

SESSION ID: CA1607C ONLY WITH ADDITIVE: MICRO-JET ENGINES WITH AN UNINTERRUPTED PRINT PROCESS

SPEAKER(s): Beni Cukurel

Assoc. Prof., Technion-Israel Institute Technology

Jose Coronado

Product Management Director, PTC

MAY 18, 2023

LIVEWORX.COM | #LIVEWORX

Sample Versification Control and Control a

ONLY WITH ADDITIVE: MICRO-JET ENGINES WITH AN UNINTERRUPTED PRINT PROCESS

Beni Cukurel

Jose Coronado

Ronen Ben-Horin

Assoc. Prof

Product Management Director

Vice President of Technology

Technion-Israel Institute Technology

PTC

- Technion-PTC partnership
- Additively Manufactured Pre-Assembled Turbojet Engine (APE) for Unmanned Aerial Vehicles
- Creo technology used in this project
- Lessons learned and futures

Technion-PTC partnership

- Additively Manufactured Pre-Assembled Turbojet Engine (APE) for Unmanned Aerial Vehicles
- Creo technology used in this project
- Lessons learned and futures

TECHNION AND PTC PARTNERSHIP

PTC Establishes
 R&D Center at the
 Technion – Israel
 Institute of
 Technology

- On April 29, 2021 PTC entered into a long-term strategic collaboration agreement with the Technion Israel Institute of Technology
 - To jointly research and upgrade learning processes relating to advanced manufacturing technology
 - With a long-term Strategic Collaboration vision.
- PTC has also allocated an annual budget for joint research.
- This project is part of such research activities.

Technion-PTC partnership

Additively Manufactured Pre-Assembled Turbojet Engine (APE) for Unmanned Aerial Vehicles

Creo technology used in this project

Lessons learned and futures

TECHNION TURBOMACHINERY LABORATORY

Research & Development in:

- Micro Gas Turbines
- Basic and Applied Heat Transfer
- Measurement Technique Development

Propulsion and Power Generation of Business Jets, UAVs, Drones

https://bcukurel.net.technion.ac.il/

JOURNEY OF ADDITIVELY MANUFACTURED TURBOMACHINES

- Design for Additive Manufacturing as a Research Direction
- Gradual complication of requirements and evolution of capabilities

Removal of assembly requirement

AM from metal powders

Miniaturized Turbines

- Monolithic rotor compressor, turbine, generator
- Porous media combustor

Emergency Ventilator

- Air-driven hydrostatic bearing
- Preassembled design Rotor/stator in single AM step

AM Pre-Assembled Engine

- Pre-assembled AM from metal
- Fuel-driven hybrid bearing

AM OF ROTORS

Drone Hybrid Energy Supply System for 300W

- Successful test up to design RPM of 500k
- Achieved pressure ratio of up to 2
- Fuel consumption: 300 g/h (H-C) or 100g/h (H₂)

Additively Manufactured Monolithic Rotor

20 µm Tolerances

Extends Flight Time & Reduces Downtime

PRE-ASSEMBLED ADDITIVE MANUFACTURING

On-Demand Turbocharger for Medical Ventilators

- Single uninterrupted print simultaneously produces rotating and stationary components
- Only fluidic-bearing geometries are compatible with 3D printing

Each element is supported by previous layers • Printing time ~ 18 hours

CRITICAL BUILDING BLOCKS

Leveraging Existing Knowledgebase and Direct Metal Laser Sintering of Inconel

TRL3: Proof of Concept Technology Demonstration for All Critical Components

DISRUPTIVE TECHNOLOGIES

System Level Design Optimization of Self-Supporting Layout in Additive Manufacturing

ADDITIVELY MANUFACTURED PRE-ASSEMBLED TURBOJET

Simultaneous Uninterrupted Print of Pre-Assembled Rotating and Stationary Parts

- Disposable Micro-Turbojet Engine:
 - > Airflow: 1.4 kg/s
 - Fuel Consumption: 30 g/s
 - Diameter: 250 mm
 - Pressure Ratio: 4
 - Rotational Speed: 50 kRPM
 - ➢ Turbine Inlet Temperature: 1100 K
 - Material: Inconel 718
 - > Thrust: 700 N
- Monolithic Rotor
 - Turbine Bearing Journal Compressor
- Stationary Section
 - Heat Exchanger Nozzle Guide Vane Combustor and Bearing Housing Diffusor Intake

Breakthrough in Turbine Architecture: Provisional US Patent Application No. 63/112,187

MONOLITHIC SELF-SUPPORTING ROTOR/HOUSING

- Overhang less than 35°
- Extended exducer with self-supported blades
- Modified pipe diffuser
- Diamond turbine stator
- Tear-drop fuel orifice
- Zig-zag "floor" geometry minimizing build plate contact area to ease part cutoff

IMPACT

Single-Step Manufacturing of Self-Supported Engine Architectures

- Only Requiring Metal Printer
- No Supply Chain / Short Delivery Time
- Manufacturing at Platform Producer
- On-Demand Availability

Powder Bed Fusion

Engine Cost Diminished to Depreciation and Raw Material ~\$3k

- Technion-PTC partnership
- Additively Manufactured Pre-Assembled Turbojet Engine (APE) for Unmanned Aerial Vehicles

Creo technology used in this project

Lessons learned and futures

CREO MANUFACTURING SOLUTIONS PORTFOLIO

Creo Prismatic & Multi-Surface Milling

Multi-Surface 3-axis milling with high-speed machining support

Specialized capabilities to speed 3 axis HSM

Connectivity with polymer printers and service bureaus

Added support for 4-axis turning and wire EDM

Creo High Speed Milling Advanced Extension

Specialized capabilities to speed 3 and 5 axis HSM

Creo Additive Manufacturing

Parametrically controlled lattice structures and data-managed tray assemblies

Creo Complete Machining Extension

2.5- to 5-axis milling, multi-axis turning, multi-task machining and 4axis wire EDM

Mold filling analysis

Additive Manufacturing Advanced for Materialise

Creo AM functionality plus Support structures for metal and build processors

Creo NC Sheetmetal

NC programming for turret punch presses, contouring laser/flame machines, nibbling and shearing

> Creo Tool Design Option

Accelerate the design of production mold and cast tooling

Generative Topology Optimization

Find the most efficient distribution of material within a user-defined design space

Creo Computer-Aided verification

Digital inspection and verification of machined parts and assemblies

Creo Expert Moldbase Extension

Automate and speed moldbase design

Generative Design Extension

of Consider many scenarios in parallel n and quickly with cloud-based GDX

Creo Reverse Engineering Extension

Reverse engineer from point cloud or faceted model geometry

Automate and speed progress die design

CNC Machining Inspection Mold/Tool/Die

Additive Mfg

CREO MANUFACTURING SOLUTIONS PORTFOLIO

processors

assemblies

space

Creo Manufacturing Solutions are aligned with customer's requests

Additive

- Lightweight design
- Self-supporting geometries
- Enable interoperability

Fully embedded into the Creo design environment

CREO ADDITIVE MANUFACTURING IN ACTION

Self supported geometric design

- Technion-PTC partnership
- Additively Manufactured Pre-Assembled Turbojet Engine (APE) for Unmanned Aerial Vehicles
- Creo technology used in this project

Lessons learned and futures

LESSONS LEARNED

We are adjusting our roadmap to focus on:

Lightweight designs Intelligent transitions

Pore size driving lattice

Close the loop with point-

cloud MFG QA systems

- Self-supporting geometries
 - Printability modifiers
 - Support structures

Slicing and hatching

- Interoperability for printing and post-processing equipment
 - Connectivity with key 3D Printer manufacturers
 - Enable digital thread with postprocessing manufacturers towards certification

- Enable connectivity with AM MES systems
- Fully embedded into the Creo design environment

ADDITIVELY MANUFACTURED PRE-ASSEMBLED TURBOJET ENGINE (APE) FOR UNMANNED AERIAL VEHICLES

Freedom of design

Printable lattice modelling

Optimize for 3MF

Please fill out the session survey.

Take your post-session survey(s) either in the event mobile app or via email post-event.

Your feedback provides us with valuable information on how to shape future content strategy for the event!

PROVIDE SESSION FEEDBACK

 mar.eliale
 272413 / Audit

 mar.augut
 033/11/24 / 043/04

 mar.augut
 033/11/24 / 043/04

 mar.augut
 033/11/24 / 043/04

 mar.augut
 03/11/24 / 043/04

 mar.augut
 04/14 / 043/04

THANKYOU

LIVEWORX.COM | #LIVEWORX

ptc.com

