.

 Note:
The project will not load.

www.ptc.com

142

User-Configurable (U-CON) Driver

Index

A

Add 63

Add Comment Command 40

Address <address> is out of range for the specified device or register. 127

Address Descriptions 124

Allow Sub Groups 23

Alternating Byte ASCII String 89

Array support is not available for the specified address: <address>. 128

ASCII 92

ASCII Character Table 110

ASCII Character Table (Packed 6 Bit) 111

ASCII Multi-Bit Integer 92

Attempts Before Timeout 20

Auto-Demotion 21

Auto-Dial 13

B

Baud Rate 11

BCD 123

Bit Fields: Using the Modify Byte and Copy Buffer Commands 112

Boolean 123

Branching: Using the conditional Go To Label and End Commands 113

Buffer Pointers 36

C

Cache Write Value Command 41

Channel Assignment 17

Channel Properties — Advanced 14

Channel Properties — General 9

Channel Properties — Serial Communications 10

Channel Properties — Write Optimizations 13

Check Sum Descriptions 105

Clear Rolling Buffer Command 41

www.ptc.com

143

User-Configurable (U-CON) Driver

Clear RX Buffer Command 42

Clear TX Buffer Command 42

Close Idle Connection 12-13

Close Port Command 42

COM ID 11

COM Port 11

Communications error on <channel name> [<error mask>] 129

Communications Timeouts 20

COMn does not exist. 128

COMn is in use by another application. 128

Compare Buffer Command 42

Configuration 23, 66

Connect Timeout 13, 20

Connection Type 11

CONTENTS 7

Continue Command 44

Control Serial Line Command 44

Copy Buffer 51

Copy Buffer Command 45

Copy Buffer command failed for address <address.transaction> - <source/destination> buffer
bounds. 132

Create 23

D

Data Bits 11

Data Collection 18

Data type <type> is not valid for device address <address>. 127

Data Types Description 123

Deactivate Tag Command 46

Dealing with Echoes 114

Debugging Using the Diagnostic Window and Quick Client 114

Delete 22

Delimited Lists 115

Demote on Failure 21

Demotion Period 21

Device <device name> is not responding. 130

Device address <address> contains a syntax error. 126

Device address <address> is not supported by model <model name>. 127

www.ptc.com

144

User-Configurable (U-CON) Driver

Device address <address> is read only. 127

Device Data Formats 80

Device ID 24, 38

Device Profile 28

Device Properties — Auto-Demotion 21

Device Properties — Ethernet Encapsulation 19

Device Properties — General 17

Device Properties — Tag Generation 21

Device Properties — Timing 20

Diagnostics 10

Discard Requests when Demoted 21

Do Not Scan, Demand Poll Only 19

Driver 17

Drop 12

DTR 11

Duty Cycle 14

DWord 123

Dynamic Ascii Formatting 88

E

End Command 46

Error Descriptions 125

Error opening COMn. 128

Ethernet Encap. 11

Ethernet Encapsulation 19

Ethernet Settings 12

Event Counters 36

F

Failed to load the global file. 132

False 64-65

Fixed 91

Float 123

Flow Control 11

Format Alternating Byte ASCII String 89

Format ASCII Hex Integer 91

www.ptc.com

145

User-Configurable (U-CON) Driver

Format ASCII Hex String 96

Format ASCII Hex String From Nibbles 97

Format ASCII Integer 90

Format ASCII Integer (Packed 6 Bit) 98

Format ASCII Multi-Bit Integer 92

Format ASCII Real 93

Format ASCII Real (Packed 6 Bit) 99

Format ASCII String 95

Format ASCII String (Packed 6 Bit) 100

Format Date / Time 104

Format Multi-Bit Integer 101

Format Properties 90, 93

Format Unicode String 102

Format UnicodeLoHi String 103

Framing 129

Function Blocks 32, 49

G

General 17

Global buffer 34, 69

Go To 40

Go To Command 47

Go To command failed for address <address.transaction> - label not found. 132

H

Handle Escape Characters Command 47, 49

I

ID 17

Identification 9, 17

Idle Time to Close 12-13

Initial Updates from Cache 19

Initialize Buffers 34

Insert Function Block 49

Insert Function Block command failed for address <address.transaction> - Invalid FB. 140

www.ptc.com

146

User-Configurable (U-CON) Driver

Inter-Device Delay 14

Invalidate Tag 50

Invalidate Tag Command 50

IP Address 19

L

Label Command 47, 50

LBCD 123

Log Event Command 50

Long 123

LSB 93

M

Mask. 129

Missing address. 126

Mod Byte command failed for address <address.transaction> - write buffer bounds. 133

Model 17

Modem 11, 13

Modem Settings 12

Modify Byte Command 51

Move Buffer Pointer Command 53

Move Pointer command failed for address <address.transaction>. 140

Moving the Buffer Pointer 120

MSB 93

N

Name 17

Network 9, 130

Network Adapter 12

Network ID 130

Non-Normalized Float Handling 14

None 11

NULL 94

Number 92

www.ptc.com

147

User-Configurable (U-CON) Driver

O

On Duplicate Tag 22

One-based 46

Operating Mode 18

Operation with no Communications 13

Operational Behavior 12

Optimization Method 13

Overrun 129

Overview 8

Overwrite 22

P

Parent Group 23

Parity 11, 129

Password Protection 25

Pause Command 54

Physical Medium 11

Poll Delay 12

Port 19

Protocol 20

Q

Query/receive 78

R

Raise 12

Read Buffer 46

Read Processing 13

Read Resonse Command 55

Replace with Zero 14

Report Communication Errors 12-13

Request Timeout 20

Respect Tag-Specified Scan Rate 19

www.ptc.com

148

User-Configurable (U-CON) Driver

Rolling Buffer 34

RS-485 12

RTS 12

RX buffer overflow. Full variable length frame could not be received. 131

RX buffer overflow. Stop characters not received. 131

S

ScanMode 19

Scanner Applications 121

Scratch Buffer 33, 45

Seek Character Command 57

Seek Character command failed for address <address.transaction> - label not found. 140

Seek String Command 59

Serial Communications 10, 125

Serial Port Settings 11

Set Event Counter Command 60

Setup 8

Shared 11

Short 123

Simulated 18

Slowing Things Down Using the Pause Command 121

Start 46, 92

Step Four: Testing and Debugging the Configuration 25

Step One: Defining a Server Channel 23

Step Three: Defining a Device Profile 24

Step Two: Defining a Server Device 24

Stop Bits 11

String 123

T

Tag Blocks 32

Tag Counts 10, 18

Tag Generation 21

Tag Groups 31

Tag update for address <address> failed due to data conversion error. 138

Tags 30

www.ptc.com

149

User-Configurable (U-CON) Driver

Test Bit within Byte Command 61

Test Character 63

Test Character Command 63

Test Character command failed for address <address.transaction> - source buffer bounds. 133

Test Check Sum Command 64

Test Check Sum command failed for address <address.transaction> - data conversion. 134

Test Check Sum command failed for address <address.transaction> - read buffer bounds. 133

Test Device ID Command 66

Test Device ID command failed for address '>address.transaction> - data conversion. 134

Test Device ID command failed for address >address.transaction> - read buffer bounds. 134

Test Frame Length Command 67

Test String Command 68

Test String command failed for address <address.transaction> - source buffer bounds. 135

Timeouts to Demote 21

Timing 20

Tips and Tricks 112

Transaction Commands 37

Transaction Editor 7, 27

Transaction Validation 36

Transaction View 28

Transferring 112

Transferring Data Between Transactions 112

Transferring Data Between Transactions: Using Scratch Buffers 122

Transmit Byte Command 69

Transmit Command 69

True 65

U

U-CON (User-Configurable) Driver 27

Unable to create serial I/O thread. 129

Unable to locate Transaction Editor executable file. 131

Unable to save password protected device profile in XML format. 140

Unable to set comm properties on COMn. 129

Unable to write tag >address> on device >device name>. 130

Unmodified 14

Unsolicited message dead time expired. 139

Unsolicited message receive timeout. 139

Unsolicited Message Wait Time 16

www.ptc.com

150

User-Configurable (U-CON) Driver

Unsolicited Transaction Keys 78

Unsolicited Transactions 78

UnsolicitedPcktRcvdOnTime 16

Update Server 29, 80

Update Tag Command 70

Update Tag command failed for address >address.transaction> - >read/scratch> buffer bounds. 135

Updating the Server 80

W

Word 123

Write All Values for All Tags 13

Write Buffer 46

Write Character Command 71

Write Character command failed for address >address.transaction> - destination buffer bounds. 136

Write Check Sum Command 72

Write Check Sum command failed for address '>address.transaction> - data conversion. 136

Write Check Sum command failed for address '>address.transaction> - write buffer bounds. 136

Write Data Command 74

Write Data command failed for address '>address.transaction> - data conversion. 137

Write Data command failed for address '>address.transaction> - write buffer bounds. 137

Write Device ID Command 74

Write Device ID command failed for address '>address.transaction> - data conversion. 138

Write Device ID command failed for address <address.transaction> - write buffer bounds. 137

Write Event Counter Command 75

Write Only Latest Value for All Tags 14

Write Only Latest Value for Non-Boolean Tags 14

Write String Command 76

Write String command failed for address '>address.transaction> - destination buffer bounds. 138

X

XML loading error: Range exceeds source buffer size of <max buffer size> bytes for a <command>. 142

XML loading error: The number of unsolicited transaction keys exceeds the set key length: <key
length>. 141

XML loading error: The string <string> entered for a Write String command with format <format> is
invalid. 141

XML loading error: The two buffers of a <command> are the same. The buffers must be unique. 141

www.ptc.com

151

	User-Configurable (U-CON) Driver
	Table of Contents
	User-Configurable (U-CON) Driver
	Overview

	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Serial Communications
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Mode
	Unsolicited Message Wait Time

	Device Properties — General
	Operating Mode
	Tag Counts

	Device Properties — Scan Mode
	Device Properties — Ethernet Encapsulation
	Device Properties — Timing
	Device Properties — Auto-Demotion
	Device Properties — Tag Generation

	Driver Configuration
	Step One: Defining a Server Channel
	Step Two: Defining a Device
	Step Three: Defining a Device Profile
	Step Four: Testing and Debugging the Configuration
	Password Protection

	Transaction Editor
	Tags
	Tag Groups
	Tag Blocks
	Function Blocks
	Scratch Buffers
	Global Buffers
	Rolling Buffer
	Initialize Buffers
	Event Counters
	Buffer Pointers
	Transaction Validation
	Transaction Commands
	Add Comment Command
	Cache Write Value Command
	Clear Rolling Buffer Command
	Clear RX Buffer Command
	Clear TX Buffer Command
	Close Port Command
	Compare Buffer Command
	Continue Command
	Control Serial Line Command
	Copy Buffer Command
	Deactivate Tag Command
	End Command
	Go To Command
	Handle Escape Characters Command
	Insert Function Block
	Invalidate Tag Command
	Label Command
	Log Event Command
	Modify Byte Command
	Move Buffer Pointer
	Pause Command
	Read Response Command
	Seek Character Command
	Seek String Command
	Set Event Counter Command
	Test Bit within Byte Command
	Test Character Command
	Test Checksum Command
	Test Device ID Command
	Test Frame Length Command
	Test String Command
	Transmit Command
	Transmit Byte Command
	Update Tag Command
	Write Character Command
	Write Checksum Command
	Write Data Command
	Write Device ID Command
	Write Event Counter Command
	Write String Command

	Unsolicited Transactions
	Updating the Server

	Device Data Formats
	Dynamic ASCII Formatting
	Format Alternating Byte ASCII String
	Format ASCII Integer
	Format ASCII HEX Integer
	Format ASCII Multi-Bit Integer
	Format ASCII Real
	Format ASCII String
	Format ASCII Hex String
	Format ASCII Hex String From Nibbles
	Format ASCII Integer (Packed 6 Bit)
	Format ASCII Real (Packed 6 Bit)
	Format ASCII String (Packed 6 Bit)
	Format Multi-Bit Integer
	Format Unicode String
	Format UnicodeLoHi String
	Format Date / Time
	Checksum Descriptions
	ASCII Character Table
	ASCII Character Table (Packed 6 Bit)

	Tips and Tricks
	Bit Fields: Using the Modify Byte and Copy Buffer Commands
	Branching: Using the conditional, Go To, Label and End Commands
	Dealing with Echoes
	Debugging: Using the Diagnostic Window and Quick Client
	Delimited Lists
	Moving the Buffer Pointer
	Scanner Applications
	Slowing Things Down: Using the Pause Command
	Transferring Data Between Transactions: Using Scratch Buffers
	Data Types Description

	Address Descriptions
	Error Descriptions
	Missing address.
	Device address <address> contains a syntax error.
	Address <address> is out of range for the specified device or register.
	Device address <address> is not supported by model <model name>.
	Data type <type> is not valid for device address <address>.
	Device address <address> is read only.
	Array support is not available for the specified address: <address>.
	COMn does not exist.
	Error opening COMn.
	COMn is in use by another application.
	Unable to set comm properties on COMn.
	Communications error on <channel name> [<error mask>].
	Unable to create serial I/O thread.
	Device <device name> is not responding.
	Unable to write to <address> on device <device name>.
	RX buffer overflow. Stop characters not received.
	RX buffer overflow. Full variable length frame could not be received.
	Unable to locate Transaction Editor executable file.
	Copy Buffer command failed for address <address.transaction> - <source/destin...
	Failed to load the global file.
	Go To command failed for address <address.transaction> - label not found.
	Mod Byte command failed for address <address.transaction> - write buffer bounds.
	Test Character command failed for address <address.transaction> - source buff...
	Test Checksum command failed for address <address.transaction> - read buffer ...
	Test Checksum command failed for address <address.transaction> - data convers...
	Test Device ID command failed for address <address.transaction> - read buffer...
	Test Device ID command failed for address <address.transaction> - data conver...
	Test String command failed for address <address.transaction> - source buffer ...
	Update Tag command failed for address <address.transaction> - <read/scratch/e...
	Write Character command failed for address <address.transaction> - destinatio...
	Write Checksum command failed for address <address.transaction> - write buffe...
	Write Checksum command failed for address <address.transaction> - data conver...
	Write Data command failed for address <address.transaction> - write buffer bo...
	Write Data command failed for address <address.transaction> - data conversion.
	Write Device ID command failed for address <address.transaction> - write buff...
	Write Device ID command failed for address <address.transaction> - data conve...
	Write String command failed for address <address.transaction> - destination b...
	Tag update for address <address> failed due to data conversion error.
	Unsolicited message receive timeout.
	Unsolicited message dead time expired.
	Move Pointer command failed for address <address.transaction>.
	Seek Character command failed for address <address.transaction> - label not f...
	Insert Function Block command failed for address <address.transaction> - Inva...
	Unable to save password protected device profile in XML format.
	XML loading error: The number of unsolicited transaction keys exceeds the set...
	XML loading error: The two buffers of a <command> are the same. The buffers m...
	XML loading error: The string <string> entered for a Write String command wit...
	XML loading error: Range exceeds source buffer size of <max buffer size> byte...

	Index

