
© 2024 PTC Inc. All Rights Reserved.

KEPServerEX

Table of Contents

Table of Contents 2

17

KEPServerEX 17

Introduction 18

System Requirements 19

Application Data 20

Components 21

Process Modes 21

Interfaces and Connectivity 23

OPC DA 23

OPC AE 24

OPC UA Interface 25

OPC .NET 26

DDE 27

FastDDE / SuiteLink 28

iFIX Native Interfaces 28

ThingWorx Native Interface 28

Navigating the User Interface 30

Options — General 34

Options — Runtime Connection 35

Project Properties 37

Project Properties — General 37

Project Properties — OPC DA 37

Project Properties — OPC UA 40

Project Properties — DDE 42

Project Properties — OPC .NET 43

Project Properties — OPC AE 44

Project Properties — FastDDE / SuiteLink 44

Project Properties — iFIX PDB Settings 45

Project Properties — OPC HDA 47

Project Properties — ThingWorx 48

Store and Forward — Fill Rate Example 53

Store and Forward — System Tags 54

Accessing the Administration Menu 57

www. ptc.com

2

KEPServerEX

Settings 58

Settings — Administration 58

Settings — Configuration 59

Settings — Runtime Process 59

Settings — Runtime Options 60

Settings — Event Log 62

Settings — ProgID Redirect 63

Settings — User Manager 64

Settings — User Manager — ThingWorx Interface Users 69

Settings — Configuration API Service Transaction Log 71

Settings — Configuration API Service Configuration 72

Settings — Certificate Store 75

Settings — Service Ports 76

Service Port Assignments 77

Components and Concepts 79

What is a Channel? 79

Channel Properties — General 80

Tag Counts 80

Channel Properties — Advanced 81

Channel Properties — Ethernet Communications 81

Channel Properties — Serial Communications 82

Channel Properties — Ethernet Encapsulation 84

Channel Properties — Communication Serialization 85

Channel Properties — Network Interface 86

Channel Properties — Write Optimizations 87

Device Discovery Procedure 88

What is a Device? 89

Device Properties — General 89

Operating Mode 90

Tag Counts 91

Device Properties — Scan Mode 91

Device Properties — Auto-Demotion 92

Device Properties — Communication Parameters 92

Device Properties — Ethernet Encapsulation 93

Device Properties — Tag Generation 94

Device Properties — Time Synchronization 95

Device Properties — Timing 96

www. ptc.com

3

KEPServerEX

Device Properties — Redundancy 97

What is a Tag? 98

Tag Properties — General 99

Multiple Tag Generation 101

Tag Properties — Scaling 104

Dynamic Tags 106

Static Tags (User-Defined) 107

What is a Tag Group? 107

Tag Group Properties 108

What is the Alias Map? 108

Alias Properties 109

What is the Event Log? 110

Event Log 110

Tag Management 112

CSV Import and Export 112

System Tags 114

Property Tags 133

Statistics Tags 134

Modem Tags 136

Communication Serialization Tags 139

Communications Management 142

Using a Modem in the Server Project 143

Phonebook 144

Auto-Dial 145

Designing a Project 147

Running the Server 147

Starting a New Project 147

Adding and Configuring a Channel 148

Channel Creation Wizard 149

Adding and Configuring a Device 150

Device Creation Wizard 151

Adding User-Defined Tags (Example) 152

Browsing for Tags 154

Generating Multiple Tags 155

Adding Tag Scaling 158

Saving the Project 158

www. ptc.com

4

KEPServerEX

Opening an Encrypted Project 161

Testing the Project 161

How Do I... 167

Allow Desktop Interactions 167

Create and Use an Alias 167

Optimize a Server Project 169

Properly Name a Channel, Device, Tag, and Tag Group 170

Resolve Comm Issues when Server is Power Cycled 171

Use an Alias to Optimize a Project 171

Use DDE with the Server 172

Use Dynamic Tag Addressing 173

Use Ethernet Encapsulation 174

Work with Non-Normalized Floating-Point Values 175

Configuration API Service 178

Security 178

Documentation 178

Configuration API Service — Architecture 178

Configuration API Service — Documentation Endpoint 179

Configuration API Service — Endpoint Mapping 179

Configuration API Service — Health Status Endpoint 181

Configuration API Service — About Endpoint 181

Configuration API Service — Concurrent Clients 182

Configuration API Service — Log Retrieval 182

Configuration API Service — Content Retrieval 184

Configuration API Service — Server Administration 193

Configuration API Service — Data 195

Configuration API Service — Channel Properties 200

Configuration API Service — Creating a Channel 200

Configuration API Service — Updating a Channel 201

Configuration API Service — Removing Channel 202

Configuration API Service — Device Properties 202

Configuration API Service — Creating a Device 203

Configuration API Service — Updating a Device 204

Configuration API Service — Removing a Device 205

Configuration API Service — Creating a Tag 205

Configuration API Service — Updating a Tag 206

www. ptc.com

5

KEPServerEX

Configuration API Service — Removing a Tag 207

Configuration API Service — Creating a Tag Group 207

Configuration API Service — Updating a Tag Group 208

Configuration API Service — Removing a Tag Group 209

Configuration API Service — Creating a User 209

Configuration API Service — Updating a User 210

Configuration API Service — Creating a User Group 210

Configuration API Service — Updating a User Group 210

Configuration API Service — Removing a User or Group 211

Configuration API Service — User Management 211

Configuration API Service — Configuring User Group Project Permissions 216

Configuration API Service — Invoking Services 216

Configuration API Service — Reinitialize Runtime Service 220

Configuration API Service — Response Codes 221

Device Demand Poll 221

Configuring from iFIX Applications 223

Overview: Creating Datablocks Inside iFIX Applications 223

Entering Driver Information in iFIX Database Manager 223

iFIX Signal Conditioning Options 227

Project Startup for iFIX Applications 233

Store and Forward Service 234

Built-In Diagnostics 235

OPC Diagnostics Viewer 235

OPC DA Events 238

OPC UA Services 246

Communication Diagnostics 249

Event Log Messages 252

Server Summary Information 252

The <name> device driver was not found or could not be loaded. 253

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>').
Remove the conflicting driver and restart the application. 254

Invalid project file. 254

Failed to open modem line '<line>' [TAPI error = <code>]. 254

Unable to add channel due to driver-level failure. 254

Unable to add device due to driver-level failure. 255

Version mismatch. 255

www. ptc.com

6

KEPServerEX

Invalid XML document: 255

Unable to load project <name>: 255

Unable to backup project file to '<path>' [<reason>]. The save operation has been aborted.
Verify the destination file is not locked and has read/write access. To continue to save this pro-
ject without a backup, deselect the backup option under Tools | Options | General and re-save
the project. 256

<feature name> was not found or could not be loaded. 256

Unable to save project file <name>: 256

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range
and try again. 256

<feature name> is required to load this project. 257

The current language does not support loading XML projects. To load XML projects, change the
product language selection to English in Server Administration. 257

Unable to load the project due to a missing object. | Object = '<object>'. 257

Invalid Model encountered while trying to load the project. | Device = '<device>'. 257

Cannot add device. A duplicate device may already exist in this channel. 257

Auto-generated tag '<tag>' already exists and will not be overwritten. 257

Unable to generate a tag database for device '<device>'. The device is not responding. 258

Unable to generate a tag database for device '<device>': 258

Auto generation produced too many overwrites, stopped posting error messages. 258

Failed to add tag '<tag>' because the address is too long. The maximum address length is <num-
ber>. 259

Line '<line>' is already in use. 259

Hardware error on line '<line>'. 259

No comm handle provided on connect for line '<line>'. 259

Unable to dial on line '<line>'. 259

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network
adapter. 260

Rejecting attempt to change model type on a referenced device '<channel device>'. 260

TAPI line initialization failed: <code>. 260

Validation error on '<tag>': <error>. 260

Unable to load driver DLL '<name>'. 261

Validation error on '<tag>': Invalid scaling parameters. 261

Unable to apply modem configuration on line '<line>'. 261

Device '<device>' has been automatically demoted. 261

<Source>: Invalid Ethernet encapsulation IP '<address>'. 262

Unable to load plug-in DLL '<name>'. 262

The time zone set for '<device>' is '<zone>'. This is not a valid time zone for the system. Default-
ing the time zone to '<zone>'. 263

Unable to load driver DLL '<name>'. Reason: 263

Unable to load plug-in DLL '<name>'. Reason: 263

www. ptc.com

7

KEPServerEX

Channel requires at least one number in its phonebook for automatic dialing. | Channel =
'<channel>'. 263

Channel requires Auto-Dial enabled and at least one number in its phonebook to use a shared
modem connection. | Channel = '<channel>'. 264

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 264

No tags were created by the tag generation request. See the event log for more information. 264

The tag import filename is invalid, file paths are not allowed. 264

TAPI configuration has changed, reinitializing... 265

<Product> device driver loaded successfully. 265

Starting <name> device driver. 265

Stopping <name> device driver. 265

Dialing '<number>' on line '<modem>'. 265

Line '<modem>' disconnected. 265

Dialing on line '<modem>' canceled by user. 265

Line '<modem>' connected at <rate> baud. 265

Remote line is busy on '<modem>'. 265

Remote line is not answering on '<modem>'. 265

No dial tone on '<modem>'. 266

The phone number is invalid (<number>). 266

Dialing aborted on '<modem>'. 266

Line dropped at remote site on '<modem>'. 266

Incoming call detected on line '<modem>'. 266

Modem line opened: '<modem>'. 266

Modem line closed: '<modem>'. 266

<Product> device driver unloaded from memory. 266

Line '<modem>' connected. 266

Simulation mode is enabled on device '<device>'. 266

Simulation mode is disabled on device '<device>'. 266

Attempting to automatically generate tags for device '<device>'. 267

Completed automatic tag generation for device '<device>'. 267

Initiating disconnect on modem line '<modem>'. 267

A client application has enabled auto-demotion on device '<device>'. 267

Data collection is enabled on device '<device>'. 267

Data collection is disabled on device '<device>'. 267

Object type '<name>' not allowed in project. 267

Created backup of project '<name>' to '<path>'. 267

Device '<device>' has been auto-promoted to determine if communications can be re-estab-
lished. 268

Failed to load library: <name>. 268

www. ptc.com

8

KEPServerEX

Failed to read build manifest resource: <name>. 268

The project file was created with a more recent version of this software. 268

A client application has disabled auto-demotion on device '<device>'. 268

Phone number priority has changed. | Phone Number Name = '<name>', Updated Priority =
'<priority>'. 268

Tag generation results for device '<device>'. | Tags created = <count>. 268

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten =
<count>. 268

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten =
<count>. 268

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 269

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 269

User group has been created. | Group = '<name>'. 269

User added to user group. | User = '<name>', Group = '<name>'. 269

User group has been renamed. | Old name = '<name>', New name = '<name>'. 269

Permissions definition has changed on user group. | Group = '<name>'. 269

User has been renamed. | Old name = '<name>', New name = '<name>'. 269

User has been disabled. | User = '<name>'. 269

User group has been disabled. | Group = '<name>'. 269

User has been enabled. | User = '<name>'. 269

User group has been enabled. | Group = '<name>'. 270

Password for user has been changed. | User = '<name>'. 270

The endpoint '<url>' has been added to the UA Server. 270

The endpoint '<url>' has been removed from the UA Server. 270

The endpoint '<url>' has been disabled. 270

The endpoint '<url>' has been enabled. 270

User information replaced by import. | File imported = '<absolute file path>'. 270

User has been deleted. | User = '<name>'. 270

Group has been deleted. | Group = '<name>'. 270

Account '<name>' does not have permission to run this application. 270

Failed to import user information. 271

Changing runtime operating mode. 271

Runtime operating mode change completed. 271

Shutting down to perform an installation. 271

OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'. 271

OPC ProgID has been removed from the ProgID Redirect list. | ProgID = '<ID>'. 271

The invalid ProgID entry has been deleted from the ProgID Redirect list. | ProgID = '<ID>'. 272

Password for administrator was reset by the current user. | Administrator name = '<name>',
Current user = '<name>'. 272

User moved from user group. | User = '<name>', Old group = '<name>', New group '<name>'. 272

www. ptc.com

9

KEPServerEX

User group has been created. | Group = '<name>'. 272

User added to user group. | User = '<name>', Group = '<name>'. 272

User information replaced by import. | File imported = '<absolute file path>'. 272

User group has been renamed. | Old name = '<name>', New name = '<name>'. 272

Permissions definition has changed on user group. | Group = '<name>'. 272

User has been renamed. | Old name = '<name>', New name = '<name>'. 272

User has been disabled. | User = '<name>'. 273

User group has been disabled. | Group = '<name>'. 273

User has been enabled. | User = '<name>'. 273

User group has been enabled. | Group = '<name>'. 273

Failed to reset password for administrator. | Administrator name = '<name>'. 273

Password reset for administrator failed. Current user is not a Windows administrator. | Admin-
istrator name = '<name>', Current user = '<name>'. 273

Password for user has been changed. | User = '<name>'. 273

General failure during CSV tag import. 273

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'. 273

Invalid or missing user information. 273

Insufficient user permissions to replace the runtime project. 274

Runtime project update failed. 274

Failed to retrieve runtime project. 274

Unable to replace devices on channel because it has an active reference count. | Channel =
'<name>'. 274

Failed to replace existing auto-generated devices on channel, deletion failed. | Channel =
'<name>'. 274

Channel is no longer valid. It may have been removed externally while awaiting user input. |
Channel = '<name>'. 274

No device driver DLLs were loaded. 274

Device driver was not found or could not be loaded. | Driver = '<name>'. 274

Error importing CSV data. \n\nField buffer overflow reading identification record. 274

Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'. 275

Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'. 275

Error importing CSV data. \n\nMissing field identification record. 275

Error importing CSV record. \n\nField buffer overflow. | Record index = '<number>'. 275

Error importing CSV record. \n\nInsertion failed. | Record index = '<number>', Record name =
'<name>'. 275

Unable to launch application. | Application = '<path>', OS error = '<code>'. 275

Error importing CSV record. \n\n'Mapped To' tag address is not valid for this project. | Record
index = '<number>', Tag address = '<address>'. 275

Error importing CSV record. \n\nAlias name is invalid. Names cannot contain double quotations
or start with an underscore. | Record index = '<number>'. 275

www. ptc.com

10

KEPServerEX

Invalid XML document: 275

Rename failed. There is already an object with that name. | Proposed name = '<name>'. 276

Failed to start channel diagnostics 276

Rename failed. Names can not contain periods, double quotations or start with an underscore.
| Proposed name = '<name>'. 276

Synchronization with remote runtime failed. 276

Account '<name>' does not have permission to run this application. 276

Error importing CSV record. Tag name is invalid. | Record index = '<number>', Tag name =
'<name>'. 276

Error importing CSV record. Tag or group name exceeds maximum name length. | Record index
= '<number>', Max. name length (characters) = '<number>'. 277

Error importing CSV record. Missing address. | Record index = '<number>'. 277

Error importing CSV record. Tag group name is invalid. | Record index = '<index>', Group name
= '<name>'. 277

Close request ignored due to active connections. | Active connections = '<count>'. 277

Failed to save embedded dependency file. | File = '<path>'. 277

The configuration utility cannot run at the same time as third-party configuration applications.
Close both programs and open only the one you want to use. | Product = '<name>'. 277

Opening project. | Project = '<name>'. 277

Closing project. | Project = '<name>'. 277

Virtual Network Mode changed. This affects all channels and virtual networks. See help for more
details regarding the Virtual Network Mode. | New mode = '<mode>'. 277

Beginning device discovery on channel. | Channel = '<name>'. 278

Device discovery complete on channel. | Channel = '<name>', Devices found = '<count>'. 278

Device discovery canceled on channel. | Channel = '<name>'. 278

Device discovery canceled on channel. | Channel = '<name>', Devices found = '<count>'. 278

Unable to begin device discovery on channel. | Channel = '<name>'. 278

Shutting down for the purpose of performing an installation. 278

Runtime project has been reset. 278

Runtime project replaced. | New project = '<path>'. 278

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'. 278

Discovered device for Channel '<name>' renamed due to duplicate name. | Discovered name =
'<name>', New name = '<name>'. 279

Not connected to the event logger service. 279

Attempt to add item '<name>' failed. 279

No device driver DLLs were loaded. 279

Invalid project file: '<name>'. 279

Could not open project file: '<name>'. 279

Rejecting request to replace the project because it's the same as the one in use: '<name>'. 279

Filename must not overwrite an existing file: '<name>'. 279

www. ptc.com

11

KEPServerEX

Filename must not be empty. 279

Filename is expected to be of the form subdir/name.{json, <binary ext>, <secure binary ext>} 279

Filename contains one or more invalid characters. 280

Saving project files with Project File Encryption enabled as .OPF file type is not supported. Sup-
ported file types are .SOPF and .JSON. 280

Saving project files with Project File Encryption disabled as .SOPF file type is not supported. Sup-
ported file types are .OPF and .JSON. 280

Account '<name>' does not have permission to run this application. 280

A password is required for saving encrypted project files (.<secure binary extension>). 280

Saving .<binary extension> and .JSON project files with a password is not supported. To save
encrypted project files, use .<secure binary extension>. 280

A password is required for saving/loading encrypted project files (.<secure binary extension>). 281

Saving/loading .<binary extension> and .JSON project files with a password is not supported. To
save encrypted project files, use .<secure binary extension>. 281

File is expected to be located in the 'user_data' subdirectory of the installation directory and of
the form name.{json, <binary ext>, <secure binary ext>} 281

Addition of object to '<name>' failed: <reason>. 281

Move object '<name>' failed: <reason>. 281

Update of object '<name>' failed: <reason>. 281

Delete object '<name>' failed: <reason>. 281

Unable to load startup project '<name>': <reason>. 281

Failed to update startup project '<name>': <reason>. 281

Runtime project replaced with startup project defined. Runtime project will be restored from
'<name>' at next restart. 282

Ignoring user-defined startup project because a configuration session is active. 282

Write request rejected on read-only item reference '<name>'. 282

Unable to write to item '<name>'. 282

Write request failed on item '<name>'. The write data type '<type>' cannot be converted to the
tag data type '<type>'. 282

Write request failed on item '<name>'. Error scaling the write data. 282

Write request rejected on item reference '<name>' since the device it belongs to is disabled. 282

One or more changes were not applied to '<name>' since it is being referenced by a client. 282

<Name> successfully configured to run as a system service. 283

<Name> successfully removed from the service control manager database. 283

Runtime re-initialization started. 283

Runtime re-initialization completed. 283

Updated startup project '<name>'. 283

Runtime service started. 283

Runtime process started. 283

Runtime performing exit processing. 283

www. ptc.com

12

KEPServerEX

Runtime shutdown complete. 283

Shutting down to perform an installation. 283

Runtime project replaced from '<name>'. 284

Missing application data directory. 284

Runtime project saved as '<name>'. 284

Runtime project replaced. 284

Runtime service started. PID = <number> 284

Runtime process started. PID = <number> 284

Configuration session started by <name> (<name>). 284

Configuration session assigned to <name> has ended. 284

Configuration session assigned to <name> promoted to write access. 284

Configuration session assigned to <name> demoted to read only. 284

Permissions change applied on configuration session assigned to <name>. 284

Failed to start Script Engine server. Socket error occurred binding to local port. | Error = <error>,
Details = '<information>'. 285

An unhandled exception was thrown from the script. | Function = '<function>', error = '<error>'. 285

Error executing script function. | Function = '<function>', error = '<error>'. 285

Script Engine service stopping. 285

Script Engine service starting. 285

Profile log message. | Message = '<log message>'. 285

Channel requires Auto-Dial enabled and at least one number in its phonebook to use a shared
modem connection. | Channel = '<channel>'. 286

The Config API SSL certificate contains a bad signature. 286

The Config API is unable to load the SSL certificate. 286

Unable to start the Config API Service. Possible problem binding to port. 286

The Config API SSL certificate has expired. 286

The Config API SSL certificate is self-signed. 286

The configured version of TLS for the Configuration API is no longer considered secure. It is
recommended that only TLS 1.2 or higher is used. 287

Configuration API started without SSL on port <port number>. 287

Configuration API started with SSL on port <port number>. 287

The OPC .NET server failed to start. Please see the windows application event log for more
details. Also make sure the .NET 3.5 Framework is installed. | OS Error = '<error reason>'. 287

The OPC .NET server failed to start because it is not installed. Please rerun the installation. 287

Timed out trying to start the OPC .NET server. Please verify that the server is running by using
the OPC .NET Configuration Manager. 287

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Man-
ager to reissue the certificate. 287

Failed to import server instance cert: '<cert location>'. Please use the OPC UA Configuration
Manager to reissue the certificate. 287

www. ptc.com

13

KEPServerEX

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue
the certificate. 288

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>',
Error = <error code>, Details = '<description>'. 288

The UA Server failed to register with the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 288

Unable to start the UA server due to certificate load failure. 289

Failed to load the UA Server endpoint configuration. 289

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL: '<endpoint
url>'. 289

The UA Server failed to initialize an endpoint configuration. | Endpoint Name: '<name>'. 290

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL: '<endpoint
url>'. 290

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL: '<end-
point url>'. 290

The ReadProcessed request timed out. | Elapsed Time = <seconds> (s). 290

The ReadAtTime request timed out. | Elapsed Time = <seconds> (s). 290

Attempt to add DDE item failed. | Item = '<item name>'. 290

DDE client attempt to add topic failed. | Topic = '<topic>'. 290

Unable to write to item. | Item = '<item name>'. 291

The area specified is not valid. Failed to set the subscription filter. | Area = '<area name>'. 291

The source specified is not valid. Failed to set the subscription filter. | Source = '<source name>'.291

Connection to ThingWorx failed. | Platform = <host:port resource>, error = <reason>. 291

Error adding item. | Item name = '<item name>'. 291

Failed to trigger the autobind complete event on the platform. 292

Connection to ThingWorx failed for an unknown reason. | Platform = <host:port resource>,
error = <error>. 292

One or more value change updates lost due to insufficient space in the connection buffer. |
Number of lost updates = <count>. 292

Item failed to publish; multidimensional arrays are not supported. | Item name = '%s'. 293

Store and Forward datastore unable to store data due to full disk. 293

Store and Forward datastore size limit reached. 293

Connection to ThingWorx was closed. | Platform = <host:port resource>. 293

Failed to autobind property. | Name = '<property name>'. 294

Failed to restart Thing. | Name = '<thing name>'. 294

Write to property failed. | Property name = '<name>', reason = <reason>. 294

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 294

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 295

The server is configured to send an update for every scan, but the push type of one or more
properties are set to push on value change only. | Count = <count>. 295

The push type of one or more properties are set to never push an update to the platform. |
Count = <count>. 295

www. ptc.com

14

KEPServerEX

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item
name = '<name>'. 296

Write to property failed. | Thing name = '<name>', property name = '<name>', reason =
<reason>. 296

Error pushing property updates to thing. | Thing name = '<name>'. 296

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-
memory store size (updates) = <count>. 296

Store and Forward datastore reset due to file IO error or datastore corruption. 297

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user
name>'. 297

Configuration Transfer to ThingWorx Platform failed. 297

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 298

Failed to delete stored updates in the Store and Forward datastore. 298

Configuration Transfer from ThingWorx Platform failed. 298

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 298

Check that your Application Key is properly formatted and valid. 298

The maximum number of configured Industrial Things has been reached, count = <number>.
Consider increasing the value of the Max Thing Count. 299

The maximum number of updates has been reached, count = <count>. 299

A publish to Thingworx has timed out. 299

Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<name>'. 300

Reinitializing ThingWorx connection due to a project settings change initiated from the platform.300

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 300

Serviced one or more autobind requests. | Count = <count>. 300

Reinitializing ThingWorx connection due to a project settings change initiated from the Con-
figuration API. 300

Resumed pushing property updates to thing: the error condition was resolved. | Thing name =
'<name>'. 301

Configuration transfer from ThingWorx initiated. 301

Configuration transfer from ThingWorx aborted. 301

Initialized Store and Forward datastore. | Datastore location: '<location>'. 301

Successfully deleted stored data from the Store and Forward datastore. 301

Store and Forward mode changed. | Forward Mode = '<mode>'. 301

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location = '<loc-
ation>'. 301

Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'. 302

FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic name>'. 302

Error attaching to datastore due to an invalid datastore path. | Path = '<path>' 302

Failed to start Store and Forward server. Socket error occurred binding to local port. | Error =
<error>, Details = '<information>'. 302

Store and Forward service stopping. 302

www. ptc.com

15

KEPServerEX

Store and Forward service starting. 303

File corruption encountered when attaching to datastore; datastore recreated. | Datastore path
= '<path>'. 303

Datastore overwritten due to a configuration change. | Datastore path = '<path>'. 303

Unable to attach to existing datastore because that datastore was created with an older version
of the server. Datastore recreated. | Datastore path = '<path>'. 303

Com port is in use by another application. | Port = '<port>'. 303

Unable to configure com port with specified parameters. | Port = COM<number>, OS error =
<error>. 304

Driver failed to initialize. 304

Unable to allocate thread resource. Please check the memory usage of the application. 304

Com port does not exist. | Port = '<port>'. 304

Error opening com port. | Port = '<port>', OS error = <error>. 305

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 305

Winsock shut down failed. | OS error = <error>. 305

Winsock initialization failed. | OS error = <error>. 305

Winsock V1.1 or higher must be installed to use this driver. 305

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 306

Device is not responding. 306

Device is not responding. | ID = '<device>'. 306

Serial communications error on channel. | Error mask = <mask>. 307

Invalid array size detected writing to tag <device name>.<address>. 307

Unable to write to address on device. | Address = '<address>'. 307

Items on this page may not be changed while the driver is processing tags. 308

Specified address is not valid on device. | Invalid address = '<address>'. 308

Address '<address>' is not valid on device '<name>'. 308

This property may not be changed while the driver is processing tags. 308

Unable to write to address '<address>' on device '<name>'. 308

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 309

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 309

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 309

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 310

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 310

%s | 310

<Name> Device Driver '<name>' 310

Index 311

www. ptc.com

16

KEPServerEX

KEPServerEX

CONTENTS

Introduction
Interfaces and Connectivity
Accessing the Administration Menu
Navigating the Configuration
Basic Server Components
Tag Management
Communications Management
Built-In Diagnostics
Designing a Project
How Do I... ?
Event Log Messages

For information regarding product licensing, refer to the License Utility help file. To access the help file through the server Configuration menu,
click Help | Server Help | License Utility.

www. ptc.com

17

KEPServerEX

Introduction
Version 1.805

This software-based server is designed for accurate communications, quick setup, and unmatched inter-
operability between client applications, industrial devices, and systems. The server provides a wide range of
plug-ins and device drivers and components that suit most communication needs. The plug-in design and
single user interface provides consistent access from standards-based applications and non-standards-
based applications with native interfaces.

www. ptc.com

18

KEPServerEX

System Requirements
The server has minimum system requirements for both software and hardware. These requirements must
be met for the application to operate as designed.

This application supports the following Microsoft Windows operating systems:

l Windows 10 x64 (Pro and Enterprise Edition)3

l Windows 10 x86 (Pro and Enterprise Edition)
l Windows 10 (IoT Enterprise Edition)
l Windows Server 2019 x643,4

l Windows Server 2016 x643,4

l Windows Server 2012 x64 R23

l Windows Server 2012 x643

l Windows Server 20225

l Windows 115

Notes

1. When installed on a 64-bit operating system, the application runs in a subsystem of Windows called
WOW64 (Windows-on-Windows 64 bit). WOW64 is included on all 64-bit versions of Windows and is
designed to make differences between the operating systems transparent to the user. WOW64
requires the following minimums:

l 2 GHz Processor

l 1 GB installed RAM (defer to the suggestion for the OS)

l 600 MB available disk space

l Ethernet Card

l Super VGA (800x600) or higher resolution video

2. Verify the latest security updates are installed for the operating system.

3. Runs in the 32-bit compatibility mode.

4. Windows Server Core deployments are not supported.

5. Hardware key licensing may present unexpected errors.

Additional resources are available on the Kepware and PTC websites. In particular, the following resources are
helpful in planning stages: KEPServerEX Install Guide, Secure Deployment Guide. Contact a staff system engin-
eer for guidance on requirements and recommendations for more complex systems.

www. ptc.com

19

https://www.ptc.com/support/-/media/support/refdocs/KEPServerEX/6,-d-,13/kepserverex_installation_guide.pdf?sc_lang=en
https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/thingworx_kepware_server_secure_deployment_guide.pdf?sc_lang=en

KEPServerEX

Application Data
Microsoft standard users must have the appropriate permissions on the Application Data directory. This
folder contains files critical to the proper functioning of the server, such as project files. Permissions on this
folder dictate which users are able to configure the product. By default, the server stores application data in
C:\ProgramData\<server>. This setting is configured during installation and can only be changed by rein-
stalling the product. Permissions only need to be configured during a new installation as upgrades inherit
the previously configured Windows security settings. The dialog below shows where a new installation
provides the opportunity to configure the location of the application data folder.

Microsoft standard users must be granted both read and write permissions to the folder and its contents.
Execute permission is not required to run the server. The application does not provide tools to add per-
missions to this folder; they must be granted using Windows Explorer. Users who don’t have permissions
receive the following error when attempting to start the application: “This account does not have permission
to run this application. Contact the system administrator”.

The server does not modify the permissions of the configured folder; it inherits the default permissions con-
figured at its location. The default (ProgramData) location inherits read-only permissions for the Users
default Windows group. Read permissions alone are not sufficient to configure the product; however, they
do potentially allow users who shouldn’t have access the ability to read contents of the folder. By default,
Windows administrators have the correct permissions.

To implement least privilege, follow these best practices:

l Only grant permissions to users or groups that require access to the application; do not grant per-
missions to all users. It is common for members of the Users default windows group to contain more

www. ptc.com

20

KEPServerEX

users than should have access to the application.
l Remove the default permissions granted to users who shouldn’t have access. For example, if the

default directory is used, remove the inherited read-only permission granted to members of the
“Users” default windows group. This should be done unless ALL users on the machine should be able
to work with the product.

l Don’t manage permissions with individual users or the “Users” default windows group. Instead, cre-
ate a custom user group and configure its permissions. Add users who should be granted per-
missions to that group.

Components
The server implements client / server architecture. The components include Configuration, Runtime, Admin-
istration, and Event Log.

Configuration
The Configuration is the client-user interface that is used to modify the runtime project. The Configuration
can be launched by multiple users and supports remote Runtime configuration.

CSV Import and Export
This server supports the import and export of tag data in a Comma Separated Variable (CSV) file. When
using CSV import and export, tags are created quickly in the desired application.

For more information, refer to CSV Import and Export.

Runtime
The Runtime is the server component that starts as a service by default. Clients can connect to the runtime
remotely or locally.

Administration
The Administration is used to view and/or modify settings and launch applications that pertain to user man-
agement and the server. By default, the Administration is started and sent to the System Tray when a user
account logs onto the operating system.

Project
The Project file contains the channel, device, and tag definitions as well as preferences and other saved set-
tings.

For more information, refer to Designing a Project.

Event Log
The Event Log service collects information, warning, error, and security events. These events are sent to the
Configuration's Event Log window for viewing.

For more information, refer toWhat is the Event Log?

See Also: Basic Server Components

Process Modes
The Runtime process mode can be changed while the server is running; however, doing so while a client is
connected interrupts the connection for a short period. The modes of operation are System Service and
Interactive.

www. ptc.com

21

KEPServerEX

System Service
By default, the server is installed and runs as a service. When System Service is selected, the Runtime does
not require user intervention and starts when the operating system opens. This provides user independent
access to the server by the clients.

Interactive
When Interactive is selected, the Runtime remains stopped until a client attempts to connect to it. Once star-
ted, it runs until all clients have disconnected and then shuts down. The Runtime also shuts down if the user
account logs off the operation system.

Note: The Runtime process mode may be changed to meet client applications' needs through the Admin-
istration settings dialogs.

System Service is required for the following conditions:

l When iFIX is required to run on an operating system while UAC is enabled.

Interactive is required for the following conditions:

l When a communication interface (such as DDE) must exchange information with the user desktop
and the server is installed on Windows.

See Also:
Settings - Runtime Process
How To... Allow Desktop Interactions

www. ptc.com

22

KEPServerEX

Interfaces and Connectivity
This communications server simultaneously supports the client / server technologies listed below.

Server - a software application designed to bridge the communication between a device, controller, or data
source with a client application. Servers can only respond to requests made by a client.

Client - a software program that is used to contact and obtain data from a server (either on the same com-
puter or on another computer). A client makes a request and the server fulfills the request. An example of a
client would be an e-mail program connecting to a mail server or an Internet browser client connecting to a
web server.

Human Machine Interface (HMI) - a software application (typically a Graphical User Interface or GUI) that
presents information to the operator about the state of a process and to accept and implement the oper-
ator control instructions. It may also interpret the plant information and guide the interaction of the oper-
ator with the system.

Man Machine Interface (MMI) - a software application (typically a Graphical User Interface or GUI) that
presents information to the operator about the state of a process and to accept and implement the oper-
ator control instructions. It may also interpret the plant information and guide the interaction of the oper-
ator with the system.

For more information on a specific interface, select a link from the list below.
DDE Interface
FastDDE/SuiteLink Interface
iFIX Native Interfaces
OPC AE Interface
OPC DA Interface
OPC UA Interface
ThingWorx Native Interface

OPC DA
Supported Versions
1.0a
2.05a
3.0

Overview
"OPC" stands for Open Productivity and Connectivity in industrial automation and the enterprise systems
that support industry. It is a client/server technology where one application acts as the server (providing
data) and another acts as a client (using data).

OPC is composed of a series of standards specifications: OPC Data Access (DA) is the most prolific standard.
OPC DA is a widely accepted industrial communication standard that enables data exchange between multi-
vendor devices and control applications without proprietary restrictions. An OPC server can communicate
data continuously among PLCs on the shop floor, RTUs in the field, HMI stations, and software applications
on desktop PCs. OPC compliance makes continuous real-time communication possible (even when the hard-
ware and software are from different vendors).

www. ptc.com

23

KEPServerEX

OPC Data Access 1.0a was the original specification developed by the OPC Foundation in 1996. Although it
continues to be supported by many of the OPC client applications in use today, OPC Data Access 2.0
Enhanced OPC better utilizes the underlying Microsoft COM technology. OPC Data Access 3.0 is the latest
version of the OPC DA interface.

See Also: Project Properties — OPC DA

OPC AE
Supported Versions
1.0
1.10

Overview
OPC Alarms & Events (AE) is a specification developed by the OPC Foundation to standardize the way that
alarm and event information is shared among systems. Using the standard, AE clients can receive alarms
and event notices for equipment safety limits, system errors, and other abnormal situations.

Simple Events
Simple Events include the server events displayed in the Event Log (such as information, warning, error, and
security events). The server supports the following filtering options for Simple Events for AE clients:

l Event Type Simple.
l Event Category Filter by server-defined categories. Each event is assigned to one category. Descrip-

tions of the categories are as follows:

l Runtime Error Events Simple events that are shown as errors in the Event Log.
l Runtime Warning Events Simple events that are shown as warnings in the Event Log.
l Runtime Information Events Simple events that are shown as informational in the Event

Log.

Condition Events
Condition Events are created by server conditions, which are currently only configurable through the use of
the Alarms & Events plug-in. The server supports the following filtering options for Condition Events for AE
clients:

www. ptc.com

24

KEPServerEX

1. Event Condition.

2. Category Filter by server-defined categories. Each event is assigned to one category. Descriptions of
the categories are as follows:

l Level Alarms Events that are generated by process level conditions. For example, tank level
> 10.

l Deviation Alarms Events that are generated by deviation conditions. For example, tank
level ± 10.

l Rate of Change Alarms Events that are generated by rate of change conditions.

3. Severity Filter by severity level. Levels range from 0 to 1000; 1000 is the most severe. Each event is
assigned a severity.

4. Area Filter by a process area to get alarms and events from only that area. An area is used to organ-
ize alarm and event information.

5. Source Filter by source to get events from only that source. A source is an Alarms & Events area that
was created by a source (such as a server tag) that belongs to an area.

Note: The Alarms & Events Plug-In allows conditions to be configured through server tags. For example,
a Temperature tag can be configured through the Alarms & Events Plug-In to generate an event when the
maximum value is reached. For more information on the Alarms & Events Plug-In, contact an OPC vendor.

See Also: Project Properties — OPC AE

Optional Interfaces
The AE server interface does not support the following optional interfaces:

l IOPCEventServer::QueryEventAttributes This interface manages event attributes, which are not
supported by the server. Attributes allow custom information to be added to an event (such as spe-
cial messages or server tag values). This also applies to the IOPCEventSub-
scriptionMgt::SelectReturnedAttributes interface and the
IOPCEventSubscriptionMgt::GetReturnedAttributes interface.

l IOPCEventServer::TranslateToItemIDs This interface allows AE clients to get the OPC DA item
related to the event. This is because in some cases, events are related to the value of a server tag.

l IOPCEventServer2: This interface allows clients to enable/disable areas and sources. This interface
is not supported by the server, because it would allow one client to enable/disable an area or source
for all clients.

Note: The AE server interface does not support tracking events.

OPC UA Interface
Supported Version
1.02 optimized binary TCP

Overview
Note: Currently, neither UA via HTTP / SOAP web services nor for complex data is supported. For more

information, refer to the OPC UA Configuration Managermanual.

www. ptc.com

25

https://www.ptc.com/~/media/kepware-store/en/manuals/opc-ua-configuration-manager-manual

KEPServerEX

OPC Open Connectivity via Open Standards (OPC) is a set of standard interfaces based on Microsoft's OLE /
COM technology. The application of the OPC standard interface makes possible interoperability between
automation / control applications and field systems / devices. Unified Architecture (UA User Administration
or Unified Architecture) provides a platform independent interoperability standard. It is not a replacement
for OPC Data Access (DA Data Access) technologies: for most industrial applications, UA complements or
enhances an existing DA architecture. The OPC UA OPC Unified Architecture will replace, modernize, and
enhance the functionality of the existing OPC defined interfaces. OPC UA is described in a layered set of spe-
cifications broken into parts. It is purposely described in abstract terms and in later parts married to existing
technology on which software can be built. This layering helps isolate changes in OPC UA from changes in
the technology used to implement it.
See Also: Project Properties — OPC UA
See Also: For endpoint creation and certificate management for UA drivers and/or the ThingWorx Native Inter-

face, see OPC UA Configuration Manager

OPC UA Profiles
OPC UA is a multi-part specification that defines a number of services and information models referred to
as features. Features are grouped into profiles, which are then used to describe the functionality supported
by a UA server or client.
For a full list and a description of each OPC UA profile, refer to https://www.op-

cfoundation.org/profilereporting/index.htm.

Fully Supported OPC UA Profiles

l Standard UA Server Profile
l Core Server Facet
l Data Access Server Facet
l SecurityPolicy - Basic128Rsa15 (Deprecated)
l SecurityPolicy - Basic256 (Deprecated)
l SecurityPolicy - Basic256Sha256
l SecurityPolicy - None (Insecure)
l UA-TCP UA-SC UA Binary

CAUTION: Security policies Basic128Rsa15 and Basic256 have been deprecated by the OPC Foundation as
of OPC UA specification version 1.04. The encryption provided by these policies is considered less secure
and usage should be limited to providing backward compatibility.

Partially Supported OPC UA Profiles

l Base Server Behavior Facet

Note: This profile does not support the Security Administrator – XML Schema.
See Also: Project Properties — OPC UA

OPC .NET
Supported Version
1.20.2

Overview
OPC .NET is a family of APIs provided by the OPC Foundation that leverage Microsoft's .NET technology and
allow .NET clients to connect to the server. This server supports OPC .NET 3.0 WCF, formally known as OPC

www. ptc.com

26

https://www.ptc.com/~/media/kepware-store/en/manuals/opc-ua-configuration-manager-manual
https://www.opcfoundation.org/profilereporting/index.htm
https://www.opcfoundation.org/profilereporting/index.htm

KEPServerEX

Xi. Unlike other OPC .NET APIs, OPC .NET 3.0 uses Windows Communication Foundation (WCF) for con-
nectivity, avoiding DCOM issues and providing the following benefits:

l Secure communication via multiple communications bindings (such as Named Pipe, TCP, Basic HTTP,
HTTPS, and Ws HTTP).

l Consolidation of OPC Classic Interfaces.
l Simple development, configuration, and deployment of Windows environment.

The server adds OPC .NET 3.0 support using a customized version of the OPC .NET 3.0 WCF Wrapper sup-
plied by the OPC Foundation. The wrapper runs as a system service called "xi_server_runtime.exe". It wraps
the existing server's OPC AE and DA interfaces, providing WCF clients access to the server's tag and alarm
data. It does not support Historical Data Access (HDA).
Note: The OPC .NET service is only started when the server starts and the interface is enabled. Unlike

OPC DA, clients cannot launch the server. For more information on configuration, refer to Project Properties –
OPC .NET.

Requirements
To install and use OPC .NET 3.0, Microsoft .NET 3.5 must be present on the machine before server install-
ation.

DDE
Supported Formats
CF_Text
XL_Table
Advanced DDE

Overview
Although this server is first and foremost an OPC server, there are still a number of applications that require
Dynamic Data Exchange (DDE) to share data. As such, the server provides access to DDE applications that
support one of the following DDE formats: CF_Text, XL_Table, and Advanced DDE. CF_Text and XL_Table are
standard DDE formats developed by Microsoft for use with all DDE aware applications. Advanced DDE is a
high-performance format supported by a number of client applications specific to the industrial market.

CF_Text and XL_Table
The DDE format CF_Text is the standard DDE format as defined by Microsoft. All DDE aware applications
support the CF_Text format. XL_Table is the standard DDE format as defined by Microsoft that is used by
Excel. For more information on DDE, refer to How To... Use DDE with the Server.

Advanced DDE
Advanced DDE is the DDE format defined by Rockwell Automation. Today, all Rockwell client applications
are Advanced DDE aware. Advanced DDE is a variation on the normal CF_Text format, which allows larger
amounts of data to transfer between applications at higher rates of speed (and with better error handling).

Requirements
For the DDE interface to connect with the server, the Runtime must be allowed to interact with the desktop.
For more information, refer to How To... Allow Desktop Interactions.

See Also: Project Properties — DDE

www. ptc.com

27

KEPServerEX

FastDDE / SuiteLink
Overview
FastDDE is a DDE format defined by Wonderware Corporation. It allows larger amounts of data to transfer
between applications at higher speed (and with better error handling) than generic DDE. SuiteLink is a cli-
ent-server communication method that has succeeded FastDDE. It is TCP/IP based and has improved band-
width and speed. Both FastDDE and SuiteLink are supported by all Wonderware client applications.

Note: The Wonderware connectivity toolkit is used to simultaneously provide OPC and FastDDE /
SuiteLink connectivity, allowing quick access to device data without the use of intermediary bridging soft-
ware.

 For security reasons, it is recommended that users utilize the most recent Wonderware DAServer
Runtime Components. For more information and available downloads, refer to the Invensys Global Technical
Support WDN website.

Requirements
For the FastDDE interface to connect with the server, the Runtime must be allowed to interact with the
desktop.

For more information, refer to How To... Allow Desktop Interactions.
See Also: Project Properties — FastDDE / SuiteLink

 FastDDE, SuiteLink, FactorySuite, InTouch, and Wonderware are all trademarks of Wonderware Cor-
poration.

iFIX Native Interfaces
Overview
The iFIX native interface simplifies the connection task by allowing a direct connection to the local iFIX applic-
ation without the use of the iFIX OPC Power Tool. When supported, this interface also has the ability to
refine the connection between the server and the iFIX Process Database (PDB).

See Also: Project Properties — iFIX PDB Settings

ThingWorx Native Interface
Overview
ThingWorx is a connectivity platform that allows users to create actionable intelligence based on their
device data. The ThingWorx Native Interface allows a user to provide data to the ThingWorx Platform with
little additional configuration using the ThingWorx Always On technology. With the introduction of the
ThingWorx Next Gen Composer, the ThingWorx Native interface has been updated to allow a better user
interface integration with the Composer.

 As noted in the ThingWorx documentation, configuration of a ThingWorx Application Key is crucial to
providing a secured environment. The Application Key that is used should provide the appropriate priv-
ileges to allow the proper exchange of data between the server instance and the ThingWorx Platform.

The ThingWorx Native Interface supports Store and Forward to cache property updates when the industrial
server becomes disconnected from the ThingWorx Platform.

See Also:

www. ptc.com

28

KEPServerEX

Project Properties – ThingWorx Native Interface
Fill Rate Example
Store and Forward System Tags
Visit the PTC website for information on "Industrial Internet of Things (IIoT)" and "Accelerate Success with
ThingWorx IIoT Solutions Platform"

www. ptc.com

29

https://www.ptc.com/

KEPServerEX

Navigating the User Interface
The Configuration provides the general means of interacting with the server Runtime. While various plug-ins
and drivers add buttons, menus, and icons; the standard interface elements are described below.

Title Bar
Displays the application name, when Configuration is connected to the Runtime, and the current Runtime
project when applicable.

Menu Bar
File Includes the project-level commands; such as Save, Open, Import, and Export.

Edit Includes action commands; such as Copy, Paste, and New Channel.

View
Includes the display commands; such as which elements of the user interface are visible
or hidden and the type of tree organization to display.

Tools
Includes the configuration commands; such as general options, connection settings,
event log filters; and access to the License Utility and QuickClient.

Runtime Includes server connectivity commands; such as Connect..., Disconnect, and Reinitialize.

Help Includes commands to access the product documentation, by server, driver, or plug-in.

Button Bar
The standard buttons are described below. Plug-ins and drivers add, remove, enable, and disable buttons
based on available functionality for the active items and view.

New Project: Initiates creation of a new project file to replace the active project. The project file
defines the devices connected, their settings, and how they are grouped.

Open Project: Allows the user to browse for an existing project file to load, replacing the active pro-
ject.

Save Project: Implements any recent changes and writes the active project file to disk.

Save As: Writes the active project with changes, such as to a new location or file name.

New Channel: Creates a new group or medium for data collection.

New Device: Defines a new hardware component or PLC for data collection.

New Tag Group: Defines a new collection of data points, or tags, that can be organized as a single
unit.

New Tag: Defines a new data points for collection.

Bulk Tag Creation: Defines tags discovered in the target device or environment.

Duplicate Tag: Creates a copy of the selected tag.

Properties: Allows viewing and editing of parameters for the selected item.

Undo: Resets the value or item to its configuration prior to the most recent change.

Cut: Removes the selected item and stores it on the clipboard.

Copy: Creates a duplicate of the selected item and stores it on the clipboard.

Paste: Inserts an item currently in the clipboard into the selected area.

www. ptc.com

30

KEPServerEX

Delete: Removes the selected item and / or its definition.

Quick Client: Runs the integrated client interface.

Project Tree View
This view displays the current project contents, organization, and settings in a hierarchy view. The Project
Tree View is designed as unified location for all aspect of the project. Nodes expand to allow detailed drill-
down to the device, tag group, or tag level. Features and Plug-ins appear as nodes in the tree view to facil-
itate configuration work in one location. The major nodes of the tree are:

Project - where global settings for the active project are stored or updated.
Connectivity - where channels and devices are organized, right-click actions are available, and properties
can be accessed for display in the Detail pane.
Aliases - where mappings to system resources, legacy paths, and complex routings can be given shorter,
more user-friendly, or SCADA compatible names and shortcuts.
Advanced Tags - where operations or analysis can be built into tag processing and stored. This is a sep-
arate product Plug-in.
Alarms & Events - where system monitoring can be defined and managed. This is a separate product Plug-
in.
DataLogger - where data can be organized and stored in an ODBC-compliant database. This is a separate
product Plug-in.
EFM Exporter - where flow and trend data can be captured and coordinated. This is a separate product
Plug-in.
IDF for Splunk - where data feeds into data management and data mining can be configured. This is a sep-
arate product Plug-in.
IoT Gateway - where connections to enterprise systems, monitoring, and analytics are managed. This is a
separate product Plug-in.

www. ptc.com

31

KEPServerEX

Local Historian - where data collection, logging, storage, and retention is defined. This is a separate
product Plug-in.
Scheduler - where data collection, publication, and bandwidth management can be coordinated. This is a
separate product Plug-in.
SNMP Agent - where communication bridges into Information technology and SNMP protocols can be cre-
ated. This is a separate product Plug-in.

Tip: In very large projects or if some features are used more than others, the tree can be customized
through filtering. Hide or show tree nodes under the Viewmenu.

The Project Tree provides a variety of appropriate options through a right-click menu. For example, devices
and channels can be copied and pasted to start a new configuration based on existing choices and settings.
The name is duplicated and a numbered added (that increments if many are pasted) to keep names unique.
For drivers that support additional features, those are available on the right-click menu as well.

Tip: The Project Tree View supports a right-click menu option to launch the QuickClient. This allows you to
troubleshoot connections, device communication, and / or tag group settings and addresses without load-
ing the entire project. Launch from the channel, device, or tag group level to load ONLY items below that
point in the tree.

Detail View
This view displays one of several configuration selection options for the active project. The information dis-
played is related to the current selection in the Project Tree View.

Note: When selecting a Project Tree View, the Detail View columns persist until a channel or device is
chosen. At that time, the columns revert to displaying the device or tag information.

www. ptc.com

32

KEPServerEX

Tip: Start typing an item name to search for that item within the detail view. The first occurrence of the
typed character(s) is selected and displayed within the visible pane. Typing the character(s) again highlights
the next occurrence and so on with each repeated entry.

Property Editor
Some properties can be edited in the property editor. The standard buttons in the property editor operate
as follows:

Defaults restores settings for the selected property group to their default values (both applied and pending
changes).

Ok exits the property editor and implements all changes.

Cancel exits the property editor without implementing pending changes. Closing the property editor has
the same effect.

Apply implements pending changes in all property groups.

Help opens Help for the selected property.

 Pending changes appear in bold until they are applied.

Event Log
This view, in the bottom pane, displays four types of recorded messages: General Information, Security
Alerts, Warnings, and Errors from the server, drivers, or plug-ins. By default, log entries include the date,
time, source, and event description. For more information, see Event Log Options.

Status Bar
Displays the current status of the Configuration (Connecting, Ready, etc.) as well as mouse-over hints for the
Menu Bar and Button Bar items.

Note: A lock icon in the status bar indicates read-only mode, where the configuration and runtime are not
communicating.

Icons

www. ptc.com

33

KEPServerEX

The desktop icon allows you to launch the product and can be pinned to the taskbar if
desired.

The administration icon launches the Administration interface for global settings, such as language
and various security options.

Options — General
This dialog is used to specify general server options (such as when to establish a connection with the
Runtime, when to back up saved Configuration project files, and what conditions invoke warning pop-ups).

Startup

Immediately attempt to establish a Runtime connection on start: Determines whether or not the con-
figuration tool connects to the Runtime when started. When disabled, users must connect manually. The
default is enabled.

www. ptc.com

34

KEPServerEX

Project File Settings

Number of recently used project files to track: Set the number of project files presented in theMRU
(Most Recently Used) list of projects. The valid range is 1 to 16. The default setting is 8.

Backup saved Configuration project files prior to overwriting: When enabled, the system automatically
makes a backup copy of the last saved Configuration project before it is overwritten with a new project file.
The backup file name and location are displayed in the Event Log.

CSV Import

The Delimiter setting specifies the Comma Separated Variable (CSV) that the server uses to import and
export tag data in a CSV file. Options include comma and semicolon. The default setting is comma. For more
information, refer to Tag Management.

Confirmations

Enable the conditions that force the Configuration to present warnings to an operator.

Ask for confirmation when deleting an object: When enabled, all Configuration delete operations invoke
a warning popup that requires confirmation before the delete operation can be completed.

Confirm when operation will cause clients to disconnect: When enabled, all Configuration operations
that would cause client applications to be disconnected from the server invoke a warning popup. This
popup requires confirmation before the disconnect sequence can be initiated.

Prompt to save project changes: When enabled, the Configuration invokes a popup if the server is being
shut down while the project has outstanding changes.

Confirm Runtime project replacement: When enabled, this option warns that the project can be opened
and edited offline while the Configuration is connected to the Runtime.

Do not show the read-only message: When enabled, this suppresses the warning to users that changes
are not allowed in the configuration because it is in read-only mode.

Options — Runtime Connection
This dialog is used to specify how connections to the Runtime are managed.

www. ptc.com

35

KEPServerEX

Show user login dialog: When enabled, a valid user name and password are required before the Con-
figuration can be connected to the Runtime for project editing. The default is disabled.
 It is more secure to enable this option and have each user log in to the server with unique credentials.
Note: User names and permissions are assigned by the Administrator account. For more information, refer

to Settings - User Manager.

www. ptc.com

36

KEPServerEX

Project Properties
To access the Project Properties groups from the configuration, click Edit | Project Properties. For more
information, select a link from the list below.

Project Properties — General
Project Properties — OPC DA
Project Properties — DDE
Project Properties — FastDDE/SuiteLink
Project Properties — iFIX PDB Settings
Project Properties — OPC UA
Project Properties — OPC AE
Project Properties — OPC HDA
Project Properties — OPC .NET
Project Properties — ThingWorx

Project Properties — General
The general properties are used to attach a title and comment to a project for reference as well as manage
security settings for the project. Although the Title field supports a string of up 64 characters, the Descrip-
tion field has no practical limit. Limiting the Description to the area available within the field, however,
improves project load time.

Identification

Description: Enter an optional phrase to help identify this project in reports and monitoring systems.

Title: Enter an optional word or phrase to identify this project in file names and reports.

Tags Defined: Verify that the tag count matches expectations of data collection for this project (and licens-
ing, if applicable).

The Defaults button restores the settings to the default / pre-set values.

Project Properties — OPC DA
This server has been designed to provide the highest level of compatibility with the OPC Foundation's spe-
cifications. In testing, however, it has been found that being fully-compatible with the specification and work-
ing with all OPC client applications is a different matter. The OPC DA Compliance dialog allows users to
customize operation of the server to better meet the needs of rare OPC clients. These options seldom need
to be adjusted for the majority of OPC client applications.

www. ptc.com

37

KEPServerEX

Data Access

Enable OPC 1.0 Data Access Interfaces: Select Yes to allow the server to accept OPC client connections
from OPC clients that support the 1.0 specification. The default setting is enabled.

Enable OPC 2.0 Data Access Interfaces: Select Yes to allow the server to accept OPC client connections
from OPC clients that support the 2.0 specification. The default setting is enabled.

Enable OPC 3.0 Data Access Interfaces: Select Yes to allow the server to accept OPC client connections
from OPC clients that support the 3.0 specification. The default setting is enabled.

Include Hints When Browsing: Select Yes to allow OPC client applications to browse the address format-
ting Hints available for each communications driver. The Hints provide a quick reference on how a particular
device's data can be addressed. This can be useful when entering dynamic tags from the OPC client. The
hint items are not valid OPC tags. Some OPC client applications may try to add the Hint tags to their tag data-
base. When this occurs, the client receives an error from the server. This is not a problem for most clients,
although it can cause others to stop adding tags automatically or report errors. Prevent this by disabling
Hints. The default setting is disabled (No).

Include Tag Properties When Browsing: Select Yes to allow OPC client applications to browse the tag
properties available for each tag in the address space. The default setting is disabled.

Shutdown Wait Period: Specify how long the server waits for an OPC client to return from the server shut-
down event. If the client application does not return within the timeout period, the server completes shut-
down and exit. The valid range is 10 to 60 seconds. The default setting is 15 seconds.

Synchronous Request Timeout: Specify how long the server waits for a synchronous read operation to
complete. If a synchronous operation is in progress and the timeout is exceeded, the server forces the

www. ptc.com

38

KEPServerEX

operation to complete with a failure to the client. This prevents clients from locking up when using syn-
chronous operations. The valid range is 5 to 60 seconds. The default setting is 15 seconds.

Note: Synchronous writes do not use this property setting; only reads / requests utilize this property.

Enable Diagnostics Capture: Select Yes to allow OPC diagnostics data to be logged to the Event Log service
for storage (typically used for troubleshooting). The default setting is disabled (No).

Maximum Connections: Set the maximum number of simultaneous connections allowed through the inter-
face(s) at a time. Any connection past the limit is refused and a diagnostic message is posted. The valid
range is 1 to 4000 connections. The default setting is 512 connections.

Maximum OPC Groups: Set the maximum number of simultaneous OPC groups supported through the
interface(s) at a time. Any client that requests a group past this limit receives an error value and both a dia-
gnostic message and event log message are posted. The valid range is 10 to 4000 groups. The default set-
ting is 2000 groups.

For more information on the OPC Data Access 1.0, 2.0, and 3.0 Custom Specifications, refer to the OPC Found-
ation website www.opcfoundation.org.

Compliance

Reject Unsupported Language IDs: Select Yes to only allow Language IDs that are natively supported by
the server. If the OPC client application attempts to add an OPC group to the server and receives a general
failure, it is possible the client has given the server a Language ID that is not natively supported. If this
occurs, the server rejects the group addition. To resolve this particular issue, disable the compliant feature
to force the server to accept any Language ID.

Ignore Deadband for Cache Reads: Select Yes for the server to ignore the deadband setting on OPC
groups added to the server. For some OPC clients, passing the correct value for deadband causes problems
that may result in the OPC client (such as, having good data even though it does not appear to be updating
frequently or at all). This condition is rare. As such, the selection should normally be left in its default dis-
abled state.

Ignore Browse Filter: Select Yes for the server to return all tags to an OPC client application when a browse
request is made, regardless of the access filter applied to the OPC clients tag browser.

Data Type Support for 2.05a: Select Yes for the server to adhere to the data type requirements and expec-
ted behaviors for data type coercion that were added to the 2.05a specification.

Fail on Bad Quality: Select Yes for the server to return a failure if one or more items for a synchronous
device read results in a bad quality read. Compliance requires the server to return success, indicating that
the server could complete the request even though the data for one or more items may include a bad
and/or uncertain quality.

Group Initial Updates: Select Yes for the server to return all outstanding initial item updates in a single call-
back. When disabled, the server returns initial updates as they are available (which can result in multiple call-
backs).
 Enabling this may result in loss of buffered data when using drivers that support data buffering (Event

Playback) for unsolicited device protocols. The compliance setting should be disabled if loss of buffered data
is a concern.

www. ptc.com

39

http://www.opcfoundation.org/

KEPServerEX

Respect Client Locale: Select Yes for the server to use the Locale ID of the running Windows Operating Sys-
tem or the Locale ID set by the OPC client when performing data type conversions. For example, a string rep-
resenting a floating-point number such as 1,200 would be converted to One Thousand - Two Hundred if
converted using English metrics, but would be One and Two-Tenths if converted using German metrics. If
German software is running on an English OS, users need to determine how the comma is handled. This set-
ting allows for such flexibility. By default, and due to historical implementation, the server respects the
Locale ID of the operating system.

Bad Quality Item as S_FALSE: Select Yes for the server to return S_FALSE in the item error array for items
without good quality. This setting defaults to Yes for existing projects that are set to full compliance and No
for those that are not. When set to No, the legacy behavior of returning E_FAIL (0x80004005) occurs.

Return Data ASAP: Select Yes to enable all groups to update the client. When enabled, an active item that
experiences a change in value or quality triggers a client update. The group update rate specified by the cli-
ent is used to set the client requested scan rate for the items added to that group. The default setting is dis-
abled.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — OPC UA
OPC Unified Architecture (UA) provides a platform independent interoperability standard. It is not a replace-
ment for OPC Data Access (DA) technologies: for most industrial applications, UA complements or enhances
an existing DA architecture. The OPC UA Project Properties group displays the current OPC UA settings in
the server.

Note: To change a setting, click in the specific property's second column. This invokes a drop-down menu
that displays the options available.

Server Interface

Enable: When enabled, the UA server interface is initialized and accepts client connections. When disabled,
the remaining properties on this page are disabled.

www. ptc.com

40

KEPServerEX

Log diagnostics: When enabled, OPC UA stack diagnostics are logged to the OPC Diagnostics Viewer. This
should only be enabled for troubleshooting purposes.

Client Sessions

Allow anonymous login: This property specifies whether or not a user name and password are required to
establish a connection. For security, the default setting is No to disallow anonymous access and require cre-
dentials to log in.
Note: If this setting is disabled, users cannot login as the default user in the User Manager. Users can

login as the Administrator provided that a password is set in the User Manager and is used to login.
Tip: Additional users may be configured to access data without all the permissions associated with the

administrator account. When the client supplies a password on connect, the server decrypts the password
using the encryption algorithm defined by the security policy of the endpoint, then uses it to login.
When the client supplies a password on connect, the server decrypts the password using the encryption

algorithm defined by the security policy of the endpoint.

Max. connections: specify the maximum number of supported connections. The valid range is 1 to 256.
The default setting is 128.
Tip: The maximum connections to UA servers is 256.

Minimum session timeout: specify the UA client's minimum timeout limit for establishing a session. Val-
ues may be changed depending on the needs of the application. The default value is 15 seconds.

Maximum session timeout: specify the UA client's maximum timeout limit for establishing a session. Val-
ues may be changed depending on the needs of the application. The default value is 60 seconds.

Tag cache timeout: specify the tag cache timeout. The valid range is 0 to 60 seconds. The default setting is
5 seconds.

Note: This timeout controls how long a tag is cached after a UA client is done using it. In cases where UA
clients read / write to unregistered tags at a set interval, users can improve performance by increasing the
timeout. For example, if a client is reading an unregistered tag every 5 seconds, the tag cache timeout
should be set to 6 seconds. Since the tag does not have to be recreated during each client request, per-
formance improves.

Browsing

Return tag properties: Enable to allow UA client applications to browse the tag properties available for
each tag in the address space. This setting is disabled by default.

Return address hints: Enable to allows UA client applications to browse the address formatting hints avail-
able for each item. Although the hints are not valid UA tags, certain UA client applications may try to add
them to the tag database. When this occurs, the client receives an error from the server. This may cause the
client to report errors or stop adding the tags automatically. To prevent this from occurring, make sure that
this property is disabled. This setting is disabled by default.

Monitored Items

Max. Data Queue Size: specify the maximum number of data notifications to be queued for an item. The
valid range is 1 to 100. The default setting is 2.
Note: The data queue is used when the monitored item's update rate is faster than the subscription's

www. ptc.com

41

KEPServerEX

publish rate. For example, if the monitored item update rate is 1 second, and a subscription publishes every
10 seconds, then 10 data notifications are published for the item every 10 seconds. Because queuing data
consumes memory, this value should be limited when memory is a concern.

Subscriptions

Max. retransmit queue size: specify the maximum number of publishes to be queued per subscription.
The valid range is 1 to 100. A value of zero disables retransmits. The default setting is 10.
Note: Subscription publish events are queued and retransmitted at the client's request. Because queuing

consumes memory, this value should be limited when memory is a concern.

Max. notifications per publish: specify the maximum number of notifications per publish. The valid range
is 1 to 65536. The default setting is 65536.
Note: This value may affect the connection's performance by limiting the size of the packets sent from

the server to the client. In general, large values should be used for high-bandwidth connections and small
values should be used for low-bandwidth connections.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — DDE
While the server is first and foremost an OPC server, some applications require Dynamic Data Exchange
(DDE) to share data. The server provides access to DDE applications that support one of the following DDE
formats: CF_Text, XL_Table, and Advanced DDE. CF_Text and XL_Table are standard DDE formats
developed by Microsoft for use with all DDE aware applications. Advanced DDE is a high-performance
format supported by a number of client applications specific to the industrial market.

For the DDE interface to connect with the server, the Runtime must be allowed to interact with the desktop. For
more information, refer to How To... Allow Desktop Interactions.

To access the DDE server settings through the Configuration, click Edit | Project Properties and locate the
DDE properties. Its properties can be used to tailor the DDE operation to fit the application's needs.

General

Enable DDE connections to the server: This property determines whether the DDE server portion of the
server is enabled or disabled. If DDE operation is disabled, the server does not respond to any request for
DDE data. If intending to use the server only as an OPC server, users may want to disable DDE operation.
Doing so can increase the data security and improve overall server performance. DDE is disabled by default.
See Also: How To... Use DDE with the Server

www. ptc.com

42

KEPServerEX

Service name: This property allows users to change how the server appears as an application name to DDE
clients. This name is initially set to allow compatibility with the previous versions of the server. If users need
to replace an existing DDE server however, the server's service name can be changed to match the DDE
server being replaced. The service name allows a string of 1 to 32 characters to be entered.

Formats
This property allows users to configure the DDE format to provide to client applications. Choose to enable
or disable Advanced DDE, XL Table, and CF_Text. All three formats are enabled by default. This is par-
ticularly useful when users experience problems connecting a DDE client application to the server: each of
the DDE formats can be disabled to isolate a specific format for testing purposes.
Note: Every DDE-aware application must support CF_Text at a minimum.

Timing

Client update interval: This interval setting is used to batch up DDE data so that it can be transferred to cli-
ent applications. When using a DDE format, performance gains only come when large blocks of server data
can be sent in a single DDE response. To improve the ability of the server to gather a large block of data, the
update timer can be set to allow a pool of new data to accumulate before a being sent to a client applic-
ation. The valid range of the update timer is 20 to 60000 milliseconds. The default setting is 100 mil-
liseconds.

DDE request timeout: This property is used to configure a timeout for the completion of DDE request. If a
DDE client request (either a read or write operation) on the server cannot be completed within the specified
timeout, an error is returned to the DDE client. The valid range is 1 to 30 seconds. The default setting is 15
seconds.
Note: The server Runtime may need to be reinitialized for changes to take effect.

Project Properties — OPC .NET
To access the OPC .NET server settings through the Configuration, click Edit | Project Properties and select
the OPC .NET tab.

Enabled: When enabled, the OPC .NET Wrapper is initialized and accept client connections.

Tips:

1. The OPC .NET Wrapper runs as a System Service called "xi_server_runtime.exe". It is only started
when the server starts and the option described above is enabled. Unlike OPC DA, clients cannot
launch the server.

2. To use and install OPC .NET, Microsoft .NET 3.5 must be present on the machine prior to server
installation.

The Defaults button restores the settings to the default / pre-set values.

www. ptc.com

43

KEPServerEX

Project Properties — OPC AE
Events are used to signal an occurrence in the server and are similar to data updates in OPC Data Access.
The OPC AE functionality allows users to receive Simple Events from the server, including system startup
and shutdown messages, warnings, errors, and so forth. These events are displayed in the Event Log.

The OPC AE group is used to specify a number of project-level AE settings. Changes made to these settings
take effect after all A&E clients disconnect from the server.

The Alarms & Events plug-in allows Alarms & Events (A&E) clients to receive A&E data from the OPC server. It
is used to convert OPC server events into A&E format and to create custom alarms using OPC server tags.

For more information, contact the OPC vendor.

General

Enable AE Connections to the Server: This property turns the OPC AE server on and off.

Enable Simple Events: When enabled, simple events are made available to clients. When disabled, the
events are sent. The default setting is enabled.

Subscriptions

Max. Subscription Buffer Size: Specify the maximum number of events sent to a client in one send call.
The range is 0 to 1000. The default setting is 100. 0 means there is no limit.

Min. Subscription Buffer Time: Specify the minimum time between send calls to a client. The supported
range is 100 to 60000 milliseconds. The default setting is 1000 milliseconds.

Min. Keep-Alive Time: Specify the minimum amount of time between keep-alive messages sent from the
server to the client. The supported range is 100 to 60000 milliseconds. The default setting is 1000 mil-
liseconds.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — FastDDE / SuiteLink
The server's support of Wonderware Corporation's FastDDE and SuiteLink simplifies the task of connecting
the server with FactorySuite applications. The Wonderware connectivity toolkit is used to simultaneously
provide OPC and FastDDE / SuiteLink connectivity, while allowing quick access to device data without the
use of intermediary bridging software.

www. ptc.com

44

KEPServerEX

For the FastDDE interface to connect with the server, the Runtime must be allowed to interact with the desktop.
For more information, refer to How To... Allow Desktop Interactions.

Note: For proper FastDDE / SuiteLink operation (and for this tab to be available in Project Properties), the
Wonderware FS2000 Common Components or the InTouch Runtime Component version 8.0 or higher must
be installed on the PC.

Enable FastDDE / SuiteLink connections to the server: This property enables or disables support of the
client / server protocols. When a Wonderware product is installed on the PC, this setting is available to
enable. If the FastDDE / SuiteLink operation is disabled, the server does not respond to any request for
FastDDE or SuiteLink data.
Tip: For better performance and security, it is recommended that this setting be disabled if the server is

only used for OPC connectivity.

Application Name: icon to open the application's name. The default setting is server_runtime.
Note: This name may be customized to suit specific end-user needs. For example, users that select

"Remove and Redirect" during the installation must change this setting to "servermain" for certain Fact-
orySuite applications to work without modification.

Client Update Interval (ms): icon to open how often new data is sent to FastDDE / SuiteLink client applic-
ations. The range is 20 to 32000 milliseconds. The default setting is 100 milliseconds. The timer allows
FastDDE / SuiteLink data to be batched up for transfer to client applications. When using a client-server pro-
tocol like FastDDE or SuiteLink, performance gains only come when large blocks of server data can be sent
in a single response. To improve the ability of the server to gather a large block of data, the update timer
can be set to allow a pool of new data to accumulate before being sent to a client application.
Notes:

1. The update rate applies to how often data is sent to the client application, not how often data is read
from the device. The scan rate can be used to adjust how fast or slow the server acquires data from
an attached device. For more information, refer to Tag Properties — General.

2. The server Runtime may have to be reinitialized for changes to take effect.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — iFIX PDB Settings
The iFIX PDB Settings dialog contains properties that allow users to adjust the behavior between the pro-
cessing of the iFIX process database (PDB) tags and the server tags. To access, click Edit | Project Prop-
erties.

Note: The iFIX PDB Settings are only displayed in Project Properties if iFIX is installed on the computer.

www. ptc.com

45

KEPServerEX

 In some cases, the Process Mode must be set to System Service for the iFIX PDB interface to work with the
Runtime. For more information, refer to Process Modes.

Note: It is recommended that users keep the default values for each field. Users should also ensure that
the settings meet the application's requirements.

General

Enable connectivity to iFIX PDB: Enable or disable support of the client/server protocols. If the iFIX PDB
operation is disabled, the server does not respond to any request for iFIX PDB data. For better performance
and security when the server is only being used for OPC connectivity, disable this property.

Enable latched data: Normally, the iFIX application's data links display a series of question marks (such as
"????") if a communication failure has occurred. Users may want to have a value displayed at all times, how-
ever. By enabling latched data, the last value successfully read is preserved on the screen. The default set-
ting is enabled.
Note: Data latching is not supported for AR and DR blocks.

Enable update per poll: When enabled, the server delivers the current value, quality, and timestamp to iFIX
every time that the driver polls the device. When disabled, the server only delivers an update to iFIX when it
determines the value or the quality has changed. The default setting is disabled.
Note: This setting is dynamic, meaning that the server immediately begins to deliver updates to the iFIX

client at the device scan rate after the option is applied.

Use iFIX startup configuration file: Enable to create this file through iFIX to contains all items accessed by
the iFIX client. It automatically starts scanning items before iFIX requests item data. The default setting is
enabled.
See Also: Project Startup for iFIX Applications

Use unconfirmed updates Controls how the server updates local cache for iFIX following writes via the NIO
interface. With the default setting (disabled), the server does not update local cache until the value has been
confirmed via a read. For the majority of applications, the default setting provides the best user experience
from the standpoint of data integrity. For applications leveraging iFIX Easy Database Access (EDA), users
may wish to enable unconfirmed updates to update the local cache for iFIX immediately with the attempted
write value.
Note: From a data integrity perspective, use of unconfirmed updates can result in a false indication of

write success and inaccurate data displayed in iFIX. Another consequence of using unconfirmed updates is
that the data displayed in iFIX can “flicker” due to the temporary unconfirmed update (write value attemp-
ted) followed by a confirmed update (actual value read for the item).

www. ptc.com

46

KEPServerEX

Timing

PDB-to server request timeout(s): Specify the amount of time that the iFIX PDB waits for a response from
an add, remove, read, or write request before timing out. Once timed out, the request is discarded on
behalf of the server. A timeout can occur if the server is busy processing other requests or if the server has
lost communications with iFIX PDB. In the case of lost communications, the iFIX PDB automatically re-estab-
lishes communications with the server so that successive timeouts do not occur. The valid range is 5 to 60
seconds. The default setting is 5 seconds.

Deactivate tags on PDB read inactivity: Direct the server to automatically deactivate tags that have not
been read by iFIX for the time period specified. This reduces unnecessary polling of the process hardware.
When enabled, the server reads its list of tags every 15 seconds and deactivates any that are idle. If iFIX has
not performed a read request of a tag for the time period specified, the tag is considered idle. Since the
server checks for idle tags on a 15 second cycle, a tag may not get set inactive at precisely this time from its
last read; it could be up to 15 seconds longer depending on when the last read occurred in the check cycle.
If iFIX requests data from a tag that has been previously deactivated, the server reactivates the tag and
resumes polling the hardware. The default setting is disabled. Once this feature is enabled, however, it
becomes applied to all projects. Users may specify an idle time in a range from 15 to 607999 (15 seconds to
1 week).

 This feature is meant to be used with Register tags only and can cause non-register tags to go off scan. To
avoid this situation when using this feature, set the inactivity timer greater than the longest scan time con-
figured in the iFIX database.

Inactivity timeout(s): Specify the amount of time that the iFIX PDB waits for activity before timing out. In
the case of lost communications, the iFIX PDB automatically re-establishes communications with the server
so that successive timeouts do not occur. The valid range is 5 to 60 seconds. The default setting is 5
seconds.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — OPC HDA
To access the OPC HDA server settings through the Configuration, click Edit | Project Properties and
expand the OPC HDA group.

Enable HDA connections to the server: When enabled, HDA clients can connect to the HDA server that is
exposed by this server. When disabled, client HDA connections are disabled. These settings may be applied
without restarting the Runtime; however, although the server does not drop connected clients, it does not
accept new client connections either. The default setting is enabled.

www. ptc.com

47

KEPServerEX

Enable Diagnostics: When enabled, this option allows OPC HDA data to be captured and logged to the
Event Log service for storage. The default setting is disabled.

Note: Enabling diagnostics has negative effect on the server runtime performance. For more inform-
ation on event logging, refer to OPC Diagnostics Viewer.

The Defaults button restores the settings to the default / pre-set values.

Project Properties — ThingWorx
Support for the ThingWorx Native Interface simplifies the task of connecting with a ThingWorx Platform,
while simultaneously allowing OPC and other connectivity as needed.

Once the connection to the ThingWorx Platform is made, a new Industrial Gateway Thing with the Thing
Name configured in Kepware is presented in the list of Industrial Connections in the ThingWorx Composer
environment. Save this Industrial Gateway Thing to begin working with the connected server instance.

Tip: If desired, create the Industrial Gateway Thing within the Composer environment before connecting
the server.

Refer to the Industrial Connections area of the ThingWorx Composer Help documentation for more information.

Cautions:

l Any tags with an array data type must be configured with the Always push type in the ThingWorx Plat-
form. A push threshold set to value change will fail to publish updates to the platform.

l While most of the native interfaces function in a client server configuration, the ThingWorx Native
Interface acts more like a client, as it creates an outbound connection to the ThingWorx Platform.
This allows the ThingWorx Native Interface to connect to a remote ThingWorx Platform using stand-
ard ports and protocols without the need to create unusual firewall or routing rules. As long as the
ThingWorx Composer is reachable in a browser from the machine hosting the OPC server, then the
server should be able to pass data to that platform through the Native interface.

l As noted in ThingWorx documentation, configuration of a ThingWorx Application Key is crucial to
providing a secured environment. The Application Key should provide the appropriate privileges to
allow the proper exchange of data between the server instance and the ThingWorx Platform.

www. ptc.com

48

KEPServerEX

Server Interface

Enable: Set to Yes for the ThingWorx Native interface to attempt connection with the information provided.

Connection Settings

Host: Specify the IP address or DNS name of the ThingWorx server.

Port: Specify the number of the TCP port used by the ThingWorx server.

Resource: Specify the URL endpoint on the ThingWorx server.

Application key: Enter or paste in the authentication string for connecting to the ThingWorx server.
Caution: Do NOT set this property using the Configuration API Service over HTTP in production mode;

use HTTPS for best security.

Trust self-signed certificates: Set to No for maximum security. Set to Yes to accept self-signed certificates
during development.
Caution: Do NOT set this to Yes in a production environment as it would compromise security.

Trust all certificates: Set to No for maximum security. Set to Yes and the TLS library does not validate the
server certificate.

www. ptc.com

49

KEPServerEX

Caution: Do NOT set this to Yes in a production environment as it would compromise security.

Disable encryption: Indicate if connections to a non-SSL-secured ThingWorx Platform are allowed.
Caution: Do NOT set this to Yes in a production environment as it would compromise security.

Max Thing Count: Configure the maximum number of things that can be connected to this industrial gate-
way.
Caution: Increasing this value without scale testing may lead to decreased performance.

Platform

Thing name: Enter the name of the entity (remote thing) on the ThingWorx server that represents this data
source. Use the OPC server template to create the remote thing.
Note: The Thing Name must match the name of the Industrial Gateway thing exactly (case sensitive).

Data Rates

Publish floor: Specify the minimum rate at which updates are sent to the platform. Zero sends updates as
often as possible.

Logging

Enable: Set to Yes to activate advanced logging of the ThingWorx native interface. The locations of the logs
(named twxdiags.log by default) is specified in the Event Log properties in the server administration settings.
The logs can either be saved to a single text file (Single File) or a series of text files (Extended Data Store).
These logs are written in plain text.
Note: This logging may cause the file or directory to fill up quickly; it is recommended that logging only be

enabled when troubleshooting and a large file size be specified.

Level: Set the severity of logging to be sent to the event log. Trace includes all messages from the native
ThingWorx interface.

Verbose: Set to Yes to make the error messages as detailed as possible.

See Also: Event Log, Event Log Options

Store and Forward
The ThingWorx Native Interface supports a Store and Forward datastore to persist property updates when
the industrial server loses connectivity to the ThingWorx Platform. When enabled, Store and Forward per-
sists all incoming property updates to disk until the ThingWorx Native Interface receives confirmation from
the platform that the update has been received. If connection to the platform is lost, all updates are stored
and maintained on disk until either the disk where updates are being stored comes within 500 MB of being
full or the size of stored updates exceeds the maximum size specified - whichever comes first. Once the
datastore or disk is full, incoming updates are dropped until enough space is available to store the incoming
data.

www. ptc.com

50

KEPServerEX

See Also: Fill Rate Example

Store and Forward Properties

Enable: Select Yes to save data to a local disk directory to avoid data loss during connection interruption or
heavy data transfers. Enabling this setting allows data to be queued, then pushed forward once a con-
nection is established and data receipt has been confirmed.

Storage Location: Enter or browse to the fully qualified path to the directory where data should be cached.
Note: The ThingWorx Native Interface queues updates in memory when the Store and Forward datastore

cannot be initialized. The server automatically retries until a datastore can be initialized. Refer to the event log
for specific failure information.

Max. Datastore Size: Select the maximum number of megabytes or gigabytes the data is allowed to reach
before purging. The available datastore sizes range from 128 MB to 16 GB.

Forward Mode: Select a method to determine which updates are sent to ThingWorx when the connection is
restored. In situations that require active monitoring of production data without any data loss when dis-
connected from the platform, it is possible to store and forward upon reconnect or to schedule forwarding
the stored updates for a time when production is not being actively monitored (for example, during pro-
duction downtime). Options include Active and On Hold:

l Active Mode - When the Forward Mode is set to Active, stored property updates are sent in the
order they were received until the ThingWorx Platform has received all updates. Updates are then
sent to the platform in real time. Property updates can be delayed due to the first In, first out nature
of property update forwarding when many updates are collected during a ThingWorx Platform dis-
connect.

l On Hold Mode - When the Forward Mode is set to On Hold, only the latest updates are sent to the
platform after recovering from a disconnect. This ensures that ThingWorx applications that are act-
ively monitoring production and get the freshest data available. When production is not being act-
ively monitored, the mode can be set to Active to start forwarding the older updates that were
stored while the server was disconnected from the platform. The industrial server buffers up to
25,000 property updates in memory before storing them to disk. Once the 25,000 update limit is
reached, the property updates are pushed to disk and held until the Forward Mode is set to Active.
This allows the industrial server to prioritize the most recent 25,000 updates when the connection to
the ThingWorx Platform is restored, hold on to updates so they they’re not lost, and forward them

www. ptc.com

51

KEPServerEX

later. New updates are dropped when the datastore size limit is reached, or the disk is filled past the
500 MB limit, whichever occurs first. The in-memory buffer is only typically filled when the con-
nection to the ThingWorx Platform is lost; however, this can also occur when property updates are
collected at a rate faster than can be forwarded to the platform.

Delay between publishes (ms): Specify the minimum amount of time between publishes being sent to
ThingWorx. Specifying a zero value can keep ThingWorx from being overwhelmed with tag updates.

Max. Updates Per Publish: Specify the number of tag updates to be sent in a single publish. Specifying a
smaller value can keep ThingWorx from being overwhelmed with tag updates.

Store and Forward Considerations

l The Delay Between Publishes and Max Update Per Publish properties are used anytime Store and
Forward is enabled; not just when a connection is reestablished. Careful consideration should be
used when making changes to these values.

l Store and Forward is disabled by default and must be enabled in industrial server’s Project Prop-
erties or through the Configuration API.

l It is not necessary to configure Store and Forward from the ThingWorx Platform. However, to store
the forwarded updates to the ThingWorx Platform, it is necessary to configure a Value Stream and
enable logging for any properties for which a history is desired.

l When the datastore path configuration (defined in Storage Location setting) is modified, the existing
datastore remains on disk. If the datastore path configuration is restored, updates associated with
the current project are forwarded to the platform.

l Changes to Store and Forward properties do not require the platform connection to be reinitialized.
The ThingWorx Native Interface continues collecting updates while applying the changes.

The Store and Forward path is validated both at configuration and runtime, and must comply with the fol-
lowing:

l Must be between 3 and 256 characters
l Must not contain any characters or symbols forbidden by the system
l Must be an absolute path (beginning with a drive letter)
l Must not refer to a network resource (mapped drive* or UNC share)
l Must not refer to removable media such as a USB drive*

* refers to items which are only validated at runtime

Store and Forward Status and Monitoring can be accessed in the following ways:

l The industrial server’s Store and Forward Tags
l The industrial server’s Event Log

Store and Forward Operational Considerations

l The reliability requirements of Store and Forward introduce a small decrease in performance when
enabled as all updates are routed through a disk buffer before being sent to the ThingWorx Platform
and the ThingWorx Native Interface waits to receive confirmation that the platform has received the
most recent set of updates before sending the next set.

l Stored updates persist across server restarts.
l Make sure all stored updates are forwarded before a software upgrade because updates cannot be

preserved across major / minor server upgrades.

www. ptc.com

52

KEPServerEX

Proxy Properties
The server leverages the ThingWorx CSDK to allow communicating with the ThingWorx Platform through a
proxy server. The following authentication options are supported:

l No authentication
l Basic authentication
l Digest authentication
l NTLM

Enable: Set to Yes to connect to the ThingWorx Platform through a proxy server.

Host: The IP address or DNS name of the proxy server to connect.

Port: The number of the TCP port used to connect to the proxy server.

Username: The user account name to connect to the proxy server and authenticate.

Password: The password authentication string for connecting to the ThingWorx server as the user spe-
cified.
Caution: Do NOT set this property using the Configuration API Service over HTTP in production mode;

use only HTTPS for best security.

The Defaults button restores the settings to the default / pre-set values.

Store and Forward — Fill Rate Example
TheMax Datastore Size and data type of the updates being stored need to be considered to determine
maximum update count and fill rate. The table below describes update count limits and fill rates for several
data types scenarios assuming a maximum datastore size of 128 MB and 1 update / second.

Data Type Maximum Update Count Fill Rate (bytes / second)

Word / Short 5817792 22

DWord / Long / Float 5333076 24

Double 4571321 28

String (length = 10) 3764743 34

Using the following equation and information from the table above the fill rate for a given project can be
determined by summing the fill rates that correspond to the tag data types of the project:

Overall Fill Rate =
ScanRate(seconds) *
PropertyCount(Bool) * FillRate (Bool)+

www. ptc.com

53

KEPServerEX

PropertyCount(Word) * FillRate (Word) +
PropertyCount(Word) * FillRate (Short) +
PropertyCount(DWord) * FillRate (DWord) +
PropertyCount(Word) * FillRate (Long) +
PropertyCount(Word) * FillRate (Float) +
PropertyCount(Double)* FillRate (Double)+
PropertyCount(String) * FillRate (String)

The table below describes the fill rate and offline time before data loss for a sample project consisting of
500 Word properties, 500 DWord properties, 10 String properties, and 100 Double properties for several
scan rates assuming a maximum datastore size of 128 MB.

Per-Property Scan Rate (milliseconds)
Fill Rate (bytes /
second)

Offline Time
(minutes)

10000 2614 816

1000 26140 81

250 104560 20

Store and Forward — System Tags
System tags provide datastore status information and allow server clients to manage the updates. These sys-
tem tags are only available to server clients when Store and Forward is enabled. The tags are located under
the _ThingWorx group folder at the same level as the _System folder in the client browsing tree.

Tag Class Datatype Description

_StoreAndForwardEnabled

Read / Write Boolean

This tag allows Store and Forward to be
turned On or Off. When this tag is set
False, Store and Forward is disabled.
When Store and Forward is disabled all
Datastore related system tags report a
default value equivalent to 0.

Note:

l The configuration is not always
indicative of the enable / disable
state of Store and Forward. Use the
_StoreAndForwardEnabledStatus
system tag to get the configuration
in use. For example, when an error
occurs that prevents Store and For-
ward, the _StoreAndFor-
wardEnabledStatus returns 0.

_StoreAndFor-
wardEnabledStatus

Read / Write Boolean
This tag indicates whether or not the inter-
face is using Store and Forward.

_DatastoreDiskFull

Read Only Boolean

This tag indicates whether the disk in use
by the datastore has been filled past the
500 MB threshold required for updates to
be stored.

_DatastoreFull Read Only Boolean This tag indicates whether the datastore

www. ptc.com

54

KEPServerEX

Tag Class Datatype Description

has reached the configuredMax Data-
store Size that can be used to store
updates.

_StoredUpdateCount

Read Only DWord

This tag indicates the number of updates
in the datastore.

Notes:

l A non-zero value does not indicate
that the ThingWorx connection has
been lost because updates are
always routed through the data-
store when Store and Forward is
enabled.

l During steady-state operation this
number is expected to fluctuate;
however, the stored update count
should not increase over time. This
behavior indicates that more data
is being collected than can be
delivered to the ThingWorx Plat-
form.

_DeleteStoredData

Read / Write Boolean

This tag can be used to delete the con-
tents of a datastore. Writing any value to
this tag deletes all stored updates in the
Store and Forward datastore.

_DatastoreCurrentSizeMB
Read Only Double

This tag reports the amount of space (in
MiB) used by all updates currently on disk

_DatastoreRemainingSpaceMB

Read Only Double

This tag reports the amount of space (in
MiB) remaining in the datastore available
to store updates. This is based on the Max
Datastore Size property, and not available
disk space. For disk space remaining, see the
_DatastoreUsableDiskSpace tag.

_DatastoreUseableDiskSpaceMB

Read Only Double

This tag reports the amount of space (in
MiB) available to store updates on the disk
where the datastore is located. Store and
Forward uses a safety buffer of 500MiB so
as to not fill the entire disk. This system
tag takes this safety buffer into account
for its calculation. This tag does not reflect
the amount of space remaining in the data-
store as specified by the user. See _Data-
storeSizeRemaining for that information.

_DatastoreAttachError

Read Only Boolean

This tag indicates an error has occurred
that prevents use of Store and Forward.
When the tag value is True an error has
occurred. Refer to the server event log for
information regarding this error. See Poss-

www. ptc.com

55

KEPServerEX

Tag Class Datatype Description

ible Cause/Solutions to resolve the error that
prevents the Store and Forward datastore
from being used.

_DroppedUpdates

Read Only Long

This tag reports the total number of
dropped updates since the ThingWorx
interface started. When the value reaches
2,147,483,647 that value will rollover to 0.
The value resets to 0 when the ThingWorx
connection is reinitialized.

_ForwardMode

Read/Write DWord

This tag reports the current Forward Mode
configuration of the ThingWorx Native
Interface. The tag supports writes to
change the configured mode. Valid values
include 0 for Active and 1 for On Hold. All
other write values are ignored.

Note:

l The configuration is not always
indicative of the Forward Mode in
use. Use the __ForwardModeStatus
system tag to get the mode in use.
For example, when an error occurs
that prevents Store and Forward,
the __ForwardModeStutus returns
a blank.

_ForwardModeStatus

Read Only String

This tag reports the current Forward Mode
in use by the native interface. Possible val-
ues include Active and On Hold. The sys-
tem tag returns a blank string when Store
and Forward is not in use.

See Also: ThingWorx Interface Users for controlling access to the ThingWorx Platform and related data trans-
fer.

www. ptc.com

56

KEPServerEX

Accessing the Administration Menu
The Administration Menu is used to view and/or modify user management settings and launch server applic-
ations. To access the Administration Menu, right-click on the Administration icon located in the System Tray.

Configuration: This option launches the OPC server's configuration.

Start Runtime Service: This option starts the server Runtime process and loads the default Runtime pro-
ject.

Stop Runtime Service: This option disconnects all clients and saves the default Runtime project before
stopping the server Runtime process.

Reinitialize: This option disconnects all clients and resets the Runtime server. It automatically saves and
reloads the default Runtime project without stopping the server Runtime process.

Reset Event Log: This option resets the Event Log. The date, time, and source of the reset are added to the
Event Log in the configuration window.

Settings...: This option launches the Settings group. For more information, refer to Settings.

OPC UA Configuration: This option launches the OPC UA Configuration Manager, if available.

OPC .NET Configuration: This option launches the OPC .NET Configuration Manager.

Quick Client: This option launches the Quick Client.

License Utility: This option launches the server's license utility.

Help: This option launches the server's help documentation.

Support Information: This option launches a dialog that contains basic summary information on both the
server and the drivers currently installed for its use.

www. ptc.com

57

KEPServerEX

For more information, refer to Server Summary Information.

Exit: This option closes the Administration and removes it from the System Tray. To view it again, select it
from the Windows Start menu.

Settings
To access the Settings groups, right-click on the Administration icon located in the System Tray. Select Set-
tings.
For more information, select a link from the list below.

Settings — Administration
Settings — Configuration
Settings — Runtime Process
Settings — Runtime Options
Settings — Event Log
Settings — ProgID Redirect
Settings — User Manager
Settings — Configuration API Service
Settings — Certificate Store
Settings — Service Ports
Security Policies— A plug-in is available for user permissions and access control. Consult the product help
system.
Local Historian— A plug-in is available for data storage and access. Consult the product help system.
IoT Gateway— A plug-in is available for Industrial Internet of Things integration. Consult the product help
system.

Settings — Administration
The Administration group is used to configure the Runtime Administration's actions.

Automatically start Administration: When enabled, this property enables the Administration to start
automatically. The Administration is a System Tray application that allows quick links to various server tools
including the Settings Console, Configuration, User Manager Console, and controls for stopping and starting
the Runtime service.

Product Language Selection: Select the preferred user interface language from the drop-down menu.

www. ptc.com

58

KEPServerEX

Tip: The language settings defaults to the language of the install, which defaults to the language setting in
the operating system, if possible.

Settings — Configuration
The Configuration group is used to configure how the Configuration both connects to and interacts with the
Runtime.

Connection

Communicate using port: This property is the TCP/IP port to be used to communicate between the Con-
figuration and the Runtime. To obtain the default setting, click Default.

Session Management

Max Concurrent Configuration Connections: Specify the number of Configuration connections that can
be made to the Runtime at one time. The range is 1 to 64. The default is 10.

Idle Session Timeout: Set the length of time the console connection can be inactive before it is shut down.
The range is 10 to 3600 seconds. The default is 60 seconds.

Settings — Runtime Process
The Runtime Process group is used to specify the server Runtime's process mode, as well as how it utilizes
the PC's resources.

www. ptc.com

59

KEPServerEX

Selected Mode: This property is used to specify whether the server is running as System Service or Inter-
active. By default, the server installs and runs as System Service. Changing this setting causes all clients,
both Configuration and process, to be disconnected and the server to be stopped and restarted. It also
restores user-configured DCOM settings to default.

High Priority: This property is used set the server process priority to high. The default setting is normal.
When enabled, this setting allows the server to have priority access to resources.

Note: Microsoft recommends against setting applications to a high priority as it can adversely affect
other applications running on the same system.

Processor Affinity: This property is used to specify on which CPUs the server can be executed when it is
run on PCs containing more than one.

Settings — Runtime Options
The Runtime Options group is used to change settings in the project being executed in the Runtime.

www. ptc.com

60

KEPServerEX

Project Backups

Backup the Runtime project prior to replacement: This property enables the Runtime project to be
backed up before it is overwritten. The backup location is displayed in the Event Log. This option is enabled
by default.

Note: The Runtime project is overwritten if either New or Open is selected while connected to the
Runtime. In addition, connecting to the Runtime while working offline with a project may result in Runtime
project replacement.

Keep the most recent: This property limits the number of backup files to be saved to disk. The range is 1
to 1000. The default is 10.

Clean up now...: This property invokes a confirmation dialog that allows users to delete all the Runtime pro-
ject backups. Doing so does not affect the current running project.

Tip: It is a best practice to save a copy of the project file on a regular basis for disaster recovery purposes.
The default directories for these backups are:

C:\ProgramData\Kepware\KEPServerEX\V6

Tip: If the file has been saved to an alternate location, search for *.opf, *.sopf, or *.json to locate available
project files.

OPC Connection Security

Use DCOM configuration settings: Enable to use authentication and security from the DCOM Con-
figuration.

Configure... Click to launch the DCOM Configuration Utility to specify the level of security and restrict access
for certain users and/or applications.

 When this setting is disabled, the server overrides the DCOM settings set for the application and does not
perform any authentication on the calls received from client applications. It impersonates the security of the
client when performing any actions on behalf of the client application. Disabling this setting provides the
lowest level of security and is not recommended. If this setting is chosen, ensure that the client and server
applications are running in a secure environment so that the application is not compromised.

www. ptc.com

61

KEPServerEX

Settings — Event Log
The Event Log group is used to define the communication and persistence settings for:
• Event Log
• Communications Diagnostics Log
• OPC Diagnostics Log
• ThingWorx Diagnostics Log

 The settings for each individual log type are independent of the settings for the other log types.

Connection

Port: Specify the TCP/IP port to be used to communicate between the Log and the Runtime. The valid range
is 49152 to 65535. To restore the default port setting, enter a blank value.

Event Log Settings

Persistence Mode: icon to open the log's persistence mode. Options include Memory, Single File, and Exten-
ded Datastore. The default setting for the Event Log Setting is Single File. The default setting for both
OPC Diagnostics Log Settings and Communications Diagnostics Log Settings is Memory (no persistence).
The default setting for ThingWorx Diagnostics Log settings is Single File. Descriptions of the options are as
follows:

l Memory (no persistence): When selected, this mode records all events in memory and does not
generate a disk log. A specified number of records are retained before the oldest records start
being deleted. The contents are removed each time the server is started.

l Single File: When selected, this mode generates a single disk-based log file. A specified number of
records are retained before the oldest records start being deleted. The contents are restored from
this file on disk when the server is started.

l Extended Data Store: When selected, this mode persists a potentially large number of records to
disk in a data store distributed across many files. The records are retained for a specified number
of days before being removed from the disk. The contents are restored from the distributed file
store on disk when the server is started.

Max. records: Specify the number of records that the log system retains before the oldest records start
being deleted. It is only available when the Persistence Mode is set to Memory or Single File. The valid range
is 100 to 100,000 records. The default setting is 25,000 records.
Note: The log is truncated if this property is set to a value less than the current size of the log.

Log file path: Specify where the disk log is stored. It is only available when the Persistence Mode is set to
Single File or Extended Datastore.
Note: Attempts to persist diagnostics data using a mapped path may fail because the Event Log service is

running in the context of the SYSTEM account and does not have access to a mapped drive on the local
host. Users that utilize a mapped path do so at their own discretion. It is recommended that the Uniform
Naming Convention (UNC) path be used instead.

Max. single file size: Specify the size that a single datastore file must attain before a new datastore file can
be started. It is only available when the Persistence Mode is set to Extended Datastore. The valid range is
100 to 10000 KB. The default setting is 1000 KB.

www. ptc.com

62

KEPServerEX

Min. days to preserve: Specify that individual datastore files are deleted from disk when the most recent
record stored in the file is at least this number of days old. It is only available when the Persistence Mode is
set to Extended Datastore. The valid range is 1 to 90 days. The default setting is 30 days.
See Also: Built-In Diagnostics
When saving to file, monitor the Windows Event Viewer for errors relating to the persistence of data to

disk.

Restoring Persisted Datastores from Disk

The Event Log restores records from disk either at start up or when the following occurs:

1. The Persistence Mode is set to Single File or Extended Datastore.
Note: When Single File persistence is selected, the server loads all persisted records from disk

before making any records available to clients.

2. The log file path is set to a directory that contains valid persisted log data.

Extended Datastore Persistence

The Extended Datastore Persistence Mode has the potential to load a very large number of records from
disk. To remain responsive, the log services client requests for records while records are loaded from disk.
As the record store is loaded, clients are provided with all records in the log regardless of filtering. Once all
the records have been loaded, the server applies filters and sorts the records chronologically. The client
views are updated automatically.

Note: Loading large record stores may cause the log server to be less responsive than usual. It regains
full responsiveness once the loading and processing completes. Resource usage is higher than usual during
loading and settles on completion.

Disk Full Behavior

The Extended Datastore Persistence Mode has the potential to fill a storage medium quickly, especially
when persisting OPC Diagnostics. If a disk error is encountered while persisting records, an error posts to
the Windows Event Viewer.
See Also: PC Diagnostics Viewer
The Event Log system would be useless if there was no mechanism to protect its contents. If operators

could change these properties or reset the log, the purpose would be lost. Utilize the User Manager to limit
what functions an operator can access.

Settings — ProgID Redirect
Many OPC client applications connect to an OPC server through the OPC server's ProgID. Users who need to
migrate or upgrade to a new OPC server often prefer to do so without changing their tag database (which
can contain thousands of tags that link to the OPC server ProgID). This server offers ProgID redirection to
assist users in these transitions.

The ProgID Redirect feature allows users to enter the legacy server's ProgID. The server creates the neces-
sary Windows Registry entries to allow a client application to connect to the server using the legacy server's
ProgID.

www. ptc.com

63

KEPServerEX

Add: This button is used to add a ProgID to the redirection list. When clicked, it invokes the "Add New Pro-
gID" dialog. For more information, refer to "Adding a New ProgID" below.

Remove: This button is used to remove a selected ProgID from the redirection list.
Note: A redirected ProgID cannot be browsed by OPC client applications that use the OpcEnum service

to locate OPC servers. In most cases, users can enter the redirected ProgID into the client application manu-
ally.

Adding a New ProgID
For more information, refer to the instructions below.

1. In the ProgID Redirect group, click Add.

2. In ProgID, enter the ProgID of the legacy server.

3. Once complete, click OK.

The client application should not be running while the legacy server's ProgID is being added to the redir-
ection list. Failure to observe this warning may result in the client application not respecting the newly redir-
ected ProgID.

Settings — User Manager
The User Manager controls client access to the project's objects (which are the channels, devices, tags. etc.)
and their corresponding functions. The User Manager allows permissions to be specified by user groups.
For example, the User Manager can restrict the Data Client user access to project tag data based on its

www. ptc.com

64

KEPServerEX

permissions from the Anonymous Clients user group. The User Manager can also transfer user information
between server installations through its import / export function.
The User Manager has built-in groups that each contain a built-in user. The default groups are Admin-
istrators, Anonymous Clients, Server Users, and ThingWorx Interface Users. The default users are Admin-
istrator, Data Client, Default User, and ThingWorx Interface. Users cannot rename or change the description
fields. Neither the default groups nor the default users can be disabled.

Note: Although the Administrator's settings cannot be changed, additional administrative users can be
added.

New Group: When clicked, this button adds a new KEPServerEX user group. Groups cannot contain illegal
characters.
For more information, refer to User Group Properties.

New User: When clicked, this button adds a new user to the selected user group. This function is disabled
for anonymous clients. Users cannot contain illegal characters.
Note: User names cannot be changed. If a user name must change, create a new user with the correct or

altered name and delete the existing user. User passwords can be changed at any time.
For more information, refer to User Properties.

Tip: To update multiple permissions at the same time, right-click on the property group and select the
desired permissions.

Disable Selected User / Group: When clicked, this button disables the selected user or user group. This
function is only available to custom users and user groups. Disabling a user group disables all users within
it.

www. ptc.com

65

KEPServerEX

Restore Selected User / Group: When clicked, this button restores the selected user or user group. Restor-
ing a user group returns the users within it to the state they were in prior to disabling. This icon is only avail-
able once a user or user group has been disabled.

Delete Selected User / Group: When clicked, this button deletes the selected user or user group. This func-
tion is only available to custom users and user groups (not users pre-configured by installation). Deleting a
user group removes all users within it.

Import User Information: When clicked, this button imports user information from an XML file. For the
import to succeed, the file that is selected must have been exported from the server's Administration utility.
This function is only enabled when a member of the built-in Administrators group is logged in.

Export User Information: When clicked, this button exports user information to an XML file. This is useful
for users that need to move the project from one machine to another. Administrators also have the option
to password protect the XML file: if utilized, the correct password must be entered for the import to succeed
on the new machine. The XML file cannot be edited and re-imported. This function is enabled at all times.

 The Import / Export User Information features were released in server version 5.12. Any user passwords
that were set while using previous server versions must be changed in 5.12 before an export is attempted;
otherwise, the export fails.

 After upgrading the server or importing User Information, it is recommended to review the User Manager
permissions for accuracy.

 Imports and upgrades from older versions may fail due to users or groups containing illegal characters. In
this case, fix the names before exporting from older versions.

Note: Import User Information replaces existing users and user groups with those being imported
(except for the Administrator built-in user).

See Also: ThingWorx Interface Users if connecting to the ThingWorx Platform.

Illegal Characters
For local server users and groups, some characters are not permitted in local server user names and local
group names (Version 6.9 and higher). In particular, forward (/) and backward (\) slashes are NOT allowed.
Trying to create users or groups with these characters causes a failure message that describes illegal char-
acters.

Accessing Additional Settings
Shortcuts and additional settings may be accessed through the context menus for user groups and users.

www. ptc.com

66

KEPServerEX

Move User To This option moves the user to a different user group. The status of the group does not mat-
ter: both disabled and enabled groups appear in the list. An active user moved to a disabled group becomes
disabled as well. A disabled user moved to an enabled group persists in status until changed.
Tip: To configure KEPServerEX as a standard user (non-Administrator Windows user), grant the standard

user read and write privileges to the Application Data directory. Only an administrator can set these per-
missions.

For more information, refer to the Post-Installation section of the Secure Deployment Guide.

User Group Properties
The user group properties may also be accessed by right-clicking on a user group and selecting Properties.

Tip: To quickly allow or deny all options in a category, right-click on the category and select Allow All or
Deny All. A setting that displays bold text indicates that its value has been changed. Once the change is
saved, the text displays as normal.

www. ptc.com

67

https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Server/6.8/ThingWorx Kepware Server Secure Deployment Guide?&art_lang=en&posno=1&q=ThingWorx%20Kepware%20Server%20Secure%20Deployment%20Guide&source=search

KEPServerEX

Name: Click the icon to open the name of the new user group. The maximum number of characters allowed
is 31. Duplicate names are not allowed.

Description: This optional property provides a brief description of the user group. This can be particularly
helpful for operators creating new user accounts. The maximum number of characters allowed is 128.

Permissions assigned to this user group: This field assigns permissions for the selected user group. Per-
missions are organized into the following categories: Project Modification, Server Permissions, I/O Tag
Access, System Tag Access, Internal Tag Access, and Browse Project Namespace. More information on the
categories is as follows:

l Project Modification: This category specifies permissions that control default project modifications.
l Server Permissions: This category specifies permissions that control access to server functionality.

These permissions are not supported by the anonymous client.
l I/O Tag Access: This category specifies permissions that control access to device-level I/O tag data.

These tags require device communications and are described as Static tags in the server.
l System Tag Access: This category specifies permissions that control access to System tags. These

tags begin with an underscore and exist in a server-defined location. For more information, refer to
System Tags.

l Internal Tag Access: This category specifies permissions that control access to internal tags. These
tags are either driver-managed (controlling some aspect of the driver's operation) or user-specified
(at a plug-in level).

www. ptc.com

68

KEPServerEX

l Browse Project Namespace: This category specifies permissions that control browse access to the
project namespace in clients that support browsing. This is not supported by all client types.

l Event Log: This category specifies permissions that control access to the informational, warning,
error, and security messages posted to the event log. The defaults are Allow. Some clients require a
runtime reinitialization for these settings to take effect.
Note: When the server_config is in offline mode, the event log view uses event filtering set for the

anonymous client.

Tip: To view more information on a specific object in a category, select it.

User Properties
The user properties may be accessed by double-clicking on the user or right-clicking on the user and select-
ing Properties....

Old Password: This field holds the password that has been active for this user.

Password: Enter a new or updated password this user must enter to log into the system. It is case-sensitive
with a minimum of 14 and a maximum of 512 characters. The password must include a mix of uppercase
and lowercase letters, numbers, and special characters. Avoid well-known, easily guessed, or common pass-
words.

Confirm Password: Re-enter the same password. It must be entered exactly the same in both the New
Password and Confirm Password fields.

Settings — User Manager — ThingWorx Interface Users
The User Manager controls client access to project objects and their corresponding functions. All of the but-
tons and controls function as described in the general User Manager section. The ThingWorx Interface
Users group controls access to, data exchange with, and analysis in a connected ThingWorx Platform
instance.

www. ptc.com

69

KEPServerEX

See Also: User Manager

To allow adequate access for data transfer between the server and the ThingWorx Platform, project modi-
fication and store and forward must be enabled. To grant the correct access for this functionality:

1. Select the ThingWorx Interface Users group.

2. Right-click and select Properties....

3. Expand the Project Modification group.

4. Locate and expand the Servermain.Project rights.

5. Using the drop-down menu, select Allow to grant permission to change the project file.

6. Click OK to close.

www. ptc.com

70

KEPServerEX

Settings — Configuration API Service Transaction Log
The transaction log contains records of all requests received by the Configuration API. The following con-
figuration options are available through the Server Permissions in the User Manager.

Logging

Verbose Logging: records the request and response JSON bodies, which can be useful for troubleshooting.
Turning on verbose logging can add two properties (requestbody and responsebody) to each log entry,
depending on the request type. To turn on verbose logging, open Settings | Configuration API Service |
Transaction Logging and change Verbose to Yes.

Warning: Verbose logging causes the transaction log to grow rapidly. Do not activate for normal use.
Note: Log queries are not logged in a verbose manner; the entries display the shorter format.

Logging Permissions: allows additional permission settings to prevent unauthorized users from accessing
the log. The default is Deny for all non-administrator users.

www. ptc.com

71

KEPServerEX

See Also: Refer to server help for more information on changing permissions in User Manager.

Settings — Configuration API Service Configuration
The Configuration API Service is configured on installation. If the settings need to be adjusted, access the
Configuration API Service settings by right-clicking on the Administration icon in the system tray and select-
ing Settings | Configuration API Service.

 If the Administrative icon is not in the system tray, re-launch it by selecting Start | All Programs | Kep-
ware | KEPServerEX 6 | Administration | Settings .

Enable: Set Yes to enable the Configuration API server. If disabled (No); the service runs, but does not bind
to the HTTP and HTTPS ports and clients cannot access the server.

www. ptc.com

72

KEPServerEX

Enable HTTP: Set No to limit data transfer to only secure / encrypted protocols and endpoints. Select Yes to
allow unencrypted data transfer.

CAUTION:

l HTTP should only be used for internal networks secured through other methods because content is
transmitted as plain text. Data such as user authentication, application keys, and other sensitive
information should not be exposed through HTTP. Use with caution.

l To prevent external access over insecure HTTP, this port should be blocked by the firewall.
l The Configuration API server specifies HTTP strict transport security in all responses. This may cause

a browser to reject all HTTP access to any web servers (other web servers on the same system is not
recommended) on the same machine if HTTPS requests are made to the Configuration API.

l For HTTPS requests, a REST client that supports TLS 1.2 or higher is required.

HTTP Port: Specify the TCP/IP port for the REST client to communicate over unencrypted HTTP. The valid
range is 1 to 65535. HTTP and HTTPS ports must not match. The default port number of 57412.

HTTPS Port: Specify the TCP/IP port for the REST client to communicate over secure HTTP. The valid range is
1 to 65535. HTTP and HTTPS ports must not match. The default port number of 57512.

CORS Allowed Origins: Specify a comma-separated list of allowed domain specifications that may access
the Configuration API server for Cross Origin Resource Sharing (CORS) requests.

Restore Defaults: Click the blue link to the right to restore the default HTTP and HTTPS port values.

Enable Documentation: Set to Yes to enable access to the Configuration API documentation (via the end-
point).

View in Browser: click the blue address link to the right to open the Configuration API documentation land-
ing page in a browser.

View in Browser (SSL): click the blue address link to the right to open the Configuration API documentation
landing page in a browser via the secure URL.

Transaction Logging

Persistence Mode: Select the record retention method for the system log. The default setting is Memory
(no persistence). The options are:

www. ptc.com

73

KEPServerEX

l Memory (no persistence): records all events in memory and does not generate a log that is saved
to disk. A specified number of records are retained before the oldest records start being deleted. The
contents are available only while the server is running.

l Single File: generates a recorded log file saved to disk. A specified number of records are retained
before the oldest records start being deleted. The contents are restored from this file when the
server is started.

l Extended Datastore: saves a potentially large number of records to disk distributed across multiple
files. The records are retained for a specified number of days before being removed from the disk.
The contents are restored from the distributed files on the disk when the server is started.

Max. Records: Specify the number of transactions the log retains before the oldest record is deleted. Avail-
able when the Persistence Mode is set to Memory or Single File. The valid range is 100 to 30000 records. The
default setting is 1000 records.
Note: The log is truncated if this parameter is set to a value less than the current size of the log.

Log File Path: Indicate where the log is stored on disk. Available when the Persistence Mode is set to Single
File or Extended Datastore.
 Attempts to persist diagnostics data using a mapped path may fail because the Transaction Log service is

running in the context of the SYSTEM account and does not have access to a mapped drive on the local
host. Use a mapped drive path with caution. A Uniform Naming Convention (UNC) path is recommended.

Max. Single File Size: Indicate the size limit, in KB, of a single datastore file at which a new datastore file is
started. Available when the Persistence Mode is set to Extended Datastore. The valid range is 100 to 10000
KB. The default setting is 1000 KB.

Min. Days to Preserve: Specify the number of days individual datastore files kept before being deleted
from disk. Available when the Persistence Mode is set to Extended Datastore. The valid range is 1 to 90
days. The default setting is 30 days.

Verbose: Select Yes to record a detailed level of data is recorded in the log. Verbose logging includes
request and response bodies in addition to the parameters included with non-verbose logging. See Verbose
Logging for more information. Select No to record much less data and keep log files smaller.

Certificate Management

Note: An X.509 certificate is used to establish SSL communication between the client and the REST server.
A default self-signed certificate is generated when the REST server is installed, but accessing the server from
outside a secure network requires a trusted certificate.

View Certificate: Click the blue link to the right to open the current certificate to review.

Export Certificate: Click the blue link to the right to save the current certificate in .PEM format (such as for
importing into third-party REST clients).

www. ptc.com

74

KEPServerEX

Reissue Certificate: Click the blue link to the right to create a new certificate, replacing the current cer-
tificate.

Import Certificate: Click the blue link to the right to import a certificate in .PEM format.

Note: A certificate is created on installation without additional configuration. When reissuing or importing
a certificate, the new certificate in not applied until the Configuration API is stopped and restarted via the
Windows Service Control Manager or the system restarts.

Settings — Certificate Store
The Certificate Store may be used to configure certificates for features that communicate securely using
Transport Layer Security (TLS) or its older variant, Secure Socket Layer (SSL). This tab only appears if a fea-
ture is installed that is able to leverage it (such as the ThingWorx Native Interface, License Utility,) where
the feature appears at the top of the properties.
Note: All certificates must be ASCII encoded.

Instance Certificate

Certificate: Name that identifies the instance certificate.
Note: This property is only visible for features that support multiple instance certificates. For example,

some Plug-Ins and drivers support separate instance certificates. The following actions only apply to the
selected instance certificate.

View: Click the View link to view the currently selected feature’s instance certificate.

Export: Save the currently selected feature’s instance certificate to a directory chosen by the user. The sug-
gested file name is the thumbprint of the certificate – though the user is free to change this. The output is
PEM encoded and includes a single certificate.

Reissue: Reissue the currently selected feature’s instance certificate. Certificates generated by the cer-
tificate store are self-signed and expire in 10 years.

www. ptc.com

75

KEPServerEX

Import: Import the currently selected feature’s instance certificate. Use this option to import a certificate
that has been signed by a certificate authority that is trusted by the TLS / SSL peer.

Manage Trust Store

Certificate: The trust store may contain zero to many certificates. The user must select a certificate to view,
export, or delete.

View: View the currently selected trust certificate for the currently selected feature.

Export: Export the currently selected trust certificate for the currently selected feature. As with the instance
certificate, the output file is PEM encoded and contains a single certificate.

Delete: Delete the currently selected trust certificate for the currently selected feature. The feature no
longer trusts peers that present certificates that include this certificate in their chain of trust.

Extend Trust Store

Import: Import one or more certificate authority or self-signed certificate(s) into the trust store. The feature
trusts a TLS / SSL peer that presents this certificate or a certificate that is signed by the imported certificate.

Instance Certificate Import Behavior

l The import filemust contain a certificate and an unencrypted private key.
l The certificate cannot be imported if it contains an invalid signature.
l The user is prompted if the certificate is expired. The TLS / SSL peer may reject certificates that are

expired.

Trust Certificate Import Behavior

l The import file should contain one or more certificate(s).
l No private key is necessary but can be present in the file.
l The import is not allowed to succeed if one or more certificates have an invalid signature.
l The import is not allowed to succeed if one or more certificates duplicate a certificate that is already

present in the trust store.
l The user is prompted if any of the certificates in the import file are expired. The feature may reject

certificates that rely on an expired certificate in the chain of trust.

Settings — Service Ports
The Administration group is used to configure the Runtime Administration's actions. The Service Ports
administrative settings are automatically configured on installation. If the settings must be updated, access
the Service Ports system settings by right-clicking on the Administration icon located in the system tray and
selecting Settings | Service Ports.

Tip: Restart the runtime to apply changes to service ports.

www. ptc.com

76

KEPServerEX

See Also: Service Port Assignments

Store and Forward

Port: Specify the TCP/IP port that the Store and Forward clients use to communicate with the Store and For-
ward service. The valid range is 1024 to 65535. The default is configured by the server.

Default: Click to populate this field with the default port number.

Tips:

l The default port is recommended unless there is a conflict with another server application using that
port.

l The Store and Forward Service does not accept remote connections, so there should be no firewall
implications associated with this port assignment.

l The permissions required to allow a user to enable Store and Forward include project modification.
Grant the user or group (possibly Anonymous Clients) the ability to modify the server project
through the User Manager. ThingWorx users need the same access through the ThingWorx Inter-
face Users group according to the procedure in User Manager ThingWorx Interface Users.

See Also: Project Properties ThingWorx

Security

Preferred Port: Specify a TCP/IP port that the Key Service can use to communicate within the server. The
valid range is 1024 to 65535. The default is configured by the server. If the Preferred Port is unavailable or
inappropriate for any reason, the service will attempt to secure an alternate port.

Default: Click to populate this field with the default port number.

Service Port Assignments
The Administration is where hardware interfaces are assigned to communicate with KEPServerEX. Below are
the specific port assignments used.

Configuration Port: 32402

www. ptc.com

77

KEPServerEX

Default UA Server Port: 49320
Event Port: 56233
Configuration API HTTP: 57412
Configuration API HTTPS Port: 57512
Local Historian: 57012
IOT Gateway: 57212
Store and Forward: 57612

See Also: Settings - Service Ports

www. ptc.com

78

KEPServerEX

Components and Concepts
For more information on a specific server component, select a link from the list below.

What is a Channel?
What is a Device?
What is a Tag?
What is a Tag Group?
What is the Alias Map?
What is the Event Log?

What is a Channel?
A channel represents a communication medium from the PC to one or more external devices. A channel can
be used to represent a serial port, a card installed in the PC, or an Ethernet socket.

Before adding devices to a project, users must define the channel to be used when communicating with
devices. A channel and a device driver are closely tied. After creating a channel, only devices that the selec-
ted driver supports can be added to this channel.

Creating a Channel
Channels are defined by a set of properties based on the communication methods. Channels are created
through the channel wizard, which guide users through the channel definition process; the configuration
GUI, orthe Configuration API service.

Channel names must be unique among all channels and devices defined in the project. For information on
reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.
Note: For hardware card drivers, refer to the driver's help documentation to determine the ability to use

with multiple channels in a single project. For information on how to determine the number of supported chan-
nels, refer to Server Summary Information.

Users must define the specific communication parameters to be used. Multiple channels cannot share
identical communication parameters; for example, two serial drivers cannot use COM1.
For the correct communication parameters of a particular device, refer to both the manufacturer's and the

driver's help documentation.
Note: Flow Control settings for serial drivers are primarily used when connecting RS422/485 network

devices to the RS232 serial port via a converter. Most RS232 to RS422/485 converters require either no flow
control (None) or that the RTS line be on when the PC is transmitting and off when listening (RTS).

The channel wizard finishes with a summary of the new channel.

Removing a Channel
To remove a channel from the project, ; select the desired channel and press the Delete key; select Edit |
Delete from the Editmenu or toolbar; or use the Configuration API Service.

Displaying Channel Properties
To display the channel properties of a specific channel, select the channel and click Edit | Properties from
the Edit menu or toolbar. To review the channel properties of a specific channel via the Configuration API,
access the documentation channel endpoint.
See Also: Channel Properties — General

www. ptc.com

79

KEPServerEX

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same com-
munications driver or with unique communications drivers. A channel acts as the basic building block of an
OPC link. This group is used to specify general channel properties, such as the identification attributes and
operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display win-
dow when browsing the OPC server's tag space. The channel name is part of the OPC browser information.
The property is required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during chan-
nel creation. It is a disabled setting in the channel properties. The property is required for creating a chan-
nel.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. Changes to the properties should not be
made once a large client application has been developed. Utilize proper user role and privilege man-
agement to prevent operators from changing properties or accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead pro-
cessing, it is recommended that they be utilized when needed and disabled when not. The default is dis-
abled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to "Communication Diagnostics" and "Statistics Tags" in the server help.

Tag Counts

www. ptc.com

80

KEPServerEX

Static Tags: Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as
a Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may
default to Unmodified. Non-normalized float handling allows users to specify how a driver handles non-nor-
malized IEEE-754 floating point data. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point val-
ues with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-num-
ber, and infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports
the option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-Point
Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Ethernet Communications
Ethernet Communication can be used to communicate with devices.

Ethernet Settings

Network Adapter: Specify the network adapter to bind. When left blank or Default is selected, the oper-
ating system selects the default adapter.

www. ptc.com

81

KEPServerEX

Channel Properties — Serial Communications
Serial communication properties are available to serial drivers and vary depending on the driver, connection
type, and options selected. Below is a superset of the possible properties.
Click to jump to one of the sections: Connection Type, Serial Port Settings or Ethernet Settings, and
Operational Behavior.

Notes:

l With the server's online full-time operation, these properties can be changed at any time. Utilize
proper user role and privilege management to prevent operators from changing properties or
accessing server features.

l Users must define the specific communication parameters to be used. Depending on the driver,
channels may or may not be able to share identical communication parameters. Only one shared
serial connection can be configured for a Virtual Network (see Channel Properties — Serial Com-
munications).

Connection Type

Physical Medium: Choose the type of hardware device for data communications. Options include Modem,
Ethernet Encapsulation, COM Port, and None. The default is COM Port.

1. None: Select None to indicate there is no physical connection, which displays the Operation with
no Communications section.

2. COM Port: Select Com Port to display and configure the Serial Port Settings section.

3. Modem: Select Modem if phone lines are used for communications, which are configured in the
Modem Settings section.

4. Ethernet Encap.: Select if Ethernet Encapsulation is used for communications, which displays the
Ethernet Settings section.

5. Shared: Verify the connection is correctly identified as sharing the current configuration with
another channel. This is a read-only property.

Serial Port Settings

www. ptc.com

82

KEPServerEX

COM ID: Specify the Communications ID to be used when communicating with devices assigned to the chan-
nel. The valid range is 1 to 999. The default is 1.

Baud Rate: Specify the baud rate to be used to configure the selected communications port.

Data Bits: Specify the number of data bits per data word. Options include 5, 6, 7, or 8.

Parity: Specify the type of parity for the data. Options include Odd, Even, or None.

Stop Bits: Specify the number of stop bits per data word. Options include 1 or 2.

Flow Control: Select how the RTS and DTR control lines are utilized. Flow control is required to com-
municate with some serial devices. Options are:

l None: This option does not toggle or assert control lines.
l DTR: This option asserts the DTR line when the communications port is opened and remains on.
l RTS: This option specifies that the RTS line is high if bytes are available for transmission. After all buf-

fered bytes have been sent, the RTS line is low. This is normally used with RS232/RS485 converter
hardware.

l RTS, DTR: This option is a combination of DTR and RTS.
l RTS Always: This option asserts the RTS line when the communication port is opened and remains

on.
l RTS Manual: This option asserts the RTS line based on the timing properties entered for RTS Line

Control. It is only available when the driver supports manual RTS line control (or when the properties
are shared and at least one of the channels belongs to a driver that provides this support).
RTS Manual adds an RTS Line Control property with options as follows:

l Raise: Specify the amount of time that the RTS line is raised prior to data transmission. The
valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Drop: Specify the amount of time that the RTS line remains high after data transmission.
The valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Poll Delay: Specify the amount of time that polling for communications is delayed. The valid
range is 0 to 9999. The default is 10 milliseconds.

Tip: When using two-wire RS-485, "echoes" may occur on the communication lines. Since this com-
munication does not support echo suppression, it is recommended that echoes be disabled or a RS-485 con-
verter be used.

Operational Behavior

l Report Communication Errors: Enable or disable reporting of low-level communications errors.
When enabled, low-level errors are posted to the Event Log as they occur. When disabled, these
same errors are not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the connection when there are no longer any tags being ref-
erenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been
removed before closing the COM port. The default is 15 seconds.

Ethernet Settings
Note: Not all serial drivers support Ethernet Encapsulation. If this group does not appear, the func-

tionality is not supported.

www. ptc.com

83

KEPServerEX

Ethernet Encapsulation provides communication with serial devices connected to terminal servers on the
Ethernet network. A terminal server is essentially a virtual serial port that converts TCP/IP messages on the
Ethernet network to serial data. Once the message has been converted, users can connect standard devices
that support serial communications to the terminal server. The terminal server's serial port must be prop-
erly configured to match the requirements of the serial device to which it is attached. For more information,
refer to "Using Ethernet Encapsulation" in the server help.

l Network Adapter: Indicate a network adapter to bind for Ethernet devices in this channel. Choose a
network adapter to bind to or allow the OS to select the default.
Specific drivers may display additional Ethernet Encapsulation properties. For more information, refer to

Channel Properties — Ethernet Encapsulation.

Modem Settings

l Modem: Specify the installed modem to be used for communications.
l Connect Timeout: Specify the amount of time to wait for connections to be established before fail-

ing a read or write. The default is 60 seconds.
l Modem Properties: Configure the modem hardware. When clicked, it opens vendor-specific modem

properties.
l Auto-Dial: Enables the automatic dialing of entries in the Phonebook. The default is Disable. For

more information, refer to "Modem Auto-Dial" in the server help.
l Report Communication Errors: Enable or disable reporting of low-level communications errors.

When enabled, low-level errors are posted to the Event Log as they occur. When disabled, these
same errors are not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the modem connection when there are no longer any tags
being referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been
removed before closing the modem connection. The default is 15 seconds.

Operation with no Communications

l Read Processing: Select the action to be taken when an explicit device read is requested. Options
include Ignore and Fail. Ignore does nothing; Fail provides the client with an update that indicates fail-
ure. The default setting is Ignore.

Channel Properties — Ethernet Encapsulation
Ethernet Encapsulation can be used over wireless network connections (such as 802.11b and CDPD packet
networks) and has also been developed to support a wide range of serial devices. With a terminal server
device, users can place RS-232 and RS-485 devices throughout the plant while still allowing a single localized
PC to access the remotely mounted devices. Ethernet Encapsulation also allows an individual network IP
address to be assigned to devices as needed. Multiple terminal servers provide users access to hundreds of
serial devices from a single PC. One channel can be defined to use the local PC serial port while another
channel can be defined to use Ethernet Encapsulation.

Note: These properties are only available to serial drivers. The properties displayed depend on the selec-
ted communications driver and supported functionality.

Network Adapter: Specify the network adapter.

www. ptc.com

84

KEPServerEX

Device Address: Specify the four-field IP address of the terminal server to which this device is attached. IPs
are specified as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0
to 255. Each channel has its own IP address.

Port: Configure the Ethernet port that used when connecting to a remote terminal server. The valid range
is 1 to 65535, with some numbers reserved. The default is 2101.

Protocol: Specify TCP/IP or UDP communication, which depends on the nature of the terminal server being
used. The default is TCP/IP. For more information on the protocol available, refer to the terminal server's help
documentation.
Important: The Ethernet Encapsulation mode is completely transparent to the actual serial com-

munications driver. Users must configure the remaining device properties as if they were connecting to the
device directly on the local PC serial port.

Connect Timeout: Specify the amount of time that is required to establish a socket connection for a
remote device to be adjusted. In many cases, the connection time to a device can take longer than a normal
communications request to that same device. The valid range is 1 to 999 seconds. The default is 3 seconds.
Note: With the server's online full-time operation, these properties can be changed at any time. Utilize

proper user role and privilege management to prevent operators from changing properties or accessing
server features.

Channel Properties — Communication Serialization
The server's multi-threading architecture allows channels to communicate with devices in parallel. Although
this is efficient, communication can be serialized in cases with physical network restrictions (such as Eth-
ernet radios). Communication serialization limits communication to one channel at a time within a virtual
network.

The term "virtual network" describes a collection of channels and associated devices that use the same
pipeline for communications. For example, the pipeline of an Ethernet radio is the client radio. All channels
using the same client radio associate with the same virtual network. Channels are allowed to communicate
each in turn, in a "round-robin" manner. By default, a channel can process one transaction before handing
communications off to another channel. A transaction can include one or more tags. If the controlling chan-
nel contains a device that is not responding to a request, the channel cannot release control until the trans-
action times out. This results in data update delays for the other channels in the virtual network.

Channel-Level Settings

Virtual Network: Specify the channel's mode of communication serialization. Options include None and
Network 1 - Network 500. The default is None. Descriptions of the options are as follows:

l None: This option disables communication serialization for the channel.
l Network 1 - Network 500: This option specifies the virtual network to which the channel is

assigned.

www. ptc.com

85

KEPServerEX

Transactions per Cycle: Specify the number of single blocked/non-blocked read/write transactions that
can occur on the channel. When a channel is given the opportunity to communicate, this is the number of
transactions attempted. The valid range is 1 to 99. The default is 1.

Global Settings

Network Mode: This property is used to control how channel communication is delegated. In Load Bal-
ancedmode, each channel is given the opportunity to communicate in turn, one at a time. In Priority
mode, channels are given the opportunity to communicate according to the following rules (highest to low-
est priority):

1. Channels with pending writes have the highest priority.

2. Channels with pending explicit reads (through internal plug-ins or external client interfaces) are pri-
oritized based on the read's priority.

3. Scanned reads and other periodic events (driver specific).

The default is Load Balanced and affects all virtual networks and channels.
 Devices that rely on unsolicited responses should not be placed in a virtual network. In situations where

communications must be serialized, it is recommended that Auto-Demotion be enabled.

Due to differences in the way that drivers read and write data (such as in single, blocked, or non-blocked
transactions); the application's Transactions per cycle property may need to be adjusted. When doing so,
consider the following factors:

l How many tags must be read from each channel?
l How often is data written to each channel?
l Is the channel using a serial or Ethernet driver?
l Does the driver read tags in separate requests, or are multiple tags read in a block?
l Have the device's Timing properties (such as Request timeout and Fail after x successive timeouts)

been optimized for the virtual network's communication medium?

Channel Properties — Network Interface
With Ethernet Encapsulation, virtually all drivers currently available support some form of Ethernet com-
munications. Some form of a network interface is used, whether for a natively Ethernet-based driver or a
serial driver configured for Ethernet Encapsulation. In most cases, that interface takes the form of a Net-
work Interface Card (NIC). For a PC that has networking installed, this usually means that a single NIC is
installed that provides a connection to either the IT or plant floor network (or both).

This configuration works well for typical network configurations and loading. Problems may arise if data
needs to be received from an Ethernet device at a regular interval, however. If the plant floor network is
mixed with the IT network, a large batch file transfer could completely disrupt the interval of the plant floor
data. The most common way to deal with this issue is to install a second NIC in the PC. One NIC can be used
for accessing the IT network while the other NIC accesses the plant floor data. Although this may sound reas-
onable, problems may occur when trying to separate the networks. When using multiple NICs, users must
determine the bind order. The bind order determines what NIC is used to access different portions of the
Ethernet network. In many cases, bind settings can be managed using the operating system's tools.

When there is a clear separation between the types of protocols and services that are used on each NIC
card, the bind order can be created by the operating system. If there isn't a clear way to select a specific
bind order, users may find that the Ethernet device connection is being routed to the wrong network. In this

www. ptc.com

86

KEPServerEX

case, the network interface shown below can be used to select a specific NIC card to use with the Ethernet
driver. The network interface selection can be used to select a specific NIC card based on either the NIC
name or its currently assigned IP address. This list of available NICs includes either unique NIC cards or NICs
that have multiple IP assigned to them. The selection displays any WAN connections are active (such as a
dial up connection).
Note: This property is only available to Ethernet drivers.

By selecting a specific NIC interface, users can force the driver to send all Ethernet communication through
the specified NIC. When a NIC is selected, the normal operating system bind order is bypassed completely.
This ensures that users have control over how the network operates and eliminates any guesswork.

The selections displayed in the Network Adapter drop-down menu depend on the network configuration set-
tings, the number of unique NICs installed in the PC, and the number of unique IPs assigned to the NICs. To
force the operating system to create the bind order selection, select Default as the network adapter. This
allows the driver to use the operating system's normal bind order to set the NIC.
Important: When unsure of which NIC to use, select the default condition. Furthermore, when an Eth-

ernet-based device is being used and this feature is exposed through a product upgrade, select the default
condition.
Note: With the server's online full-time operation, these properties can be changed at any time. Utilize

proper user role and privilege management to prevent operators from changing properties or accessing
server features. Keep in mind that changes made to this property can temporarily disrupt communications.

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties to meet specific needs or improve application respons-
iveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client applic-
ations is sent to the target device. This mode should be selected if the write operation order or the
write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly

www. ptc.com

87

KEPServerEX

improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optim-

ize the operation of HMI data without causing problems with Boolean operations, such as a moment-
ary push button.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read
for every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each
read operation. Although the application is performing a large number of continuous writes, it must be
ensured that read data is still given time to process. A setting of one results in one read operation for every
write operation. If there are no write operations to perform, reads are processed continuously. This allows
optimization for applications with continuous writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optim-

ization enhancements before being used in a production environment.

Device Discovery Procedure
Device Discovery is available for drivers that support locating devices on the network. Once devices are
found, they may be added to a channel. The maximum number of devices that can be discovered at once is
65535.

1. Select the channel in which devices should be discovered and added.

2. Right click on the channel node and select Device Discovery...

3. Specify the discovery properties, which are driver-specific, such as address range, timeout, discovery
scope.

4. Click OK.

5. Devices discovered populate the dialog with the following information / headings Device Name, ID,
Description.

www. ptc.com

88

KEPServerEX

6. If any discovered device is of interest, select the desired device(s) and click Add selected device(s)....

7. Click Close.

What is a Device?
Devices represent the PLCs, controllers, or other hardware with which the server communicates. The device
driver that the channel is using restricts device selection.

Adding a Device
Devices are defined by a set of properties based on the protocol, make, and model. Devices are created
through the New Device Wizard (at the initial setup and afterward), Edit | New Device, or the Con-
figuration API Service.

Device names are user-defined and should be logical for the device. This is the browser branch name used
in links to access the device's assigned tags.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

The Network ID is a number or string that uniquely identifies the device on the device's network. Net-
worked, multi-dropped devices must have a unique identifier so that the server's data requests are routed
correctly. If devices that are not multi-dropped, they do not need an ID, so this setting is not available.

Removing a Device
To remove a device from the project, select the device and press Delete, click Edit | Delete, or use the Con-
figuration API Service.

Displaying Device Properties
To display a device's properties, first select the device and click Edit | Properties. To review the channel
properties of a specific channel via the Configuration API, access the documentation channel endpoint.
 For more information, refer to Device Properties.

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers,
users must enter a device ID for each controller.

Identification

Name: Specify the name of the device. It is a logical user-defined name that can be up to 256 characters
long and may be used on multiple channels.

www. ptc.com

89

KEPServerEX

Note: Although descriptive names are generally a good idea, some OPC client applications may have a
limited display window when browsing the OPC server's tag space. The device name and channel name
become part of the browse tree information as well. Within an OPC client, the combination of channel name
and device name would appear as "ChannelName.DeviceName".
For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server help.

Description: Specify the user-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: Specify the user-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: Specify the type of device that is associated with this ID. The contents of the drop-down menu
depend on the type of communications driver being used. Models that are not supported by a driver are dis-
abled. If the communications driver supports multiple device models, the model selection can only be
changed when there are no client applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model selec-
tion to the physical device. If the device is not represented in the drop-down menu, select a model that con-
forms closest to the target device. Some drivers support a model selection called "Open," which allows
users to communicate without knowing the specific details of the target device. For more information, refer to
the driver documentation.

ID: Specify the device's driver-specific station or node. The type of ID entered depends on the com-
munications driver being used. For many communication drivers, the ID is a numeric value. Drivers that sup-
port a Numeric ID provide users with the option to enter a numeric value whose format can be changed to
suit the needs of the application or the characteristics of the selected communications driver. The format is
set by the driver by default. Options include Decimal, Octal, and Hexadecimal.

Note: If the driver is Ethernet-based or supports an unconventional station or node name, the device's
TCP/IP address may be used as the device ID. TCP/IP addresses consist of four values that are separated by
periods, with each value in the range of 0 to 255. Some device IDs are string based. There may be additional
properties to configure within the ID field, depending on the driver.

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not attemp-
ted when a device is disabled. From a client standpoint, the data is marked as invalid and write operations
are not accepted. This property can be changed at any time through this property or the device system tags.

Simulated: Place the device into or out of Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The data is not saved if the server removes
the item (such as when the server is reinitialized). The default is No.

www. ptc.com

90

KEPServerEX

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The Sys-
tem tag allows this property to be monitored from the client.

2. When a device is simulated, updates may not appear faster than one (1) second in the client.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production envir-
onment.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

Device Properties — Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device com-
munications. Synchronous and asynchronous device reads and writes are processed as soon as possible;
unaffected by the Scan Mode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions
of the options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan

rate. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for sub-
scribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the OPC client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit
device reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

www. ptc.com

91

KEPServerEX

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline for a specific time period, the driver can continue to
optimize its communications with other devices on the same channel. After the time period has been
reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,
the device is placed on-scan; otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted sys-

tem tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the
device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is
reached. During this period, no read requests are sent to the device and all data associated with the read
requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for
another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000
milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the
off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard
writes; the server automatically fails any write request received from a client and does not post a message
to the Event Log.

Device Properties — Communication Parameters
Ethernet Encapsulation mode has been designed to provide communication with serial devices connected
to terminal servers on the Ethernet network. A terminal server is essentially a virtual serial port. The ter-
minal server converts TCP/IP messages on the Ethernet network to serial data. Once the message has been
converted to a serial form, users can connect standard devices that support serial communications to the
terminal server.

For more information, refer to "How to... Use Ethernet Encapsulation" in the server help.
Note: Because Ethernet Encapsulation mode is completely transparent to the actual serial com-

munications driver, users should configure the remaining device properties as if they were connecting to
the device directly on the local PC serial port.

IP Address: Enter the four-field IP address of the terminal server to which the device is attached. IPs are spe-
cified as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0 to

www. ptc.com

92

KEPServerEX

255. Each serial device may have its own IP address; however, devices may have the same IP address if
there are multiple devices multi-dropped from a single terminal server.

Port: Configure the Ethernet port to be used when connecting to a remote terminal server.

Protocol: Set TCP/IP or UDP communications. The selection depends on the nature of the terminal server
being used. The default protocol selection is TCP/IP. For more information on available protocols, refer to
the terminal server's help documentation.

Notes:

1. With the server's online full-time operation, these properties can be changed at any time.Utilize
proper user role and privilege management to prevent operators from changing properties or
accessing server features.

2. The valid IP Address range is greater than (>) 0.0.0.0 to less than (<) 255.255.255.255.

Device Properties — Ethernet Encapsulation
Ethernet Encapsulation is designed to provide communication with serial devices connected to terminal
servers on the Ethernet network. A terminal server is essentially a virtual serial port. The terminal server con-
verts TCP/IP messages on the Ethernet network to serial data. Once the message has been converted to a
serial form, users can connect standard devices that support serial communications to the terminal server.

For more information, refer to "How to... Use Ethernet Encapsulation" in server help.
Ethernet Encapsulation is transparent to the driver; configure the remaining properties as if connecting

to the device directly on a local serial port.

IP Address: Enter the four-field IP address of the terminal server to which the device is attached. IPs are
specified as YYY.YYY.YYY.YYY. The YYY designates the IP address: each YYY byte should be in the range of 0
to 255. Each serial device may have its own IP address; however, devices may have the same IP address if
there are multiple devices multi-dropped from a single terminal server.

Port: Configure the Ethernet port to be used when connecting to a remote terminal server.

Protocol: Set TCP/IP or UDP communications. The selection depends on the nature of the terminal server
being used. The default protocol selection is TCP/IP. For more information on available protocols, refer to
the terminal server's help documentation.

Notes

1. With the server's online full-time operation, these properties can be changed at any time. Utilize
proper user role and privilege management to prevent operators from changing properties or
accessing server features.

2. The valid IP Address range is greater than (>) 0.0.0.0 to less than (<) 255.255.255.255.

www. ptc.com

93

KEPServerEX

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation.
Select communications drivers can be configured to automatically build a list of tags that correspond to
device-specific data. These automatically generated tags (which depend on the nature of the supporting
driver) can be browsed from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and
uses the data to generate tags within the server. If the device does not natively support named tags, the
driver creates a list of tags based on driver-specific information. An example of these two conditions is as fol-
lows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the
tag names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/O module types, the com-
munications driver automatically generates tags in the server that are based on the types of I/O mod-
ules plugged into the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more
information, refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the
On Property Change option is shown. It is set to Yes by default, but it can be set to No to control over
when tag generation is performed. In this case, the Create tags action must be manually invoked to per-
form tag generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as
follows:

l Do Not Generate on Startup: This option prevents the driver from adding any OPC tags to the tag
space of the server. This is the default setting.

l Always Generate on Startup: This option causes the driver to evaluate the device for tag inform-
ation. It also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup: This option causes the driver to evaluate the target device for tag
information the first time the project is run. It also adds any OPC tags to the server tag space as
needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save
from the Tools | Optionsmenu.

www. ptc.com

94

KEPServerEX

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to
do with the tags that it may have previously added or with tags that have been added or modified after the
communications driver since their original creation. This setting controls how the server handles OPC tags
that were automatically generated and currently exist in the project. It also prevents automatically gen-
erated tags from accumulating in the server.

For example, if a user changes the I/O modules in the rack with the server configured to Always Generate
on Startup, new tags would be added to the server every time the communications driver detected a new
I/O module. If the old tags were not removed, many unused tags could accumulate in the server's tag space.
The options are:

l Delete on Create: This option deletes any tags that were previously added to the tag space before
any new tags are added. This is the default setting.

l Overwrite as Necessary: This option instructs the server to only remove the tags that the com-
munications driver is replacing with new tags. Any tags that are not being overwritten remain in the
server's tag space.

l Do not Overwrite: This option prevents the server from removing any tags that were previously
generated or already existed in the server. The communications driver can only add tags that are
completely new.

l Do not Overwrite, Log Error: This option has the same effect as the prior option, and also posts an
error message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the com-
munications driver as well as any tags that have been added using names that match generated tags.
Users should avoid adding tags to the server using names that may match tags that are automatically
generated by the driver.

Parent Group: This property keeps automatically generated tags from mixing with tags that have been
entered manually by specifying a group to be used for automatically generated tags. The name of the group
can be up to 256 characters. This parent group provides a root branch to which all automatically generated
tags are added.

Allow Automatically Generated Subgroups: This property controls whether the server automatically cre-
ates subgroups for the automatically generated tags. This is the default setting. If disabled, the server gen-
erates the device's tags in a flat list without any grouping. In the server project, the resulting tags are named
with the address value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system

automatically increments to the next highest number so that the tag name is not duplicated. For example, if
the generation process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been
modified, Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be
accessed from the System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Device Properties — Time Synchronization
This group is used to specify the device's time zone and time synchronization properties. It primarily applies
to time stamped data or information from battery-powered devices at remote locations where the device
time may deviate (causing issues with the time-stamped data). To prevent this problem from occurring,
users can specify that the server synchronize the device time.

www. ptc.com

95

KEPServerEX

Note: Not all drivers and models support all options.

Time Zone: Specify the device's time zone. To ignore the time zone, select one of the first four options in
the list (which do not have an offset). The default is the time zone of the local system.

Note: The driver uses this property both when synching the device time and when converting EFM
timestamps from the device to UTC time.

Tip: Timestamps from various devices may be in UTC time or local time zone, so the client or HMI may
need to convert or normalize timestamps.

Respect Daylight Saving Time: Specify Yes to follow Daylight Saving Time offset when synching the device
time. Specify No to ignore Daylight Saving Time. Only time zones that observe Daylight Saving Time will be
affected. The default is No (disabled).

Note: When enabled, the time of the device is adjusted by +1 hour for Daylight Saving Time (in the
spring), and adjusted by -1 hour after Daylight Saving Time (in the fall).

Time Sync Method: Specify the method of synchronization. Options include Disabled, Absolute, and Inter-
val. The default is Disabled. Descriptions of the options are as follows:

l Disabled: No synchronization.
l Absolute: Synchronizes to an absolute time of day specified through the Time property (appears

only when Absolute is selected).
l Interval: Synchronizes on startup and every number of minutes specified through the Sync Interval

property (appears only when Interval is selected). The default is 60 minutes.
l OnPoll: Synchronizes when poll is completed (applicable only to EFM devices).

Time Sync Threshold: Specify the maximum allowable difference, in seconds, between the device time and
the system time before syncing the device time to the system time. If the threshold is set to 0, a time syn-
chronization occurs every time. The default is 0 seconds. The maximum allowable threshold is 600 seconds.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the applic-
ation's needs. In many cases, the environment requires changes to these properties for optimum per-
formance. Factors such as electrically generated noise, modem delays, and poor physical connections can
influence how many errors or timeouts a communications driver encounters. Timing properties are specific
to each configured device.

www. ptc.com

96

KEPServerEX

Communications Timeouts

Connect Timeout: This property (which is used primarily by Ethernet based drivers) controls the amount
of time required to establish a socket connection to a remote device. The device's connection time often
takes longer than normal communications requests to that same device. The valid range is 1 to 30 seconds.
The default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not
supported by the driver, it is disabled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout: Specify an interval used by all drivers to determine how long the driver waits for a
response from the target device to complete. The valid range is 50 to 9999999 milliseconds (167 minutes).
The default is usually 1000 milliseconds, but can vary depending on the driver. The default timeout for most
serial drivers is based on a baud rate of 9600 baud or better. When using a driver at lower baud rates,
increase the timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout: Specify how many times the driver issues a communications request before
considering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is
typically 3, but can vary depending on the driver's specific nature. The number of attempts configured for
an application depends largely on the communications environment. This property applies to both con-
nection attempts and request attempts.

Timing

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target
device. It overrides the normal polling frequency of tags associated with the device, as well as one-time
reads and writes. This delay can be useful when dealing with devices with slow turnaround times and in
cases where network load is a concern. Configuring a delay for a device affects communications with all
other devices on the channel. It is recommended that users separate any device that requires an inter-
request delay to a separate channel if possible. Other communications properties (such as communication
serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may
limit the maximum value due to a function of their particular design. The default is 0, which indicates no
delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Redundancy

www. ptc.com

97

KEPServerEX

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

What is a Tag?
A tag represents addresses within the device with which the server communicates. The server allows both
Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify
device data addresses. User-defined Static tags are created and stored in the server. Static tags function as
pointers to device data addresses and can be browsed from clients that support tag browsing.

For more information, refer to Dynamic Tags and Static User-Defined Tags.

Adding a Tag
Tags are defined by a set of properties based on the data. Tags are defined through the New Device Wizard
(at the initial setup and afterward); by clicking on a device, right-clicking and choosing Edit | New Tag, or
the Configuration API Service.

Tag names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag
To remove a tag from the project; select the tag and press Delete, click Edit | Delete, or use the Con-
figuration API Service.

Displaying Tag Properties
To invoke the tag properties for a specific tag, double-click on it in the Tag Selection pane of the server con-
figuration.

www. ptc.com

98

https://www.ptc.com/~/media/kepware-store/en/manuals/redundancymaster-manual

KEPServerEX

To review the tag properties of a specific channel via the Configuration API, access the documentation
channel endpoint.

Tag Properties — General
A tag represents addresses within the device with which the server communicates. The server allows both
Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify
device data addresses. User-defined Static tags are created and stored in the server. Static tags function as
pointers to device data addresses and can be browsed from clients that support tag browsing.

For more information, refer to Dynamic Tags and Static User-Defined Tags.

Name: Enter a string to represent this tag. The tag name can be up to 256 characters in length. The tag
name is part of the OPC browse data tag names must be unique within a given device branch or tag group
branch. For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and
Tag Group.
Tip: If the application is best suited for using blocks of tags with the same names, use tag groups to sep-

arate the tags. For more information, refer to Tag Group Properties.

www. ptc.com

99

KEPServerEX

Description: Add context to the tag. A string of up to 255 characters can be entered for the description.
When using an OPC client that supports Data Access 2.0 tag properties, the description property is access-
ible from the tag's item Description properties.

Address: Enter the target tag's driver address. The address's format is based on the driver protocol.
Tip: For hints about how an address should be entered, click the browse (...) button. If the driver accepts

the address as entered, no messages are displayed. A popup informs of any errors. Some errors are related
to the data type selection and not the address string.

Data Type: Specify the format of this tag's data as it is found in the physical device. In most cases, this is
also the format of the data as it returned to the client. The data type setting is an important part of how a
communication driver reads and writes data to a device. For many drivers, the data type of a particular
piece of data is rigidly fixed and the driver knows what format needs to be used when reading the device's
data. In some cases, however, the interpretation of device data is largely in the user's hands. An example
would be a device that uses 16-bit data registers. Normally this would indicate that the data is either a Short
or Word. Many register-based devices also support values that span two registers. In these cases, the
double register values could be a Long, DWord or 32-bit Float. When the driver being used supports this
level of flexibility, users must tell it how to read data for this tag. By selecting the appropriate data type, the
driver is being directed to request one or more registers.

l Default - Uses the driver default data type
l Boolean - Binary value of true or false
l Char - Signed 8-bit integer data
l Byte - Unsigned 8-bit integer data
l Short - Signed 16-bit integer data
l Word - Unsigned 16-bit integer data
l Long - Signed 32-bit integer data
l DWord - Unsigned 32-bit integer data
l LLong - Signed 64-bit integer data
l QWord - Unsigned 64-bit integer data
l Float - 32-bit real value IEEE-754 standard definition
l Double - 64-bit real value IEEE-754 standard definition
l String - Null-terminated Unicode string
l BCD - Two byte-packed BCD value range is 0-9999
l LBCD - Four byte-packed BCD value range is 0-99999999
l Date - 8-byte floating point number (seeMicrosoft® Knowledge Base)

Client Access: Specify whether the tag is Read Only or Read / Write. By selecting Read Only, users can pre-
vent client applications from changing the data contained in this tag. By selecting Read / Write, users allow
client applications to change this tag's value as needed. The Client Access selection also affects how the tag
appears in the browse space of an OPC UA client. Many client applications allow filtering tags based on
attributes. Changing the access method of this tag may change how and when the tag appears in the
browse space of the client.

Scan Rate: Specify the update interval for this tag when using the Scan Mode option of Respect Tag-Spe-
cified Scan Rate within Device Properties. OPC clients can control the rate at which data is scanned by
using the update rate that is part of all OPC groups. Normally non-OPC clients don't have that option. The
server specifies an update rate on a tag per tag basis. Using the scan rate, users can tailor the bandwidth
requirements of the server to suit the needs of the application. If, for example, data that changes very

www. ptc.com

100

http://learn.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/date-data-type

KEPServerEX

slowly needs to be read, there is no reason to read the value very often. Using the scan rate this tag can be
forced to read at a slower rate reducing the demand on the communications channel. The valid range is 10
to 99999990 milliseconds (ms), with a 10 ms increment. The default is 100 milliseconds.

With the server's online full-time operation, these properties can be changed at any time. Changes made
to tag properties take effect immediately; however, client applications that have already connected to this
tag are not affected until they release and attempt to reacquire it. Utilize the User Manager to restrict access
rights to server features and prevent operators from changing the properties.

Multiple Tag Generation
The Multiple Tag Generation Tool dynamically creates multiple tags using user-defined driver nomenclature.
It allows a variety of address formats (such as ranges utilizing decimal, hexadecimal, and octal number sys-
tems). To avoid overlapping data, the Tag Generator Tool also has the ability to increment by the user-
defined data type.

For information on a specific dialog, select a link from the list below:

Add Numeric Range
Add Static Text
Add Text Sequence
Multiple Tag Generation Preview
Tag Name Properties

Multiple Tag Generation

Address Template

Name: Enter user-defined tag name.

Address: Verify the tag address, generated through options defined in the Address Builder section.

Data Properties

www. ptc.com

101

KEPServerEX

Data Type: Select data type to apply to all generated tags. Depending on the native interface supported by
the driver, the data type may override the default increment of the Add Numeric Range property for the last
element. The default setting is Default.

Client Access: Select the tag's permission settings from Read Only or Read / Write. The default setting is
Read Only.

Scan Rate: Specify the frequency at which tags are scanned. The valid range is 10 to 99999990 milliseconds.
The default setting is 100 milliseconds.

Address Builder

Add Static Text...: Click to launch the Add Static Text dialog where a single line of text can be entered.

Add Numeric Range...: Click to launch the Add Numeric Range dialog.

l Base System Select the format of the base system: Decimal, Octal, or Hexadecimal. The default set-
ting is Decimal.

l Range Enter the starting and ending values for the numeric range in the From and To fields.
l Increment ByWhen not using Default (which increments by one), users can specify a custom incre-

ment value. The range increments according to the selected Base System.

www. ptc.com

102

KEPServerEX

Add Text Sequence...: Click to launch the Add Text Sequence dialog where multiple strings can be created.
Each string is inserted independently of the other strings specified in the list.

Tips

1. To enable the Edit icons to the right, highlight a section of the tag address syntax element.

2. The Hints icon opens the help file on Address Descriptions.

Preview: Click to generate a test view of the generated tags.

Multiple Tag Generation Preview

www. ptc.com

103

KEPServerEX

Generate: Click to send all valid tags to the server for insertion.

Cancel: Click to reject any changes made to the tags and return to the prior dialog.

Tag Name...: Click to invoke the Tag Name Properties dialog.

Add as Group: Enable to add the tags into a single organizing group. The default setting is disabled.

Renumber valid tags consecutively before adding to project: Enable to renumber the tags con-
secutively before adding to the project. The default setting is enabled.

Note: Tags shown with a green checkmark are valid. Tags shown with a red exclamation mark (!) are
invalid.

Tag Name Properties
The Tag Generator Tool includes the option for a custom naming scheme, allowing users to specify both a
name prefix and a numeric suffix to all the tags. The numeric suffix is automatically incremented for each
tag, allowing users to create custom names for tags for better readability. Assigned tag names may be
changed after generation. A default naming scheme is implemented to each generated tag if the user does
not define a custom name through the Tag Name Properties dialog.

Note: Users who change the naming scheme in the Generation dialog before returning to the Tag
Duplication dialog to make changes to the addressing syntax can choose to save the naming scheme for the
next time the tag list is generated.

Name Prefix: Enter a custom name prefix (letters to pre-pend to the tag name).

Start Value: Specify the numeric first value to increment for each tag.

Default naming scheme: When enabled, the default naming scheme is used. The default setting is dis-
abled.

See Also: Generating Multiple Tags

Tag Properties — Scaling
This server supports tag Scaling, which allows raw data from the device to be scaled to an appropriate range
for the application.

www. ptc.com

104

KEPServerEX

Type: Specify the method of scaling raw values: Linear, Square Root, or None to disable. The formulas for
scaling types are shown below.

Type Formula for Scaled Value

Linear (((ScaledHigh - ScaledLow)/(RawHigh - RawLow))*(RawValue - RawLow)) + ScaledLow

Square
root

(Square root ((RawValue - RawLow)/(RawHigh - RawLow))*(ScaledHigh - ScaledLow)) +
ScaledLow

Raw Low: Specify the lower end of the range of data from the device. The valid range depends on the raw
tag data type. For example, if the raw value is Short, the valid range of the raw value would be from -32768
to 32767.

Raw High: Specify the upper end of the range of data from the device. The Raw High value must be greater
than the Raw Low value. The valid range depends on the raw tag data type.

Scaled Data Type: Specify the data type for the tag being scaled. The data type can be set to any valid OPC
data type, including a raw data type, such as Short, to an engineering value with a data type of Long. The
default scaled data type is Double.

Scaled Low: Specify the lower end of the range of valid resulting scaled data values. The valid range
depends on the tag data type.

Scaled High: Specify the upper end of the range of valid resulting scaled data values. The valid range
depends on the tag data type.

Clamp Low: Specify Yes to prevent resulting data from exceeding the lower end of the range specified. Spe-
cify No to allow data to fall outside of the established range.

Clamp High: Specify Yes to prevent resulting data from exceeding the upper end of the range specified.
Specify No to allow data to fall outside of the established range.

Negate Value: Specify Yes to force the resulting value to be negated before being passed to the client. Spe-
cify No to pass the value to the client unmodified.

The server supports the OPC tag properties available in the 2.0 Data Access specifications. If the OPC cli-
ent supports these properties, it can automatically configure the range of objects (such as user input objects
or displays). Utilize the User Manager to restrict access rights to server features to prevent any unau-
thorized operator from changing these properties.

www. ptc.com

105

KEPServerEX

Dynamic Tags
Dynamic tag addressing is a second method of defining tags that allows users to define tags only in the cli-
ent application. As such, instead of creating a tag item in the client that addresses another tag item created
in the server, users only need to create tag items in the client that directly accesses the device driver's
addresses. On client connect, the server creates a virtual tag for that location and starts scanning for data
automatically.

To specify an optional data type, append one of the following strings after the '@' symbol:

l BCD
l Boolean
l Byte
l Char
l Double
l DWord
l Float
l LBCD
l LLong
l Long
l QWord
l Short
l String
l Word

If the data type is omitted, the driver chooses a default data type based on the device and address being ref-
erenced. The default data types for all locations are documented in each individual driver's help doc-
umentation. If the data type specified is not valid for the device location, the server rejects the tag and an
error posts in the Event Log.

Client Using Dynamic Addressing Example
Scan the 16-bit location "R0001" on the Simulator device. The following Dynamic tag examples assume that
the project created is part of the example.

1. Start the client application and connect to the server.

2. Using the Simulator Driver, create a channel and name it Channel1. Then, make a device and name it
Device1.

3. In the client application, define an item name as "Channel1.Device1.R0001@Short."

4. The client project automatically starts receiving data. The default data type for address R0001 in the
Simulator device is Word. To override this, the @Short has been appended to select a data type of
Short.

Note: When utilizing Dynamic tags in a client application, the use of the @[Data Type] modifier is not nor-
mally required. Clients can specify the desired data type as part of the request when registering a link for a
specific data item. The data type specified by the Client is used if it is supported by the communications
driver. The @[Data Type] modifier can be useful when ensuring that a communications driver interprets a
piece of data exactly as needed.

Non-OPC Client Example

www. ptc.com

106

KEPServerEX

Clients can also override the update rate on a per-tag basis by appending @[Update Rate].

For example, appending:
<DDE service name>|_ddedata!Device1.R0001@500 overrides just the update rate.
<DDE service name>|_ddedata!Device1.R0001@500,Short overrides both update rate and data type.

Tips:

1. The server creates a special Boolean tag for every device in a project that can be used by a client to
determine whether a device is functioning properly. To use this tag, specify the item in the link as
"Error." If the device is communicating properly, the tag's value is zero; otherwise, it is one.

2. If the device address is used as the item of a link such that the address matches the name of a user-
defined tag in the server, the link references the address pointed to by the user-defined tag.

3. Static tags must be used to scale data in the server.

See Also:
Static Tags (User-Defined)
Designing a Project: Adding User-Defined Tags

Static Tags (User-Defined)
The most common method that uses the server to get data from the device to the client application has two
requirements. Users must first define a set of tags in the server using the assigned tag name as the item of
each link between the client and the server. The primary benefit to using this method is that all user-defined
tags are available for browsing within most OPC clients. Before deciding whether or not to create Static tags,
ensure that the client can browse or import tags from the server.

Tip: User-defined tags support scaling.

What is a Tag Group?
This server allows tag groups to be added to the project. Tag groups are used to tailor the layout of OPC
data into logical groupings that fit the application's needs. Tag groups allow multiple sets of identical tags to
be added under the same device: this can be convenient when a single device handles a number of similar
machine segments.

Adding a Tag Group
Tag groups are defined by the set of tags contained. Tag groups are defined by clicking on a device, right-
clicking and choosing Edit | New Tag Group or through the Configuration API Service.

Tag group names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag Group
To remove a tag from the project; select the tag and press Delete, click Edit | Delete, or use the Con-
figuration API Service.

Displaying Tag Group Properties
To review the tag group properties, right-click on the tag group and select Properties.
To review the tag group properties of a specific tag group via the Configuration API, access the doc-
umentation channel endpoint.

www. ptc.com

107

KEPServerEX

Tag Group Properties
From a client standpoint, tag groups allow users to separate data into smaller tag lists, making finding spe-
cific tags easier.

The following image used the supplied OPC Quick Client to create Cell1 and Cell2 tag groups and simplify
the OPC client browsing.

To add a new tag group to the project, right-click on either an existing device or tag group branch and select
New Tag Group from the context menu. Alternatively, click on either an existing device or tag group branch
and click the New Tag Group icon on the toolbar.

Tag groups can be added at any level from the device-level down, and multiple tag groups can be nested
together to fit the application's needs. As seen in the OPC Quick Client dialog above, the fully qualified OPC
item path is "Channel1.Device1.Machine1.Cell1.Tag1". For this OPC item, "Machine1" and "Cell1" segments
are nested tag groups.

Note: With the server's online full-time operation, these properties can be changed at any time. Any
changes made to the tag groups take effect immediately. If the name is changed, Clients that have already
used that tag group as part of an item request are not affected until they release the item and attempt to
reacquire it. New tag groups added to the project immediately allows browsing from a client. Utilize the
User Manager to restrict access rights to server features to prevent operators from changing the properties.

What is the Alias Map?
The Alias Map provides both a mechanism for backwards compatibility with legacy server applications as
well as a way to assign simple alias names to complex tag references. This is especially useful in client applic-
ations that limit the size of tag address paths. Although the latest version of the server automatically creates
the alias map, users can add their own alias map entries to compliment those created by the server. Users
can also filter the server created aliases so that the only ones visible are their own.

www. ptc.com

108

KEPServerEX

Alias map elements can be exported and imported by right-clicking on the target alias in the tree view pane.

Alias map elements can be added, edited, and deleted by right-clicking on the target alias in the detail pane.

Note: When enabled, the Show auto-generated aliases displays those alias maps created by the server
automatically.

See Also: How to... Create and Use an Alias

Alias Properties
The Alias Map allows a way to assign alias names to complex tag references that can be used in client applic-
ations.

An alias is constructed by entering an alias name and clicking on the desired device name or group name.

www. ptc.com

109

KEPServerEX

Name: Specify the alias name, which can be up to 256 characters long. It must be unique in the alias map.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag
Group.

Description: Enter a description of this alias to clarify data sources and reports (optional).

Mapped to: Specify or browse to the location of the alias. Because the alias map does not allow tag items to
be browsed from the alias table, create a short nickname that replaces the address that leads up to the tag.
This makes it easier to address items in a client application that does not support tag browsing.

Scan Rate Override: Specify an update rate to be applied to all non-OPC tags accessed using this alias map
entry. The valid range is 0 to 99999990 milliseconds. The default is 0 milliseconds.
Tip: This setting is equivalent to the topic update rate found in many DDE-only servers.
Note: When set to 0 milliseconds, the server observes the scan rate set at the individual tag level.
See Also: Configuration API Service — Endpoints

What is the Event Log?
The Event Log provides the date, time, and source of an error, warning, information, or security event. For
more information, select a link from the list below.

Event Log Options
Event Log Settings

Event Log
Users can specify the type of events displayed in the Event Log. There are currently four types of events that
can be recorded: Error Events, Warning Events, Information Events, and Security Events. Descriptions of the
events are as follows:

Information: Messages that provide status and data requiring no interaction or correction, such as
successful connection or data collection.

Warning: Messages that indicate an issue that does not require interaction, but may result in unex-
pected results, such as a device not responding.

Error: Messages that alert the user to failures or problems that, generally, should be researched and
corrected for best results.

Security: Messages that call attention to conditions that are not best practices from a security per-
spective, such as running the software as the default user versus a logged-in user with valid cre-
dentials.

Note: To access the event types in the Configuration client, click Tools | Event Log. Alternatively, right-
click anywhere in the Event Log display.

Tools menu

www. ptc.com

110

KEPServerEX

Right Click

Note: The Event Log system needs a mechanism to protect its contents. If operators could change these
properties or reset the log, the purpose would be lost. Utilize the User Manager to limit the functions an
operator can access and prevent these actions from occurring.

See Also: Settings - Event Log

www. ptc.com

111

KEPServerEX

Tag Management
The server's user-defined tag management features can create a tag database structure to fit each applic-
ation's specific nature. Users can define multiple tag groups to separate tag data on a device-by-device basis
and can also add large numbers of tags through drag and drop editing. CSV import and export also allow
tag editing in any application. Like all other server features, new tags can be added to the application at any
time.

Automatic Tag Database Generation
The OPC server's ability to automatically generate tags for select communication drivers brings OPC tech-
nology one step closer to Plug and Play operation. Tag information can be read directly from a device, and
tags can also be generated from stored tag data. In either case, users no longer need to manually enter OPC
tags into the server.

System Tags
System tags provide general error feedback to client applications, allow the operation control over when a
device is actively collecting data, and permit a channel or device's standard properties to be changed from
an OPC client application. The number of System tags available at the channel or device level depends on
the nature of the driver being used.
Note: System tags can be grouped according to their purpose as both status and control or property

manipulation.
See Also: SAF System Tags

Property Tags
Property tags are additional tags that can be accessed by any Data Access client by appending the property
name to any fully qualified tag address. When using an OPC client that supports item browsing, users can
browse tag properties by turning on Include tag properties when a client browses the server under
OPC DA settings. For more information, refer to Project Properties — OPC DA.

Statistics Tags
Statistics tags provide feedback to client applications regarding the operation of the channel com-
munications in the server. When diagnostics are enabled, seven built-in Statistics tags are available. For
more information, refer to OPC Diagnostic Viewer.

Modem Tags
Modem tags configure modem properties and monitor modem status. They are only available when the
Connection Type in Channel Properties is set toModem. For more information, refer to Channel Prop-
erties — Serial Communications.

Communication Serialization Tags
Driver communications normally occur simultaneously across multiple channels, yielding higher data
throughput. In some applications, however, it is required that only one channel be allowed to communicate
at a time. Communication Serialization provides this support. Communication Serialization tags are used to
configure and monitor a channel's serialization status. Both the feature and its tags are only available to spe-
cific drivers. For more information, refer to the driver's help documentation.

CSV Import and Export
This server can import and export tag data in a Comma-Separated Variable (CSV) file to quickly create tags in
an application. The CSV functions are only available when a device or tag group is selected.

www. ptc.com

112

KEPServerEX

For information on which character to specify as the variable, refer to Options - General.

To jump to a specific section, select a link from the list below:
Exporting a Server Tag List
Importing a Server Tag List into the Server
Using Other Characters as the Delimiter

Creating a Template
The easiest way to create and import CSV file is to create a template. For more information, refer to the
instructions below.

1. To start, click File | Export CSV. Define the channels and devices for the project.

2. Define a tag for each device.

3. Export each device or tag group as a CSV file.

4. Use this template in a spreadsheet application that supports CSV files and modify the file as desired.

Note: The resulting CSV file can be saved to disk and re-imported into the server under the same
(or new) device or tag group.

Exporting a Server Tag List
Exporting a server tag list generates a .CSV text file that contains a heading record followed by a record for
each tag defined under the selected device or tag group. The heading record contains the following fields:

l Tag Name: The name of the tag as referenced in an OPC client.
The tag name may contain a group name prefix separated from the tag name with a period. For

example, a tag name of "Group1.Tag1" creates a group named "Group1" that contains "Tag1".
l Address: The device location referenced by the tag.
l Data Type: The data type used for the tag as shown in the server tag's data type drop-down list.
l Respect Data Type: This forces the tag to follow its defined data type, not the OPC client request (1,

0).
l Client Access: Read / write access (read only and read / write).
l Scan Rate: The rate in milliseconds at which the tag address is scanned when used with most non-

OPC clients.
l Scaling: Scaling mode (None, Linear, and Square Root).
l Raw Low: Low raw value.
l Raw High: High raw value.
l Scaled Low: Scaled low value.
l Scaled High: Scaled high value.
l Scaled Data Type: The data type used for the tag after scaling is applied.
l Clamp Low: Forces the resulting scaled value to stay within the limit of Scaled Low (1, 0).
l Clamp High: Forces the resulting scaled value to stay within the limit of Scaled High (1, 0).
l Eng. Units: Units string.
l Description: The description of the tag.
l Negate Value: Negates the resulting value before being passed to the client when scaling is applied

(1, 0).

Note: Each tag record contains the data for each field.

www. ptc.com

113

#OtherDelimiter

KEPServerEX

Microsoft Excel is an excellent tool for editing large groups of tags outside the server. Once a template CSV
file has been exported, it can be loaded directly into Excel for editing. A CSV file load in Excel would appear
as shown in the image below.

Importing a CSV Tag List into the Server
Once the tag list has been edited, it can be re-imported into the server by clicking File | Import CSV. This
option is only available when a device or tag group is selected.

Using Other Characters as the Delimiter
When utilizing a CSV file that does not use a comma or semi-colon delimiter, users should do one of the fol-
lowing:

l Save the project in XML. Then, perform mass configuration on the XML file instead of using CSV.
l Perform a search-and-replace on the delimiter in the CSV file and replace the delimiter with a

comma or semicolon. The delimiter being used by the OPC server (either comma or semicolon) must
be set to the replacement character.

See Also: Options - General

System Tags
System tags provide general error feedback to client applications, allow operational control when a device is
actively collecting data, and allow a channel or device's standard properties to be changed by a client applic-
ation when needed.

The number of system tags available at both the channel level and device level depends on the nature of
the driver being used. In addition, application-level system tags allow client applications to monitor the
server's status. System tags can also be grouped according to their purpose as both status and control or
property manipulation. Descriptions are as follows:

www. ptc.com

114

KEPServerEX

l Status Tags Status tags are read-only tags that provide data on server operation.
l Parameter Control Tags: Parameter control tags can be used to modify the server application's

operational characteristics. This provides a great deal of flexibility in the client applications. By using
the property control tags, users can implement redundancy by switching communications links or
changing the device ID of a target device. Users can also provide access to the tags through special
supervisory screens that allow a plant engineer to make changes to the communication parameters
of the server if needed.

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has
the appropriate permissions.

The tables below include descriptions of the following:

Application-Level System Tags
Channel-Level System Tags for Serial Port Drivers
Channel-Level System Tags for Ethernet Drivers
Device-Level System Tags for both Serial and Ethernet Drivers

Application-Level System Tags

Syntax Example: <Channel Name>.<Device Name>._System._ActiveTagCount

Tag Class Description

_ActiveTagCount Status Tag The _ActiveTagCount tag indicates the
number of tags that are currently active
in the server.

This is a read-only tag.

_ClientCount Status Tag The _ClientCount tag indicates the num-
ber of clients that are currently con-
nected to the server.

This is a read-only tag.

_Date Status Tag The _Date tag indicates the current date
of the system that the server is running
on. The format of this string is defined by
the operating system date / time settings.

This is a read-only tag.

_DateTime Status Tag The _DateTime tag indicates the GMT
date and time of the system that the
server is running on. The format of the
string is '2004-05-21T20:39:07.000'.

This is a read-only tag.

_DateTimeLocal Status Tag The _DateTimeLocal tag indicates the loc-
alized date and time of the system that
the server is running on. The format of

www. ptc.com

115

KEPServerEX

Tag Class Description

the string is '2004-05-21T16:39:07.000'.

This is a read-only tag.

_Date_Day Status Tag The _Date_Day tag indicates the current
day of the month of the system on which
the server is running.

This is a read-only tag.

_Date_DayOfWeek Status Tag The _Date_DayOfWeek tag indicates the
current day of the week of the system on
which the server is running. The format
of the string is a number from 0 (Sunday)
to 6 (Saturday).

This is a read-only tag.

_Date_Month Status Tag The _Date_Month tag indicates the cur-
rent month of the system on which the
server is running. The format of the
string is a number (such as "9" instead of
"September").

This is a read-only tag.

_Date_Year2 Status Tag The _Date_Year2 tag indicates the last
two digits of the current year of the sys-
tem on which the server is running.

This is a read-only tag.

_Date_Year4 Status Tag The _Date_Year4 tag indicates the current
year of the system on which the server is
running.

This is a read-only tag.

_ExpiredFeatures Status Tag The _ExpiredFeatures tag provides a list
of all server features whose time-limited
usage has expired. These features are no
longer operational.

This is a read-only tag.

_FullProjectName Status Tag The _FullProjectName tag indicates the
fully qualified path and file name to the
currently loaded project.

This is a read-only tag.

_IsDemo Status Tag The _IsDemo tag is no longer available as
the runtime does not enter Time Limited
mode in version 6.0 or higher. See the _
TimeLimitedFeatures, _LicensedFeatures,

www. ptc.com

116

KEPServerEX

Tag Class Description

and _ExpiredFeatures tags to monitor the
status of server features.

_LicensedFeatures Status Tag The _LicensedFeatures tag provides a list
of all server features in use that have a
valid license. These features are not sub-
ject to a time limit and will continue nor-
mal operation after any time-limited
features expire.

This is a read-only tag.

_OpcClientNames Status Tag The _OpcClientNames tag is a String
Array that lists the names of all OPC cli-
ents that connect to the server and
register their name through the
IOPCCommon::SetClientName method.

This is a read-only tag.

_ProductName Status Tag The _ProductName tag indicates the
name of the underlying communication
server.

This is a read-only tag.

_ProductVersion Status Tag The _ProductVersion tag indicates the ver-
sion of the underlying communication
server.

This is a read-only tag.

_ProjectName Status Tag The _ProjectName tag indicates the cur-
rently loaded project file name and does
not include path information.

This is a read-only tag.

_ProjectTitle Status Tag The _ProjectTitle tag is a String tag that
indicates the title of the project that is cur-
rently loaded.

This is a read-only tag.

_Time Status Tag The _Time tag indicates the current time
of the system that the server is running
on. The format of this string is defined by
the operating system date / time settings.

This is a read-only tag.

_Time_Hour Status Tag The _Time_Hour tag indicates the current
hour of the system on which the server is
running.

www. ptc.com

117

KEPServerEX

Tag Class Description

This is a read-only tag.

_Time_Hour24 Status Tag The _Time_Hour24 tag indicates the cur-
rent hour of the system on which the
server is running in a 24-hour format.

This is a read-only tag.

_Time_Minute Status Tag The _Time_Minute tag indicates the cur-
rent minute of the system on which the
server is running.

This is a read-only tag.

_Time_PM Status Tag The _Time_PM tag indicates the current
AM/PM status of the system on which the
server is running. This is a Boolean tag: 0
(False) indicates AM, and 1
(True) indicates PM.

This is a read-only tag.

_Time_Second Status Tag The _Time_Second tag indicates the cur-
rent second of the system on which the
server is running.

This is a read-only tag.

_TimeLimitedFeatures Status Tag The _TimeLimitedFeatures tag provides a
list of all server features that are time-lim-
ited and the time remaining (in seconds).
When the time remaining expires, the fea-
ture ceases operation.

This is a read-only tag.

_TotalTagCount Status Tag The _TotalTagCount tag indicates the
total number of tags that are currently
being accessed. These tags can be active
or inactive.

Note: This count does not represent
the number of tags configured in the pro-
ject.

This is a read-only tag.

Channel-Level System Tags for Serial Port Drivers

Syntax Example: <Channel name>._System._BaudRate

www. ptc.com

118

KEPServerEX

Tag Class Description

_AvailableNetworkAdapters Status Tag The _AvailableNetworkAdapters tag lists
the available NICs and includes both
unique NIC cards and NICs that have mul-
tiple IPs assigned to them. Additionally,
this tag also displays any WAN con-
nections that are active, such as a dial-up
connection. This tag is provided as a
string tag and can be used to determine
the network adapters available for use on
this PC. The string returned contains all
of the NIC names and their IP assign-
ments. A semicolon separates each
unique NIC to allow the names to be
parsed within an OPC application. For a
serial driver, this tag is only used if Eth-
ernet Encapsulation is selected.

This is a read-only tag.

_BaudRate Parameter Control Tag The _BaudRate tag allows the baud rate
of the driver to be changed at will. The _
BaudRate tag is defined as a long value
and therefore new baud rates should be
written in this format. Valid baud rates
are as follows: 300, 600, 1200, 2400,
4800, 9600, 19200, 38400, 56000, 56700,
115200, 128000 and 256000.

This is a read / write tag.

_ComId Parameter Control Tag The _ComId tag allows the comm port
selection for the driver to be changed at
will. As a string tag, the desired comm
port must be written to the tag as a string
value using the following possible selec-
tions: COM 1, COM 2 COM 3, COM 4, - - -,
COM 16, and Ethernet Encapsulation.
When selecting Ethernet Encapsulation
Mode, users must set the IP number of
the remote terminal server. This is done
at the device-level and is shown below.

This is a read / write tag.

_DataBits Parameter Control Tag The _DataBits tag allows the data bits of
the driver to be changed at will. The _
DataBits tag is defined as a signed 8-bit
value. Valid data bits selections are 5, 6, 7
and 8.

This is a read / write tag.

www. ptc.com

119

KEPServerEX

Tag Class Description

_Description Status Tag The _Description tag indicates the current
user-defined text description for the
channel it is referencing.

This is a read-only tag.

_EnableDiagnostics Parameter Control Tag The _EnableDiagnostics tag allows the dia-
gnostic system of the driver to be
enabled and disabled. The diagnostic sys-
tem places a little additional burden on
the driver while enabled. As such the
server allows diagnostics to be enabled
or disabled to improve the driver's per-
formance. When disabled, the Dia-
gnostics tags are not available. For more
information, refer to Statistics Tags.

This is a read / write tag.

_EncapsulationPort Parameter Control Tag The _EncapsulationPort tag controls the
destination port for Ethernet con-
nections. The valid range is 0 to 65535.

This is a read / write tag.

_EncapsulationProtocol Parameter Control Tag The _EncapsulationProtocol tag controls
the protocol used for Ethernet con-
nections. Options include TCP/IP and
UDP.

This is a read / write tag.

_FloatHandlingType Parameter Control Tag The _FloatHandlingType tag allows the
current channel-level float handling to be
changed. It exists in the channel-level _
System folder. For more information, refer
to Channel Properties — Advanced.

This is a read / write tag.

_FlowControl Parameter Control Tag The _FlowControl tag allows the flow con-
trol setting of the driver to be changed at
will. As a string tag, the desired flow con-
trol setting must be written to the tag in
this format. Possible selections for flow
control include: None, DTR, RTS, "DTR,
RTS,"RTS Always, and RTS Manual. Not all
drivers support the RTS Manual mode of
operation.

This is a read / write tag.

_InterDeviceDelayMS Parameter Control Tag The _InterDeviceDelayMS tag specifies

www. ptc.com

120

KEPServerEX

Tag Class Description

the amount of time that the channel
delays sending a request to the next
device after the data has been received
from the current device on the same
channel. The valid range is 0 to 60000 mil-
liseconds. The default setting is 0.

Note: This tag is only available on
channels that use protocols that utilize
the Inter-Device Delay.

This is a read / write tag.

_NetworkAdapter Parameter Control Tag The _NetworkAdapter tag allows the cur-
rent NIC adapter in use by the driver to
be changed at will. As a string tag, the
name of the newly desired NIC adapter
must be written to this tag in string
format. The string written must match
the exact description of the desired NIC
for the change to take effect. NIC names
can be obtained from the _Avail-
ableNetworkAdapters tag listed above.
For a serial driver, this tag will only be
used if Ethernet Encapsulation is selec-
ted.

Note: When changing the NIC selection
the driver is forced to break all current
device connections and reconnect.

This is a read / write tag.

_Parity Parameter Control Tag The _Parity tag allows the parity of the
driver to be changed at will. As a string
tag, the desired parity setting must be
written to the tag as a string value using
the following possible selections: None,
Odd and Even.

This is a read / write tag.

_ReportComErrors Parameter Control Tag The _ReportComErrors tag allows the
reporting of low level communications
errors such as parity and framing errors
to be enabled or disabled. This tag is
defined as a Boolean tag and can be set
either True or False. When True, the
driver will report any low-level com-
munications error to the server event sys-
tem. When set False the driver will ignore

www. ptc.com

121

KEPServerEX

Tag Class Description

the low-level communications errors and
not report them. The driver will still reject
a communications transaction if it con-
tains errors. If the environment contains
a lot of electrical noise, this feature can
be disabled to prevent the Event Log
from filling with error messages.

This is a read / write tag.

_RtsLineDrop Parameter Control Tag The _RtsLineDrop tag allows the RTS Line
to be lowered for a user-selected period
of time after the driver attempts to trans-
mit a message. This tag is only effective
for drivers that support Manual RTS
mode. The _RtsLineDrop is defined as a
long value. The valid range is 0 to 9999
milliseconds. The Manual RTS mode has
been designed for use with radio
modems.

This is a read / write tag.

_RtsLinePollDelay Parameter Control Tag The _RtsLinePollDelay tag allows a user-
configurable pause to be placed after
each message sent from the driver. This
tag is only effective for drivers that sup-
port Manual RTS mode. The _
RtsLinePollDelay is defined as a long
value. The valid range is 0 to 9999 mil-
liseconds. The Manual RTS mode has
been designed for use with radio
modems.

This is a read / write tag.

_RtsLineRaise Parameter Control Tag The _RtsLineRaise tag allows the RTS Line
to be raised for a user-selected period of
time before the driver attempts to trans-
mit a message. This tag is only effective
for drivers that support Manual RTS
mode. The _RtsLineRaise is defined as a
long value. The valid range is 0 to 9999
milliseconds. The Manual RTS mode has
been designed for use with radio
modems.

This is a read / write tag.

_SharedConnection Status Tag The _SharedConnection tag indicates that
the port settings are being shared with
another channel.

www. ptc.com

122

KEPServerEX

Tag Class Description

This is a read-only tag.

_StopBits Parameter Control Tag The _StopBits tag allows the stop bits of
the driver to be changed at will. The _
StopBits tag is defined as a signed 8-bit
value. Valid data bit selections are 1 and
2.

This is a read / write tag.

_UnsolicitedEncapsulationPort Parameter Control Tag The _UnsolicitedEncapsulationPort tag
controls the Ethernet port that has been
opened to allow connections. The valid
range is 0 to 65535.

This is a read / write tag.

_Unso-
licitedEncapsulationProtocol

Parameter Control Tag The _UnsolicitedEncapsulationProtocol
tag controls the Ethernet protocol used
to connect to the Unsolicited Encap-
sulation Port. Options include TCP/IP and
UDP.

This is a read / write tag.

_WriteOptimizationDutyCycle Parameter Control Tag The _WriteOptimizationDutyCycle tag
allows the duty cycle of the write to read
ratio to be changed at will. The duty cycle
controls how many writes the driver
attempts for each read it performs. The _
WriteOptimizationDutyCycle is defined as
an unsigned long value. The valid range is
1 to 10 write per read. For more inform-
ation, refer to Channel Properties —
Write Optimizations.

This is a read / write tag.

Channel-Level System Tags for Ethernet Drivers

Syntax Example: <Channel name>._System._NetworkAdapter

Tag Class Description

_AvailableNetworkAdapters Status Tag The _AvailableNetworkAdapters tag lists
the available NICs and includes both
unique NIC cards and NICs that have mul-
tiple IPs assigned to them. This tag also
displays any WAN connections that are
active, such as a dial-up connection. This
tag is provided as a string tag and can be

www. ptc.com

123

KEPServerEX

Tag Class Description

used to determine the network adapters
available for use on this PC. The string
returned contains all of the NIC names
and their IP assignments. A semicolon
separates each unique NIC to allow the
names to be parsed within an OPC applic-
ation. For a serial driver, this tag is only
used if Ethernet Encapsulation is selec-
ted.

This is a read-only tag.

_Description Status Tag The _Description tag indicates the current
user-defined text description for the
channel it is referencing.

This is a read-only tag.

_EnableDiagnostics Parameter Control Tag The _EnableDiagnostics tag allows the dia-
gnostic system of the driver to be
enabled and disabled. The diagnostic sys-
tem places a little additional burden on
the driver while enabled. As such the
server allows diagnostics to be enabled
or disabled to improve the driver's per-
formance. When disabled, the Dia-
gnostics tags will not be available. For
more information, refer to Statistics Tags.

This is a read / write tag.

_EncapsulationPort Parameter Control Tag The _EncapsulationPort tag controls the
port used for Ethernet connections. The
valid range is 0 to 65535.

This is a read / write tag.

_EncapsulationProtocol prop Parameter Control Tag The _EncapsulationProtocol tag controls
the protocol used for Ethernet con-
nections. Options include TCP/IP and
UDP.

This is a read / write tag.

_FloatHandlingType Parameter Control Tag The _FloatHandlingType tag allows the
current channel-level float handling to be
changed. It exists in the channel-level _
System folder. For more information, refer
to Channel Properties — Advanced.

This is a read / write tag.

_InterDeviceDelayMS Parameter Control Tag The _InterDeviceDelayMS tag specifies

www. ptc.com

124

KEPServerEX

Tag Class Description

the amount of time that the channel
delays sending a request to the next
device after the data has been received
from the current device on the same
channel. The valid range is 0 to 60000 mil-
liseconds. The default setting is 0.

Note: This tag is only available on
channels that use protocols that utilize
the Inter-Device Delay.

This tag is a read / write tag.

_NetworkAdapter Parameter Control Tag The _NetworkAdapter tag allows the cur-
rent NIC adapter in use by the driver to
be changed at will. As a string tag, the
name of the newly desired NIC adapter
must be written to this tag in string
format. The string written must match
the exact description to take effect. NIC
names can be obtained from the ableNet-
workAdapters tag listed above. For a
serial driver, this tag is only used if Eth-
ernet Encapsulation is selected.
Note: When changing the NIC selec-

tion, the driver is forced to break all cur-
rent device connections and reconnect.

This is a read / write tag.

_UnsolicitedEncapsulationPort Parameter Control Tag The _UnsolicitedEncapsulationPort tag
controls the Ethernet port that has been
opened to allow connections. The valid
range is 0 to 65535.

This is a read / write tag.

_Unso-
licitedEncapsulationProtocol

Parameter Control Tag The _UnsolicitedEncapsulationProtocol
tag controls the Ethernet protocol used
to connect to the Unsolicited Encap-
sulation Port. Options include TCP/IP and
UDP.

This is a read / write tag.

_WriteOptimizationDutyCycle Parameter Control Tag The _WriteOptimizationDutyCycle tag
allows the duty cycle of the write to read
ratio to be changed at will. The duty cycle
controls how many writes the driver
attempts for each read it performs. The _
WriteOptimizationDutyCycle is defined as
an unsigned long value. The valid range is

www. ptc.com

125

KEPServerEX

Tag Class Description

1 to 10 write per read. For more inform-
ation, refer to Channel Properties —
Write Optimizations.

This is a read / write tag.

Device-Level System Tags for both Serial and Ethernet Drivers

Syntax Example: <Channel Name>.<Device Name>._System._Error

Tag Class Description

_AutoCreateTagDatabase Parameter Control Tag The _AutoCreateTagDatabase tag is a
Boolean tag that is used to initiate the
automatic tag database functions of this
driver for the device to which this tag is
attached. When this tag is set True, the
communications driver attempts to auto-
matically generate a tag database for this
device. This tag does not appear for
drivers that do not support Automatic
Tag Database Generation.

This is a read / write tag.

_AutoDemoted Status Tag The _AutoDemoted tag is a Boolean tag
that returns the current auto-demoted
state of the device. When False, the
device is not demoted and is being
scanned by the driver. When set True, the
device is in demoted and not being
scanned by the driver.

This is a read-only tag.

_AutoDemotionDiscardWrites Parameter Control Tag The _AutoDemotionDiscardWrites tag is a
Boolean tag that specifies whether or not
write requests should be discarded dur-
ing the demotion period. When this tag is
set to False, all writes requests are per-
formed regardless of the _AutoDemoted
state. When this tag is set to True, all
writes are discarded during the demotion
period.

This is a read / write tag.

_AutoDemotionEnabled Parameter Control Tag The _AutoDemotionEnabled tag is a
Boolean tag that allows the device to be
automatically demoted for a specific time
period when the device is unresponsive.

www. ptc.com

126

KEPServerEX

Tag Class Description

When this tag is set False, the device is
never demoted. When this tag is set True,
the device is demoted when the _AutoDe-
motedFailureCount has been reached.

This is a read / write tag.

_AutoDemotedFailureCount Parameter Control Tag The _AutoDemotedFailureCount tag spe-
cifies how many successive failures it
takes to demote a device. The _AutoDe-
motedFailureCount is defined as a long
data type. The valid range is 1 to 30. This
tag can only be written to if _AutoDe-
motionEnabled is set to True.

This is a read / write tag.

_AutoDemotionIntervalMS Parameter Control Tag The _AutoDemotionIntervalMS tag spe-
cifics how long, in milliseconds, a device
is demoted before re-attempting to com-
municate with the device. The _AutoDe-
motionIntervalMS is defined as a long
data type. The valid range is 100 to
3600000 milliseconds. This tag can only
be written to if _AutoDemotionEnabled is
set to True.

This is a read / write tag.

_ConnectTimeout Parameter Control Tag The _ConnectTimeout tag allows the
timeout associated with making an IP con-
nection to a device to be changed at will.
This tag is available when either a native
Ethernet driver is in use or a serial driver
is in Ethernet Encapsulation mode. The _
ConnectTimeout is defined as a Long
data type. The valid range is 1 to 30
seconds.

This is a read / write tag.

_DemandPoll Status / Control Tag The _DemandPoll tag issues a device
read to all the active client items asso-
ciated with the device. This is the equi-
valent of a client performing an
asynchronous device read for those
items. It takes priority over any sched-
uled reads that are supposed to occur for
items that are being actively scanned.

The _DemandPoll tag becomes True (1)
when written to. It returns to False (0)

www. ptc.com

127

KEPServerEX

Tag Class Description

when the final active tag signals that the
read requests have completed. Sub-
sequent writes to the _DemandPoll tag
fails until the tag value returns to False.
The demand poll respects the read /
write duty cycle for the channel.

This is a read / write tag.

_Description Status Tag The _Description tag indicates the current
user-defined text description for the
device it is referencing.

This is a read-only tag.

_DeviceId Parameter Control Tag The _DeviceId tag allows the ID of the
device to be changed at will. The data
format of the _DeviceId depends on the
type of device. For most serial devices
this tag is a Long data type. For Ethernet
drivers the _DeviceId is formatted as a
string tag, allowing the entry of an IP
address. In either case, writing a new
device ID to this tag causes the driver to
change the target field device. This only
occurs if the device ID written to this tag
is correctly formatted and within the valid
range for the given driver.

This is a read / write tag.

_Enabled Parameter Control Tag The _Enabled tag provides a very flexible
means of controlling the server applic-
ation. In some cases, specifically in
modem applications, it can be convenient
to disable all devices except the device
currently connected to the modem. Addi-
tionally, using the _Enabled tag to allow
the application to turn a particular device
off while the physical device is being ser-
viced can eliminate harmless but
unwanted communications errors in the
Event Log.

This is a read / write tag.

Note: Write requests to device con-
figuration system tags like _Enabled
require editing the Project Modification
permissions of the Kepware User Group
associated with the client’s incoming con-

www. ptc.com

128

KEPServerEX

Tag Class Description

nection protocol and chosen authen-
tication method. For example, Quick Cli-
ent and all other OPC DA clients require
permissions to be modified for the
Anonymous User Group: (Kepware
Administration Settings... under the
User Manager tab, select and expand
the Anonymous Clients group. Right-
click and select Properties.... Expand Pro-
ject Modification, then Server-
main.Device, and set Edit to Allow). OPC
UA clients and other interfaces may
authenticate with custom user groups
and modifications should be made to
those user groups as required.

_EncapsulationIp Parameter Control Tag The _EncapsulationIp tag allows the IP of
a remote terminal server to be specified
and changed at will. This tag is only avail-
able on serial drivers that support Eth-
ernet Encapsulationmode. The _
EncapsulationIp is defined as a string
data type, allowing the entry of an IP
address number. The server will reject
entry of invalid IP addresses. This tag is
only valid for a serial driver in Ethernet
Encapsulation mode.

This is a read / write tag.

_EncapsulationPort Parameter Control Tag The _EncapsulationPort tag allows the
port number of the remote terminal
server to be specified and changed. The _
EncapsulationPort is defined as a long
data type. The valid range is 0 to 65535.
The port number entered in this tag must
match that of the desired remote ter-
minal server for proper Ethernet Encap-
sulation to occur. This tag is only valid for
a serial driver in Ethernet Encapsulation
mode.

This is a read / write tag.

_EncapsulationProtocol Parameter Control Tag The _EncapsulationProtocol tag allows
the IP protocol used for Ethernet Encap-
sulation to be specified and changed. The
_EncapsulationProtocol is defined as a
string data type. Writing either "TCP/IP"
or "UDP" to the tag specifies the IP pro-
tocol. The protocol used must match that

www. ptc.com

129

KEPServerEX

Tag Class Description

of the remote terminal server for proper
Ethernet Encapsulation to occur. This tag
is only valid for a serial driver in Ethernet
Encapsulation mode.

This is a read / write tag.

_Error Status Tag The _Error tag is a Boolean tag that
returns the current error state of the
device. When False, the device is oper-
ating properly. When set True, the driver
has detected an error when com-
municating with this device. A device
enters an error state if it has completed
the cycle of request timeouts and retries
without a response. For more inform-
ation, refer to Device Properties —
Timing.

This is a read-only tag.

_FailedConnection Status Tag The _FailedConnection tag specifies that
the connection failed. It is only available
to specific drivers.

This is a read-only tag.

Tip: The _FailedConnection system tag
is supported by the following drivers:

l Allen-Bradley ControlLogix Eth-
ernet

l IEC 60870-5-101 Client
l IEC 60870-5-104 Client
l Lufkin Modbus
l Modbus RTU Server Serial
l Omron NJ Ethernet
l Weatherford 8500

_InterRequestDelay Parameter Control Tag The _InterRequestDelay tag allows the
time interval between device transactions
to be changed at will. The _Inter-
RequestDelay is defined as a Long data
type. The valid range is 0 to 30000 mil-
liseconds. This tag only applies to drivers
that support this feature.

This is a read / write tag.

www. ptc.com

130

KEPServerEX

Tag Class Description

_RequestAttempts Parameter Control Tag The _RequestAttempts tag allows the
number of communication attempts to
be changed. The _RequestAttempts is
defined as a Long value. The valid range
is 1 to 10 attempts. This tag applies to all
drivers equally.

This is a read / write tag.

_RequestTimeout Parameter Control Tag The _RequestTimeout tag allows the
timeout associated with a data request to
be changed at will. The _RequestTimeout
tag is defined as a Long value. The valid
range is 100 to 30000 milliseconds. This
tag applies to all drivers equally.

This is a read / write tag.

_NoError Status Tag The _NoError tag is a Boolean tag that
returns the current error state of the
device. When True, the device is oper-
ating properly. When False, the driver has
detected an error when communicating
with this device. A device enters an error
state if it has completed the cycle of
request timeouts and retries without a
response. For more information, refer to
Device Properties — Timing.

This is a read-only tag.

_ScanMode Status Tag The _ScanMode tag allows clients to dic-
tate the method used for updates. It is
defined as a String value, and cor-
responds to the user-specified
Scan Mode setting (located in device prop-
erties). "Respect client specified scan
rate" has a value of "UseClientRate,"
"Request data no faster than x" has a
value of "UseFloorRate," and "Request all
data at x" has a value of "For-
ceAllToFloorRate." The default setting is
"Respect client specified scan rate."

This is a read-only tag.

_ScanRateMs Status Tag The _ScanRateMs tag corresponds to the
_ScanMode tag, and is used when the
Scan Mode is set to Request Data No
Faster than Scan Rate or Request All Data
at Scan Rate. This tag is defined as a
DWord tag. The default setting is 1000

www. ptc.com

131

KEPServerEX

Tag Class Description

milliseconds.

This is a read-only tag.

_SecondsInError Status Tag The _SecondsInError tag is a DWord tag
that displays the number of seconds
since the device entered an error state.
This tag displays 0 when the device is not
in an error state.

This is a read-only tag.

_Simulated Parameter Control Tag The _Simulated tag is a Boolean tag that
provides feedback about the simulation
state of the current device. When read as
True, this device is in a simulation mode.
While in simulation mode, the server
returns good data for this device, but
does not attempt to communicate with
the actual physical device. When tag is
read as False, communication with the
physical device is active. Changing the tag
value allows clients to enable / disable
simulated mode.

This is a read / write tag.

When using an OPC client, the System tags are found under the _System branch of the server browse space
for a given device. The following image taken from the supplied OPC Quick Client shows how the System
tags appear to an OPC client.

www. ptc.com

132

KEPServerEX

The _System branch found under the DeviceName branch is always available. If referencing a system tag
from a DDE application given the above example and the DDE defaults, the link would appear as "<DDE ser-
vice name>|_ddedata!Channel1.Device1._System._Error".

See Also:
Property Tags
Modem Tags
Statistics Tags
Store and Forward Tags

Property Tags
Property tags are used to provide read-only access to tag properties for client applications. To access a tag
property, append the property name to the fully qualified tag address that has been defined in the server's
tag database. For more information, refer to Tag Properties — General.

If the fully qualified tag address is "Channel1.Device1.Tag1," its description can be accessed by appending
the description property as "Channel1.Device1.Tag1._Description".

Supported Property Tag Names
Tag Name Description

_Name The _Name property tag indicates the current name for the tag it is referencing.

_Address The _Address property tag indicates the current address for the tag it is ref-
erencing.

_Description The _Description property tag indicates the current description for the tag it is

www. ptc.com

133

KEPServerEX

Tag Name Description

referencing.

_RawDataType The _RawDataType property tag indicates the raw data type for the tag it is ref-
erencing.

_ScalingType The _ScalingType property tag indicates the scaling type (None, Linear or
Square Root) for the tag it is referencing.

_ScalingRawLow The _ScalingRawLow property tag indicates the raw low range for the tag it is
referencing. If scaling is set to none this value contains the default value if scal-
ing was applied.

_ScalingRawHigh The _ScalingRawHigh property tag indicates the raw high range for the tag it is
referencing. If scaling is set to none this value contains the default value if scal-
ing was applied.

_Scal-
ingScaledDataType

The _ScalingScaledDataType property tag indicates the scaled to data type for
the tag it is referencing. If scaling is set to none this value contains the default
value if scaling was applied.

_ScalingScaledLow The _ScalingScaledLow property tag indicates the scaled low range for the tag it
is referencing. If scaling is set to none this value contains the default value if
scaling was applied.

_ScalingScaledHigh The _ScalingScaledHigh property tag indicates the scaled high range for the tag
it is referencing. If scaling is set to none this value contains the default value if
scaling was applied.

_ScalingClampLow The _ScalingClampLow property tag indicates whether the scaled low value
should be clamped for the tag it is referencing. If scaling is set to none this
value contains the default value if scaling was applied.

_ScalingClampHigh The _ScalingClampHigh property tag indicates whether the scaled high value
should be clamped for the tag it is referencing. If scaling is set to none this
value contains the default value if scaling was applied.

_ScalingUnits The _ScalingUnits property tag indicates the scaling units for the tag it is ref-
erencing. If scaling is set to none this value contains the default value if scaling
was applied.

See Also:
Statistics Tags
Modem Tags
System Tags

Statistics Tags
Statistics tags are used to provide feedback to client applications regarding the operation of the channel
communications in the server. Statistics tags are only available when diagnostics are enabled. For more
information, refer to Channel Diagnostics and OPC Diagnostics Viewer.

Syntax Example: <Channel Name>._Statistics._FailedReads

Supported Statistics Tag Names
Tag Name Description

_SuccessfulReads The _SuccessfulReads tag contains a count of the number of reads this channel has

www. ptc.com

134

KEPServerEX

Tag Name Description

completed successfully since the start of the application or since the last time the _
Reset tag was invoked. This tag is formatted as unsigned 32-bit integer and will
eventually rollover. This tag is read only.

_SuccessfulWrites The _SuccessfulWrites tag contains a count of the number of writes this channel has
completed successfully since the start of the application or since the last time the _
Reset tag was invoked. This tag is formatted as an unsigned 32-bit integer and will
eventually rollover. This tag is read only.

_FailedReads The _FailedReads tag contains a count of the number of reads this channel has
failed to complete since the start of the application or since the last time the _Reset
tag was invoked. This count is only incremented after the channel has failed the
request based on the configured timeout and retry count for the device. This tag is
formatted as an unsigned 32-bit integer and will eventually rollover. This tag is read
only.

_FailedWrites The _FailedWrites tag contains a count of the number of writes this channel has
failed to complete since the start of the application or since the last time the _Reset
tag was invoked. This count is only incremented after the channel has failed the
request based on the configured timeout and retry count for the device. This tag is
formatted as unsigned 32-bit integer and will eventually rollover. This tag is read
only.

_RxBytes* The _RxBytes tag contains a count of the number of bytes the channel has received
from connected devices since the start of the application or since the last time the _
Reset tag was invoked. This tag is formatted as unsigned 32-bit integer and will
eventually rollover. This tag is read only.

_TxBytes The _TxBytes tag contains a count of the number of bytes the channel has sent to
connected devices since the start of the application or since the last time the _Reset
tag was invoked. This tag is formatted as unsigned 32-bit integer and will eventually
rollover. This tag is read only.

_Reset The _Reset tag can be used to reset all diagnostic counters. The _Reset tag is format-
ted as a Boolean tag. Writing a non-zero value to the _Reset tag will cause the dia-
gnostic counters to be reset. This tag is read / write.

_MaxPend-
ingReads

The _MaxPendingReads tag contains a count of the maximum number of pending
read requests for the channel since the start of the application (or the _Reset tag)
was invoked. This tag is formatted as an unsigned 32-bit integer. The tag is read
only.

_MaxPend-
ingWrites

The _MaxPendingWrites tag contains a count of the maximum number of pending
write requests for the channel since the start of the application (or the _Reset tag)
was invoked. This tag is formatted as an unsigned 32-bit integer. The tag is read
only.

_NextReadPriority

The _NextReadPriority is a channel-level system tag that reflects the priority level of
the next read in the channel's pending read queue. Possible values are -1: No
pending reads. 0: The next read is a result of a schedule-level demand poll or expli-
cit read from a client. 1 - n: The next read is a result of scheduled read. This tag is
read only.

_PendingReads
The _PendingReads tag contains a count of the current pending read requests for
the channel. This tag is formatted as an unsigned 32-bit integer. The tag is read
only.

www. ptc.com

135

KEPServerEX

Tag Name Description

_PendingWrites
The _PendingWrites tag contains a count of the current pending write requests for
the channel. This tag is formatted as an unsigned 32-bit integer. This tag is read
only.

* This statistical item is not updated in simulation mode (See Device Properties).

Statistics tags are only available when diagnostics are enabled. To access from an OPC client, the diagnostic
tags can be browsed from the _Statistics branch of the server browse space for a given channel. The fol-
lowing image is taken from the OPC Quick Client, and shows how a Diagnostics tag appears to an OPC client.

The _Statistics branch (located beneath the channel branch) only appears when diagnostics are enabled for
the channel. To reference a Diagnostics tag from a DDE application, given the above example and the DDE
defaults, the link would appear as: "<DDE service name>|_ddedata!Channel1._Statistics._SuccessfulReads".

The Diagnostics tag's value can also be viewed in the server by using the Communication Diagnostics
Viewer. If Diagnostics Capture is enabled under Channel Properties, right-click on that channel and select
Diagnostics.

See Also:
System Tags
Property Tags

Modem Tags
The following tags are created automatically for the channel when modem use is selected.

www. ptc.com

136

Device_Properties_Operating_Mode.htm

KEPServerEX

Syntax Example: <Channel Name>.<Device Name>._Modem._Dial

Supported Modem Tag Names
Tag Name Description Access

_Dial

Writing any value to this tag initiates dialing of the current PhoneNumber.
The write is ignored unless the current Status is 3 (Idle). An error is reported if
the is current phone number has not been initialized. Attempting to issue a
dial command while the Mode tag is set to 2 (incoming call only) generates an
error.

Read /
Write

_DialNumber

The DialNumber tag shows the phone number that is actually dialed, after
any dialing preference translations have been applied (such as the addition of
an area code). This tag is intended for debugging purposes. It can provide use-
ful feedback to an operator if phone numbers are entered manually.

Read
Only

_Hangup

Writing any value to this tag hangs up the current connection. The Hangup
tag ends the current connection when an external device has called the
server. Writes to the Hangup tag are ignored if the Status <= 3 (Idle), meaning
that there is no currently open connection.

Read /
Write

_LastEvent
Whenever the Status changes, the reason for the change is set in this tag as a
number. For a list of event numbers and meanings, refer to Last Event Values.

Read
Only

_Mode

This allows for configuring the line for calling only, answering only or both.

Writing a 1 to the Mode tag sets the line for outgoing calls only, no incoming
calls are answered when in this mode. Writing a 2 to the Mode tag sets the
line for incoming calls only, requests to dial out (writes to the Dial tag) are
ignored. The default setting is 0, which allows for both outgoing and incoming
calls.

This value can only be changed when the Status is <= 3 (Idle).

Read /
Write

_PhoneNum-
ber

This is the current phone number to be dialed. Users can write to this value at
any time, but the change is only effective if Status is <= 3 (Idle). If users write
to the phone number while the status is greater than 3, the number is
queued. As soon as the status drops to 3 or less, the new number is trans-
ferred to the tag. The queue is of size 1, so only the last phone number writ-
ten is retained.

The phone number must be in canonical format to apply the dialing pref-
erences. If the canonical format is used, the resulting number to be dialed
(after dialing preferences have been applied) can be displayed as the
DialNumber.

Canonical format is the following:
+<country code>[space](<area code>)[space]<phone number>

example: +1 (207) 846-5881

Note: The country code for the U.S. is 1.

If the number is not in canonical form, dialing preferences are not applied.

Read /
Write

www. ptc.com

137

KEPServerEX

Tag Name Description Access

The number is dialed exactly as it is entered. Users can also enter a Phone-
book tag name instead of a phone number. In this case, the current value of
the Phonebook tag is used.

_Status
This is the current status of the modem assigned to a channel. For a list of
status values and meanings, refer to Status Values.

Read
Only

_
StringLastEvent

This contains a textual representation of the LastEvent tag value. For a list of
event numbers and meanings, refer to Last Event String Values.

Read
Only

_StringStatus
This contains a textual representation of the Status tag value. For a list of
event numbers and meanings, refer to Status String Values.

Read
Only

Status Values
The five lowest bits of the 32-bit status variable are currently being used.

Bit Meaning

0 Initialized with TAPI

1 Line open

2 Connected

3 Calling

4 Answering

When read as an integer, the value of the Status tag is always one of the following:

Value Meaning

0 Un-initialized, the channel is not usable

1 Initialized, no line open

3 Line open and the state is idle

7 Connected

11 Calling

19 Answering

Status String Values
Status Value StringStatus Text

0 Uninitialized, channel is unusable

1 Initialized, no line open

3 Idle

7 Connected

11 Calling

19 Answering

Last Event Values

www. ptc.com

138

KEPServerEX

LastEvent Reason for Change

-1 <blank> [no events have occurred yet]

0 Initialized with TAPI

1 Line closed

2 Line opened

3 Line connected

4 Line dropped by user

5 Line dropped at remote site

6 No answer

7 Line busy

8 No dial tone

9 Incoming call detected

10 User dialed

11 Invalid phone number

12 Hardware error on line caused line close

Last Event String Values
LastEvent StringLastEvent

-1 <blank> [no events have occurred yet]

0 Initialized with TAPI

1 Line closed

2 Line opened

3 Line connected

4 Line dropped by user

5 Line dropped at remote site

6 No answer

7 Line busy

8 No dial tone

9 Incoming call detected

10 User dialed

11 Invalid phone number

12 Hardware error on line caused line close

13 Unable to dial

Communication Serialization Tags
Syntax Example: <Channel Name>._CommunicationSerialization._VirtualNetwork

Tag Description

_NetworkOwner

Class: Status Tag

The _NetworkOwner tag indicates if the channel currently owns
control of communications on the network. The frequency of
change reflects how often the channel is granted control.

www. ptc.com

139

KEPServerEX

Tag Description

This tag is read only.

_Registered

Class: Status Tag

The _Registered tag indicates whether the channel is currently
registered to a virtual network. After setting the _Vir-
tualNetwork, the channel unregisters from the network it is cur-
rently registered to (indicated in _RegisteredTo) when it is
capable of doing so. In other words, if the channel owns con-
trol during the switch, it cannot unregister until it has released
control. Upon unregistering, the channel registers with new vir-
tual network. This tag is FALSE if _VirtualNetwork is None.

This tag is read only.

_RegisteredTo

Class: Status Tag

The _RegisteredTo tag indicates the virtual network to which
the channel is currently registered. After setting the _Vir-
tualNetwork, the channel unregisters from the network it is cur-
rently registered to when it is capable of doing so. In other
words, if the channel owns control during the switch, it cannot
unregister until it has released control. Upon unregistering, the
channel registers with new virtual network. This tag indicates if
there are delays switching networks as _VirtualNetwork and _
RegisteredTo could differ for a period of time. This tag is N/A if
_VirtualNetwork is None.

This tag is read only.

_Stat-
isticAvgNetworkOwnershipTimeSec

Class: Status Tag

The _StatisticAvgNetworkOwnershipTimeSec tag indicates how
long on average the channel holds ownership of control since
the start of the application (or since the last time _Stat-
isticsReset was written to). This tag helps identify busy chan-
nels/bottlenecks. This tag is formatted as a 32-bit floating point
and may eventually rollover.

This tag is read only.

_StatisticNetworkOwnershipCount

Class: Status Tag

The _StatisticNetworkOwnershipCount tag indicates the num-
ber of times the channel has been granted control of com-
munications since the start of the application (or since the last
time _StatisticsReset was written to). This tag is formatted as an
unsigned 32-bit integer and may eventually rollover.

This tag is read only.

_StatisticNetworkOwnershipTimeSec

Class: Status Tag

The _StatisticNetworkOwnershipTimeSec tag indicates how
long in seconds the channel has held ownership since the start
of the application (or since the last time _StatisticsReset was
written to). This tag is formatted as a 32-bit floating point and
may eventually rollover.

This tag is read only.

_StatisticsReset The _StatisticsReset tag can be used to reset all the statistic

www. ptc.com

140

KEPServerEX

Tag Description

counters. The _StatisticsReset tag is formatted as a Boolean
tag. Writing a non-zero value to the _StatisticsReset tag causes
the statistics counters to be reset.

This tag is read / write.

_TransactionsPerCycle

The _TransactionsPerCycle tag indicates the number of read /
write transactions that occur on the channel when taking turns
with other channels in a virtual network. It allows the channel-
level setting to be changed from a client application. This tag is
formatted as a signed 32-bit integer (Long). The valid range is 1
to 99. The default setting is 1.

This tag is read / write.

_VirtualNetwork

Class: Parameter Tag

The _VirtualNetwork tag allows the virtual network selection for
the channel to be changed on the fly. As a string tag, the
desired virtual network must be written to the tag as a string
value using the following possible selections: None, Network 1,
Network 2, ---, Network 500. To disable communication seri-
alization, select None.

This tag is read / write.

www. ptc.com

141

KEPServerEX

Communications Management
Auto-Demotion
The Auto-Demotion properties allow a driver to temporarily place a device off-scan in the event that a
device is not responding. By placing a non-responsive device offline, the driver can continue to optimize its
communications with other devices on the same channel by stopping communications with the non-
responsive device for a specific time period. After the specific time period has been reached, the driver re-
attempts to communicate with the non-responsive device. If the device is responsive, the device is placed
on-scan; otherwise, it restarts its off-scan time period.
 For more information, refer to Device Properties — Auto-Demotion.

Network Interface Selection
An NIC card can be selected for use with any Ethernet driver or serial driver running in Ethernet Encap-
sulation mode. The Network Interface feature is used to select a specific NIC card based on either the NIC
name or its currently assigned IP address. The list of available NICs includes both unique NIC cards and NICs
that have multiple IPs assigned to them. The selection displays any WAN connections that may be active
(such as a dial-up connection).

Ethernet Encapsulation
The Ethernet Encapsulation mode has been designed to provide communications with serial devices con-
nected to terminal servers on the Ethernet network. A terminal server is essentially a virtual serial port: the
terminal server converts TCP/IP messages on the Ethernet network to serial data. Once the message has
been converted to a serial form, users can connect standard devices that support serial communications to
the terminal server. Using a terminal server device allows users to place RS-232 and RS-485 devices through-
out the plant operations while still allowing a single localized PC to access the remotely mounted devices.
Furthermore, the Ethernet Encapsulation mode allows an individual network IP address to be assigned to
each device as needed. By using multiple terminal servers, users can access hundreds of serial devices from
a single PC via the Ethernet network.
For more information, refer to How Do I... and Device Properties — Ethernet Encapsulation.

Modem Support
This server supports the use of modems to connect to remote devices, which is established through the use
of special modem tags that become available at the channel-level when a dial-up network connection has
been created. These channel-level modem tags can be used to dial a remote device, monitor the modem
status while connected and terminate the call when completed.
Note: Not all serial drivers support the use of modems. To determine modem support, refer to the specific

driver's help documentation.

When accessing themodem systems tags, the channel name can be used as either a base group or topic
name. To be available, modems must be configured with the operating system through the Control Panel
settings.
Once the modem has been properly installed, it can be enabled by selectingModem as the Physical
Medium in the channel properties.
 For specific setup information, refer to the Windows and modem documentation.

Important: Many new commercial modems are designed to dial-up network server connections and
negotiate the fastest and clearest signal. When communicating to a serial automation device, the modem
needs to connect at a specific Baud (Bits per Second) and Parity. For this reason, an external modem (which
can be configured to dial using specific Baud Rate and Parity settings) is strongly recommended. To determ-
ine the best modem for a specific application, refer to Technical Support. For examples on how to use a
modem in a project, refer to Using a Modem in the Server Project.

www. ptc.com

142

KEPServerEX

Using a Modem in the Server Project
Modems convert serial data from the RS-232 port into signal levels that can be transmitted over the phone
line. To do this, they break down each byte of the serial data into bits that are used to generate the signal
transmitted. Most modems can convert up to 10 bits of information for every byte of data that is sent.
Devices must be able to use 10 bits or less to communicate through a modem. To determine the number of
bits being used by a specific device, refer to the formula below.

Start Bits + Data Bits + Parity + Stop Bits = Total Bit Count

For example, the Modbus RTU Driver is configured to use 8 Data Bits, Even Parity, 1 Stop Bit, and 1 Start Bit.
When plugged into the formula, it would be 1 + 8 + 1 + 1, which equals 11 bits. A normal modem could not
transmit data to this Modbus device. If Parity is changed to None, it would be 1 + 8 + 0 + 1, which equals 10
Bits. A normal modem could transmit data to this Modbus device.

Some drivers cannot be configured to use a 10-bit or less data format, and so cannot use standard
modems. Instead, they require modems that can handle transmitting 11 data bits. For drivers that fall into
this category, consult the device's manufacturer for recommendations on an appropriate modem vendor.
Modem operation is available for all serial drivers, regardless of driver support for modem operation.

Configuring the Initiating Modem
This server uses the Windows TAPI interface to access modems attached to the PC. The TAPI interface was
designed to provide Windows programs a common interface that could be accessed by a range of modems
existing in a PC. A set of drivers provided by the modem's manufacturer for the Windows OS must be
installed before the server can use the modem in a project. The Windows Control Panel can be used to
install new modems.

For information regarding modem installation and setup, refer to both the Windows and the modem's doc-
umentation.

Once the modem has been properly installed, users can begin using it in a server project. The receiving end,
or the device modem, must be properly configured before it can be used. Users must confirm that the
receiving modemmatches the profile provided by the driver.

Cables
Before the project can be used, the cable connection must be configured between the receiving modem and
the device. Three cables are required: the existing device communication cable for direct connection, a
NULL modem adapter, and a NULL modem cable. A NULL modem cable is connected to the modem, and all
pins are connected to the same pins on both ends of the cable. The device communication cable is used to
connect to the target device, and usually has pins 2 and 3 reversed. Because the cable being used to talk to
the device for the direct connection is working by this point, it can be used on the receiving modem by
attaching a NULL modem adapter. Similarly, a PC modem cable runs from the PC to the initiating modem.
With the cables in place, a modem can now be used in the application.

Note: NULL modem adapters can be found at most computer stores.

Example: Server-side Modem Configuration
After the modems have been configured and installed, they can be used with the server.

1. To start, load the direct connect project and double-click on the channel name. In Channel Prop-
erties, open the Serial Communications group.

www. ptc.com

143

KEPServerEX

2. In the Physical Medium drop-down menu, selectModem.

3. InModem Settings, select a modem that is available on the computer.

Note: Users are not able to select Modem from the Physical Medium drop-down menu if there
are none available on the computer. If this occurs, exit the server and attempt to reinstall the
modem using the Modem Configuration tools supplied by the operating system.

4. To configure the initiating modem's characteristics, use the properties inModem Settings. For more
information, refer to Channel Properties — Serial Communications.

5. Once finished, click Apply. Then, click OK to save and exit the Channel Properties.

Using a Modem in an Application
Once modem operation has been enabled, a list of pre-defined tags are available to data clients. These
Modem tags control and monitor an attached modem, and are contained under the channel name (which
has become an active OPC access path through which the Modem tags are accessed). Because the server
knows very little about what the application needs for modem control, it does not imply any type of control.
By using the predefined Modem tags, users can apply the application's scripting capabilities to control how
the server uses the selected modem.

Phonebook
A Phonebook is a collection of Phonebook tags (Phone Numbers) that can be used in place of specifying a
telephone number written to the “_PhoneNumber” tag in the Modem system tags. The Phonebook is auto-
matically created for any channel that has the Physical Medium set toModem. The data associated with a
Phonebook tag is a phone number to be dialed by the server. The act of a client writing to a Phonebook tag
causes the server to dial the phone number associated with that tag.

Data Type Privilege

String Read / Write

Phonebook tags are created by creating new entries in the Phonebook. To add a new Phonebook entry click
on the Phonebook node in the project tree and then click New Phone Number icon.

This opens the Phone Number property editor.

Name: Specify the name of the phone number entry. It will be part of the OPC browse data in the “_Phone-
book” system tag group. It can be up to 256 characters in length. While using descriptive names is generally
a good idea, some OPC client applications may have a limited display window when browsing the tag space
of an OPC server. The Name of a phone number must be unique within a Phonebook.

Number: Specify the phone number to be dialed when the associated Phonebook tag is invoked from an
OPC client application. A string of up to 64 digits can be entered.

Description: Enter text to attach a comment to the phone number entry. It can be up to 255 characters in
length.

Note: With the server’s online full-time operation, these parameters can be changed at any time.
Changes made to properties take effect immediately; however, OPC clients that have already connected to
this tag are not affected until they release and reacquire the tag.

www. ptc.com

144

KEPServerEX

Auto-Dial Priority

When Auto-Dial has been enabled for the channel, the initial connection request begins by attempting to
dial the first entry encountered in the Phonebook. If that attempt is unsuccessful, the next number in the
phonebook is attempted and so on. This sequence continues until a modem connection is established or
the client releases all references to data that can be supplied by the channel. The order priority that Auto-
Dial uses to dial is user defined and can be changed by selecting a Phonebook entry and clicking one of the
Priority Change icons as shown below. They can also be changed by opening the context menu for the selec-
ted entry.

Example

For a Phonebook entry created and the name set to “Site1”:

Syntax Example: <Channel Name>._Phonebook.Site1

Auto-Dial
Auto-Dial automates the actions required of a client application when modem use is specified within the
server project. Without Auto-Dial , these actions (which include connecting, disconnecting, and assigning
phone numbers) would be performed by an external client application through the use of channel-level
Modem tags. For example, to begin the process of establishing a connection, the client would write a dial
string to "<Channel Name>._Modem._PhoneNumber" and write a value to "<Channel Name>._Modem._Dial".
When data from the remote device is no longer needed, the client would end the call by writing to "<Channel
Name>._Modem._Hangup".

Auto-Dial relieves the client of these responsibilities by automatically dialing phone numbers defined in the
Phonebook when attempting to establish a connection. The connection is automatically dropped when
there are no client references to tags that rely on the modem connection. To access the Auto-Dial property,
click Channel Properties | Serial Communications.

For more information, refer to Channel Properties — Serial Communications.

Modem Connection and Disconnection
The process of establishing a modem connection begins when a client connects to the server Runtime and
requests data from a device connection to a channel on which Auto-Dial is enabled. The initial connection
request begins by attempting to dial the first phone number encountered in the phonebook. If that attempt
is unsuccessful, the next number in the phonebook is attempted and so on. This sequence continues until a
modem connection is established or the client releases all references to data that can be supplied by the
channel.

Note: When re-establishing a connection, the phonebook entry that last produced a successful con-
nection is used. If no previous phonebook entry was successful (or if the entry has since been deleted), the
user-defined sequence of phone numbers is used. The number used for re-dialing is not preserved during
server reinitialization or restart.

See Also: Phonebook

Timing
Timing settings (such as how long to wait for a connection before proceeding to the next phone number)
are determined by the TAPI modem configuration and not by any specific Modem Auto-Dial setting.

www. ptc.com

145

KEPServerEX

Note: Some drivers do not allow the serial port to close once it has opened. Connections established
using these drivers do not experience disconnection until all client references have been released (unless
the TAPI settings are configured to disconnect after a period of idle time).

Client Access
Modem tags may be used to exert client-level control over the modem. If Modem Auto-Dialing is enabled,
however, write access to the Modem tags is restricted so that only one form of access is possible. The
Modem tags' values are updated just as they would if the client were in control of the modem.

Changing the Auto-Dial Settings from the Configuration
The runtime reacts to changes in settings according to the following rules:

l If Auto-Dial is enabled after the client has already dialed the modem and established a connection,
the change is ignored until the modem is disconnected. If the client is still requesting data from the
channel at the time of disconnection, the initial connection sequence begins.

l If Auto-Dial is enabled while no modem connection exists and data is being requested from the chan-
nel by the client, the initial connection sequence begins.

l If Auto-Dial is disabled while an existing auto-dial connection exists, no action is taken and the con-
nection is dropped.

See Also: Channel Properties — Serial Communications

www. ptc.com

146

KEPServerEX

Designing a Project
The following examples use the Simulator Driver supplied with the server to demonstrate the process of cre-
ating, configuring, and running a project. The Simulator Driver is a memory-based driver that provides both
static and changing data for demonstration purposes. Because it does not support the range of con-
figuration options found in other communication drivers, some examples may use images from other
drivers to demonstrate specific product features. For more information on a specific topic, select a link from
the list below.

Running the Server
Starting a New Project
Adding and Configuring a Channel
Adding and Configuring a Device
Adding User-Defined Tags
Generating Multiple Tags
Adding Tag Scaling
Saving a Project
Opening an Encrypted Project
Testing a Project

 For information on software and hardware requirements, refer to System Requirements.

Running the Server
This server can be run as both a service and as a desktop application. When running in the default setting as
a service, the server is online at all times. When running as a desktop application, the OPC client can auto-
matically invoke the server when it attempts to connect and collect data. For either process to work cor-
rectly, users must first create and configure a project. On start, the server automatically loads the most
recently used project.

Initially, users must manually invoke the server. To do so, either double-click the desktop icon or select Con-
figuration from the Administration menu located in the System Tray. The interface's appearance depends
on the changes made by the user.

Once the server is running, a project may be created.

For more information on the server elements, refer to Basic Server Components. For more information on the
user interface, refer to Navigating the Configuration.

Starting a New Project
Users must configure the server to determine what content is provided during operation. A server project
includes the definition of channels, devices, tag groups, and tags. These factors exist in the context of a pro-
ject file. As with many applications, a number of project files can be defined, saved, and loaded.

Some configuration options are global and applied to all projects. These global options are configured in the
Tools | Options dialog, which includes both General Options and Runtime Connection Options. These set-
tings are stored in an INI file called "settings.ini," which is stored in the Application Data directory selected
during installation. Although global options are usually stored in the registry, the INI file supports the copy-
ing of these global settings from one machine to another.

www. ptc.com

147

KEPServerEX

The software opens initially with a default project open. That file can be edited, saved, and closed like any
other file.

1. To define a new project, choose File | New.

2. If prompted to close, save, or edit offline.

3. Choose File | Save As.

4. Enter a password to secure the encrypted project file.

5. Choose the location in which to store the file.

6. Click Save.

7. Begin configuring the project file by Adding a Channel.

See Also: Options - General, Saving a Project

Adding and Configuring a Channel
When creating a new project, users must first determine the communications driver that is required by the
application: this is referred to as a channel in the server. A number of channels can be defined within a
single project, depending on the driver or drivers installed. For more information, refer to the instructions
below.

1. To start, add a new channel to the project by:
clicking Edit | Connectivity | New Channel - OR -

clicking the New Channel icon on the toolbar - OR -
right-clicking on the Connectivity node in the tree and choosing New Channel

2. In the channel wizard, leave the channel name at its default setting "Channel1". Then, click Next.

3. In Device Driver, select the communications driver to be applied to the channel. Then, click Next. In
this example, the Simulator Driver is used.

www. ptc.com

148

KEPServerEX

4. For the Simulator Driver, the next page is Channel Summary. Other devices may have additional
channel wizard pages that allow the configuration of other properties (such as communications port,
baud rate, and parity). For more information, refer to Channel Properties — Serial Communication.

5. Once complete, click Finish.

See Also: How to... Optimize the Server Project , Server Summary Information

Channel Creation Wizard
The Channel Creation Wizard steps through the process of configuring a channel (defined by the protocol
being used). Once a channel is defined, its properties and settings are used by all devices assigned to that
channel. The specific properties are dependent on the protocol or driver selected.

1. In the tree view, right-click on the Connectivity node and select New Channel (or choose Edit |
Connectivity | New Channel).

2. Select type of channel to be created from the drop-down list of available drivers.

3. Click Next.

www. ptc.com

149

KEPServerEX

4. Enter a name for the channel to help identify it (used in tag paths, event log messages, and aliasing).

5. Click Next.

6. Configure the channel properties according to the options and environment.

7. Review the summary for the new channel and choose Back to make changes or Finish to close.

Adding and Configuring a Device
Once a channel has been defined, a device can be added. The device identifies a communication link's phys-
ical node or station, and can be thought of as a way to frame the connection's definition to a specific point
of interest in the application. In this respect, a device is the correct term for describing the connection to a
database object. As such, "device" refers to a specific device on a network, support multiple device nodes,
and allows users to simulate networked devices.

Note: In this example, the Simulator Driver is used. The options in device wizard depend on the driver.

1. To start, select the channel to which the device will be added.

2. To start, add a new device to the project by:
clicking Edit | Connectivity | New Device - OR -

clicking the New Device icon on the toolbar - OR -
right-clicking on the Connectivity node in the tree and choosing New Device

www. ptc.com

150

KEPServerEX

3. In the device wizard, leave the name at its default setting "Device1" and click Next.

4. InModel, select either an 8 or 16-bit register size for the device being simulated and click Next.

Note: Other device drivers may require users to select a device model instead. For this example,
the 16-bit register size is chosen.

5. In ID, select the device ID (which is the unique identifier required by the actual communications pro-
tocol). Then, click Next.

Note: The device ID format and style depend on the communications driver being used. For the
Simulator Driver, the device ID is a numeric value.

6. In Scan Mode, specify the device's scan rate. Then, click Next.

7. For the Simulator Driver, the next page is the Device Summary. Other drivers may have additional
device wizard pages that allow the configuration of other properties (such as Timing). For more
information, refer to Device Properties.

8. Once complete, click Finish.

Note: With the server's online full-time mode of operation, the server can start providing OPC data
immediately. At this point, however, the configuration can potentially be lost because the project hasn't
been saved. Before saving, users can add tags to the server. For more information, refer to Adding User-
Defined Tags.

Device Creation Wizard
The Device Creation Wizard steps through the process of configuring a device for communication and data
collection. The specific properties are dependent on the protocol or driver selected.

1. In the tree view, locate and select the channel to which device(s) are being added.

2. Right-click and select New Device or choose Edit | Connectivity | New Device).

www. ptc.com

151

KEPServerEX

3. Enter a name for the device to help identify it (used in tag paths, event log messages, and aliasing).

4. Click Next.

5. Configure the device properties according to the options and environment.

6. Review the summary for the new device and choose Back to make changes or Finish to close.

Adding User-Defined Tags (Example)
The server can get data from a device to the client application in two ways. The most common method
requires that users define a set of tags in the server project and uses the name previously assigned to each
tag as the item of each link between the client and the server. This method makes all user-defined tags avail-
able for browsing within OPC clients.

 User-defined tags support scaling. For more information, refer to Adding Tag Scaling.
 Some situations support browsing for and selecting multiple tags. For more information, refer to Browsing for

Tags.

1. To start, select a device name from the Connectivity tree node. In this example, the selected device is
"Device1".

2. Click Edit | Connectivity | New Tag. Alternatively, right-click on the device and select New Tag.

3. In Tag Properties — General, edit the properties to match the following:

l Tag NameMyFirstTag

l Address R000

l Description (Optional)My First Simulator Tag

l Data TypeWord

l Client Access read / write

l Scan Rate 100 milliseconds. This property does not apply to OPC tags.

For more information, refer to Tag Properties — General.

4. If necessary, use Hints to determine the driver's correct settings. To invoke Hints, click on the ques-
tion mark icon in Tag Properties.

www. ptc.com

152

Device_Properties_Operating_Mode.htm

KEPServerEX

 Note The Address, Data Type, and Client Access fields depend on the communications driver. For
example, in the Simulator Driver, "R000" is a valid address that supports a data type of Word and has
read / write access.

5. For additional information, click Help. This invokes the "Address Descriptions" topic in the driver's
help documentation.

6. Commit the tag to the server by pressing Apply. The tag should now be visible in the server.

7. In this example, a second tag must be added for use in Tag Properties — Scaling. To do so, click the
New icon in Tag Properties — General. This returns the properties to their default setting.

8. Enter the following:

l Tag NameMySecondTag

l Address K000

l DescriptionMy First Scaled Tag

l Data Type Short

l Client Access read / write

9. Next, commit the new tag to the server by pressing Apply. The tag should now be visible in the
server.

Error Messages
When entering tag information, users may be presented with an occasional error message from the server
or driver. The server generates error messages when users attempt to add a tag using the same name as an
existing tag. The communications driver generates errors for three possible reasons:

1. If there are any errors entered in the address's format or content (including in the range of a par-
ticular device-specific data item).

2. When the selected data type is not available for the address.

3. If the selected client access level is not available for the address.

For more information on a specific error message, refer to Error Descriptions.

Dynamic Tag Addressing

www. ptc.com

153

KEPServerEX

Dynamic tag addressing defines tags solely in the client application. Instead of creating a tag item in the cli-
ent that addresses another tag item that has been created in the server, users only need to create a tag
item in the client that directly accesses the device address. On client connect, the server creates a virtual tag
for that location and start scanning for data automatically.

For more information, refer to Dynamic Tags.

Tips:

1. The server creates a special Boolean tag for every device in a project that can be used by a client to
determine whether that device is functioning properly. To use this tag, specify the item in the link as
"Error". This tag is zero if the device is communicating properly, or one if the device is not.

2. If the data type is omitted, the driver chooses a default data type based on the device and address
being referenced. The default data types for all locations are documented in the driver's help doc-
umentation. If the data type specified is not valid for the device location, the server rejects the tag
and an error posts in the Event Log.

3. If a device address is used as the item of a link (such that the address matches the name of a user-
defined tag in the server), the link references the address pointed to by the user-defined tag. With
the server's online full-time operation, users can start using this project in an OPC client at this time.

Browsing for Tags
The server supports browsing for available tags and, in some cases, selecting multiple tags to add to a pro-
ject.

1. Access the Tag Browser dialog box.

2. If the Include system / internal tag groups is available, enable to enable making these groups
available for selection.

www. ptc.com

154

KEPServerEX

3. If the Branch level tag selection is available, enable to enable selection of branch nodes in the tree
view on the left (which selects all the associated tags in the right).

4. Navigate the tree in the left pane to locate the branch containing the tag(s) to add.

5. Unless Branch level tag selection is enabled, select the tag(s) in the right pane. Where adding mul-
tiple tags is supported, standard keyboard functions (Shift, Ctrl) work to select multiple tags.

6. Click Apply.

See Also: Adding User Tags

Generating Multiple Tags
The Multiple Tag Generation Tool dynamically creates tags using user-defined driver nomenclature. For
information on using the tool, refer to the instructions below.

For more information on its properties, refer toMultiple Tag Generation.

1. To start, select a device and click Edit | Connectivity | New Tag. Alternatively, right-click on a
device and select New Tag.

2. In Tag Properties, select theMultiple Tag Generation icon (located to the bottom-right of the Iden-
tification properties).

3. InMultiple Tag Generation, define the tag name, then configure the Data Properties properties as
desired.

www. ptc.com

155

KEPServerEX

4. Click Add Static Text. In this group, enter the text as desired. Once finished, press OK.

5. Click Add Numeric Range. In this group, enter the base system, range, and increment. Once fin-
ished, press OK.

6. Click Add Text Sequence. In this group, enter the text as desired. Separate each entry with a new
line. Once finished, press OK.

7. Click Preview.

www. ptc.com

156

KEPServerEX

Note: Valid tags are displayed with a green checkmark. Invalid tags are displayed with a red x.

8. To add the tags as a group, use Add as Group.

9. To change a tag's name or starting value, select Tag Name. Once finished, click OK.

10. To generate the tags, click Generate. If the generation is successful, users return to the Multiple Tag
Generation dialog.

11. Click Close. Then, click OK. The generated tags should be visible in the tag display window.

See Also: Multiple Tag Generation

www. ptc.com

157

KEPServerEX

Adding Tag Scaling
Users have the option of applying tag scaling when creating a new tag in the server. This allows raw data
from the device to be scaled to an appropriate range for the application. There are two types of scaling: Lin-
ear and Square Root. For more information, refer to Tag Properties — Scaling.

1. To start, open the tag's Tag Properties.

2. Open the Scaling group.

3. For Type, select Linear or Square Root.

4. Specify the expected data range from the device with the high and low values and clamps. The scaled
data type also allows users to specify how the resulting scaled value is presented to the OPC client
application.

5. In Units, specify a string to the OPC client that describes the format or unit for the resulting engin-
eering value. To use the Units field, an OPC client that can access the Data Access 2.0 tag properties
data is required. If the client does not support these features, there is no need to configure this field.

6. Once the data has been entered as shown above, click OK.

Saving the Project
There should be a project configured with user-defined tags ready to be saved. How the project is saved
depends on whether the project is a Runtime project or an offline project.

When editing a Runtime project, the server's online full-time operation allows immediate access to tags
from a client once it has been saved to disk. Because the changes are made to the actual project, users can
save by clicking File | Save.

www. ptc.com

158

KEPServerEX

There are several valid file formats for project files: .OPF, .SOPF, and .JSON. The .OPF format is a binary pro-
ject file format that is not encrypted. The .JSON (JavaScript Object Notation) format, while convenient, is
human readable and text based, making it a less secure option to be used only where other security meas-
ures are in place. It is recommended that users save projects as .SOPF files as this file type is encrypted and
the most secure way to save project files.

Users can overwrite the existing project or save edits as a new project and are also given the option of load-
ing the new project as the default Runtime project.

Open a saved project by choosing File | Open to locate and select the project file.

When editing an offline project, users have the option to save to the same project or to save as a new pro-
ject. Once completed, click Runtime | Connect and load the new project as the default Runtime project.

www. ptc.com

159

KEPServerEX

When saving a new project with project file encryption enabled (on by default), a password must be set.
Enter a password or select No encryption (not recommended) and click Save. The password can be mod-
ified and project encryption can be turned on or off under Project Properties | General | Project File
Encryption. Click Cancel to stop without saving the project.
The password must be at least 14 characters and no more than 512. Passwords should include a mix of

uppercase and lowercase letters, numbers, and special characters. Choose a strong unique password that
avoids well-known, easily guessed, or common passwords. Projects that are saved as encrypted files with a
password are saved as .SOPF files. The .JSON and .OPF files are not supported options for encrypted pro-
jects.
Note: An OPC client application can automatically invoke an OPC server when the client needs data. The

OPC server, however, needs to know what project to run when it is called on in this fashion. The server
loads the most recent project that has been loaded or configured. To determine what project the server will
load, look to theMost Recently Used file list found in File. The loaded project is the first project file listed.

Project files are saved into the following directory by default:
C:\Users\<username>\Documents\Kepware\KEPServerEX\V6

The server automatically saves copies of the project in the following directory:
C:\ProgramData\Kepware\KEPServerEX\V6

Tip: If the file has been saved to an alternate location; search for *.OPF, *.SOPF, or *.json to locate avail-
able project files.

See Also: Application Data

www. ptc.com

160

KEPServerEX

Opening an Encrypted Project
When opening a project file that has been saved with project file encryption enabled, the user is prompted
to enter the password.

Enter the password used to encrypt the project file and click OK (or click Cancel to terminate the file open
operation).

Project files are saved to the data directory by default. For more information about saving files and file loc-
ations, see Application Data and Saving Project Files.

Testing the Project
The server includes a full-featured OPC Quick Client that supports all of the operations available in any OPC
client application. The Quick Client can access all of the data available in the server application, and is used
to read and write data, perform structured test suites, and test server performance. It also provides detailed
feedback regarding any OPC errors returned by the server.

1. To start, locate the OPC Quick Client program in the same program group as the server. Then, run
the OPC Quick Client.

www. ptc.com

161

KEPServerEX

2. Establish a connection by clicking Edit | New Server Connection.

3. In Server Properties, make connections with an OPC server either locally or remotely via DCOM. By
default, this dialog is pre-configured with the server's Prog ID (which is used by OPC clients to ref-
erence a specific OPC server).

Note: Once a connection is made, two things may happen. If the server is running, the OPC Quick
Client makes a connection to the server. If the server is not running, it starts automatically.

www. ptc.com

162

KEPServerEX

4. Add a group to the connection. To do so, select the server connection and click Edit | New Group.

Note: Groups act as a container for any tags accessed from the server and provide control over
how tags are updated. All OPC clients use groups to access OPC server data. A number of properties
are attached to a group that allow the OPC client to determine how often the data should be read
from the tags, whether the tags are active or inactive, whether a dead band applies, and so forth.
These properties let the OPC client control how the OPC server operates. For more information on
group properties, refer to the OPC Quick Client help documentation.

5. For the purpose of this example, edit the group properties to match the following image.

Note: The Update Rate, Percent Dead Band, and Active State properties control when and if data
is returned for the group's tags. Descriptions of the properties are as follows:

l Name: This property is used for reference from the client and can actually be left blank.

l Update Rate: icon to open how often data is scanned from the actual device and how often
data is returned to the OPC client as a result of that scan.

www. ptc.com

163

KEPServerEX

l Percent Dead Band: This property eliminates or reduces noise content in the data by only
detecting changes when they exceed the percentage change that has been requested. The
percent change is a factor of the data type of a given tag.

l Active State: This property turns all of the tags in this group either on or off.

6. Once complete, click OK.

Accessing Tags
OPC server tags must be added to the group before they can be accessed. OPC data access specifications
define a tag browsing interface as one that allows an OPC client to directly access and display the available
tags in an OPC server. By allowing the OPC client application to browse the tag space of the OPC server, click
on the desired tags to automatically add them to a group.

1. To start, select the group in which tags will be placed. Click Edit | New Item.

Note: The Add Items dialog also provides a tree view of the Browsing section and can be used to
browse into an OPC server to find tags configured at the server. When using the "Example1" project,
users can access the tags previously defined by expanding the branches of the view.

2. Once the tree hierarchy is at the point shown in the image above, users can begin adding tags to the
OPC group by double-clicking on the tag name. As tags are added to the group, the Item Count
shown at the bottom of the Add Items dialog increases to indicate the number of items being added.
If both "MyFirstTag" and "MySecondTag" were added, the item count should be 2.

3. Once complete, click OK.

www. ptc.com

164

KEPServerEX

Note: Users should now be able to access data from the server using the two tags that were
defined.

Note: The first tag, "MyFirstTag," should contain a changing value. The second tag should be zero
at this point. If users only needed to test the reading of an OPC item, they are now finished. If, how-
ever, users desired to change an OPC item, they can use one of the write methods to send new data
to the OPC item.

Writing Data to the OPC Server
The OPC Quick Client supports two methods for writing data to an OPC server: Synchronous Writes and
Asynchronous Writes. Synchronous writes perform a write operation on the OPC server and wait for it to
complete. Asynchronous writes perform a write on the OPC server but do not wait for the write to complete.
Either method can be chosen when writing data to an OPC item: the different write methods are more of a
factor in OPC client application design.

1. To start, first select the item. Then, right-click and select Synchronous or Asynchronous Writes. For
the purpose of this example, right-click on "MyFirstTag" and select Asynchronous Write.

Note: Although the Asynchronous 2.0 Write dialog is displayed, the value continues to update.

2. To enter a new value for this item, clickWrite Value and enter a different value.

www. ptc.com

165

KEPServerEX

3. Click Apply to write the data. This allows users to continue writing new values, whereas clicking OK
writes the new value and closes the dialog.

4. Click OK.

Note: If no new data has been entered, clicking OK does not send data to the server.

Conclusion
At this point, all of the basic steps involved in building and testing an OPC project have been discussed.
Users are encouraged to continue testing various features of the server and the OPC Quick Client for
greater understanding and comprehension. For more information on the OPC Quick Client, refer to its help
documentation.

Users can now begin developing the OPC application. If using Visual Basic, refer to the supplied example pro-
jects. These two projects provide both a simple and complex example of how OPC technology can be used
directly in Visual Basic applications.

www. ptc.com

166

KEPServerEX

How Do I...
For more information, select a link from the list below.

Allow Desktop Interactions
Create and Use an Alias
Optimize the Server Project
Process Array Data
Properly Name a Channel, Device, Tag, and Tag Group
Resolve Comm Issues When the DNS/DHCP Device Connected to the Server is Power
Cycled
Select the Correct Network Cable
Use an Alias to Optimize a Project
Use DDE with the Server
Use Dynamic Tag Addressing
Use Ethernet Encapsulation
Work with Non-Normalized Floating-Point Values

Allow Desktop Interactions
Some communication interfaces require the server to interact with the desktop. For example, Windows Mes-
saging Layer is used by DDE and FastDDE. In Windows, services run in an isolated session that is inac-
cessible to users logged on to the console. To allow desktop interaction, the process mode be set to
Interactive so the Runtime can run in the same user account as the current user. For information on changing
the process mode, refer to Settings - Runtime Process.

See Also: Accessing the Administration Menu

Create and Use an Alias
Complex Tag Reference Example
The image below displays a Complex tag reference in the server.

For example, to create a DDE link to an application for the "ToolDepth" tag, the DDE link must be entered as
"<DDE service name>|_ddedata!Channel1.Device1.Machine1.Cell2.ToolDepth".

Although the DDE link's <application>|<topic>!<item> format still exists, the content becomes more complex
when optional tag groups and the channel name are required as part of the topic. The alias map allows a
shorter version of the reference to be used in DDE client applications.

For more information, refer toWhat is the Alias Map.

www. ptc.com

167

KEPServerEX

Creating Aliases for Complex Address Paths
For information on creating aliases to simplify complex tag address paths, follow the instructions below.

1. In the tree view, select the alias to edit and double-click to open the alias node.

2. In the detail view, right-click and select New Alias (OR choose Edit | Aliases | New Alias).

3. Browse to the group or device that contains the item to be referenced.

4. Enter an alias name to represent the complex tag reference. This alias name can now be used in the
client application to address the tag found in the server. For information on reserved characters, refer
to How To... Properly Name a Channel, Device, Tag, and Tag Group.

www. ptc.com

168

KEPServerEX

5. The complex topic and item name "_ddedata! Channel1.Device1.Machine1.Cell2" can be replaced by
using the alias "Mac1Cell2". When applied to the example above, the DDE link in the application can
be entered as "<DDE service name>|Mac1Cell2!ToolDepth".

Note: Although possible, it is not recommended that users create an alias that shares a name with a
channel. The client's item fails if it references a dynamic address using the shared name. For example, if an
alias is named "Channel1" and is mapped to "Channel1.Device1," an item in the client that references "Chan-
nel1.Device1.<address>" is invalid. The alias must be removed or renamed so that the client's reference can
succeed.

See Also: Alias Properties

Optimize a Server Project
Nearly every driver of this server supports at least 100 channels; meaning, 100 COM / serial ports or 100
source sockets for Ethernet communications. To determine the number of supported channels available for
each device, refer to the Driver Information under Server Summary Information.

This server refers to communications protocols as a channel. Each channel defined in the application rep-
resents a separate path of execution in the server. Once a channel has been defined, a series of devices
must be defined under that channel. Each of these devices represents a single device from which data is col-
lected. While this approach to defining the application provides a high level of performance, it won't take full
advantage of the driver or the network. An example of how the application may appear when configured
using a single channel is shown below.

Each device appears under a single channel. In this configuration, the driver
must move from one device to the next as quickly as possible to gather inform-
ation at an effective rate. As more devices are added or more information is
requested from a single device, the overall update rate begins to suffer.

If the driver could only define one single channel, the example shown above would be the only option avail-
able. Using multiple channels distributes, however, the data collection workload by simultaneously issuing
multiple requests to the network. An example of how the same application may appear when configured
using multiple channels to improve performance is shown below.

Each device has now been defined under its own channel. In this new con-
figuration, a single path of execution is dedicated to the task of gathering data
from each device. If the application has fewer devices, it can be optimized
exactly how it is shown here.

The performance improves even if the application has more devices than chan-
nels. While 1 device per channel is ideal, the application benefits from addi-
tional channels. Although by spreading the device load across all channels
causes the server to move from device to device again, it does so with far fewer
devices to process on a single channel.

www. ptc.com

169

KEPServerEX

 This same process can be used to make multiple connections to one Ethernet device. Although the OPC
server may allow 100 channels for most drivers, the device ultimately determines the number of allowed
connections. This constraint comes from the fact that most devices limit the number of supported con-
nections. The more connections that are made to a device, the less time it has to process request on each
connect. This means that there can be an inverse tradeoff in performance as connections are added.

Process Array Data
Many of the drivers available for this server allow clients to access data in an array format. Arrays allow the
client application to request a specific set of contiguous data in one request. Arrays are one specific data
type; users would not have an array with a combination of Word and DWord data types. Furthermore,
arrays are written to in one transaction. To use arrays in the server, the client application must support the
ability to at least read array data.

Processing Array Data in a DDE Client
Array data is only available to the client when using CF_TEXT or Advanced DDE clipboard formats.

For client applications using Advanced DDE, the number of elements in the array is specified in the
SPACKDDE_DATAHDR_TAG structure. Only single dimensional arrays are supported by this protocol. This
structure should be used when poking array data to the server.

For clients using CF_TEXT, one or two-dimensional arrays are supported. Data in each row is separated by a
TAB (0x09) character and each row is terminated with a CR (0x0d) and a LF (0x0a) character. When a client
wants to poke an array of data values, the text string written should have this delimiter format.

When poking to an Array tag in either format, the entire array does not need to be written, but the starting
location is fixed. If attempting to poke data in an array format to a tag that was not declared as an array,
only the first value in the array is written. If attempting to poke more data than the tag's array size, only as
much data as the tag's array size is written. If attempting to poke data while leaving some data values blank,
the server uses the last known value for that array element when writing back to the device. If the value in
that register has been changed but has not been updated in the server, it is overwritten with the old value.
For this reason, it is best to be cautious when writing data to arrays.

Processing Array Data in an OPC Client
In OPC clients that support arrays, the OPC item data value is actually a variant array data type. The OPC cli-
ent parses the array element data: some clients create sub tags for display purposes. For example, if the
OPC client created a tag in its database named 'Process,' and the associated OPC item was a single dimen-
sional array of 5 elements, it may create 5 tags named 'Process_1', 'Process2,' and so forth. Other clients
(such as the OPC Quick Client) may display the data as Comma Separated Values (CSV).

Properly Name a Channel, Device, Tag, and Tag Group
When naming a channel, device, tag, or tag group, the following characters are reserved or restricted:

l Periods
l Double quotation marks
l Leading underscores
l Leading or trailing spaces

Note: Some of the restricted characters can be used in specific situations. For more information, refer
to the list below.

www. ptc.com

170

KEPServerEX

1. Periods are used in aliases to separate the original channel name and the device name. For example,
a valid name is "Channel1.Device1".

2. Underscores can be used after the first character. For example, a valid name is "Tag_1".

3. Spaces may be used within the name. For example, a valid name is "Tag 1".

Resolve Comm Issues when Server is Power Cycled
Certain drivers support DNS/DHCP resolution for connectivity, which allows users to assign unique domain /
network names for identification purposes. When starting and connecting to the network, the devices
request an IP address from the network DNS server. This process of resolving a domain name to an IP
address for connectivity takes time. For greater speed, the operating system caches all of the resolved IP /
domain names and re-uses them. The resolved names are held in cache for two hours by default.

 The server fails to reconnect to a device when the name of the IP address associated with the device's
domain / network changes. If this change is a result of the device being power cycled, it acquires a new IP.
This change may also be a result of the IP being manually changed on the device. In both cases, the IP
address that was being used no longer exists.

Because the server automatically flushes the cache every 30 seconds, the IP is forced to resolve. If this does
not correct the issue, users can manually flush the cache by typing the command string "ipconfig / flushdns"
in the PC's command prompt.

 For more information, refer to the following Microsoft Support article Disabling and Modifying Client Side
DNS Caching.

Select the Correct Network Cable
Without prior experience of Ethernet enabled devices or serial to Ethernet converters, users may find select-
ing the correct network cable a confusing task. There are generally two ways to determine the proper cable
setup. If connecting to the device or converter through a network hub or switch, users need Patch Cable. A
Patch Cable gets its name from the days when a telephone operator-style board was used to patch or con-
nect devices to each other. If connecting directly to the device from the PC, however, users need a Cros-
sover Cable. Both of these cables can be purchased from an electronic or PC supply store.

Use an Alias to Optimize a Project
To get the best performance out of a project, it is recommended that each device be placed on its own chan-
nel. If a project needs to be optimized for communication after it has been created, it can be difficult to
change the client application to reference the new item names. By using an alias map, however, users can
allow the client to make the legacy request to the new Configuration. To start, follow the instructions below.

1. To start, create a new channel for each device. Place the device under the new channel and delete
the original channel.

2. Under Alias in the tree view, create a New Alias for each device in the Alias Map. The alias name is
the original channel and device name separated by a period. For example, "Channel1.Device1".

For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag
Group.

www. ptc.com

171

http://support.microsoft.com/kb/318803
http://support.microsoft.com/kb/318803

KEPServerEX

Note: The server validates any request for items against the alias map before responding back to the cli-
ent application with an error that the item does not exist.

Use DDE with the Server
Using DDE in an Application
Dynamic Data Exchange (DDE) is a Microsoft communications protocol that provides a method for exchan-
ging data between applications running on a Windows operating system. The DDE client program opens a
channel to the DDE server application and requests item data using a hierarchy of the application (service)
name, topic name, and item name.

 For DDE clients to connect to the server interface, the runtime must be allowed to interact with the
desktop.

For more information, refer to How to Allow Desktop Interactions.

Example 1: Accessing a Register Locally (Using the Default Topic)
The syntax is <application>|<topic>!<item> where:

l application DDE service name
l topic _ddedata*

www. ptc.com

172

KEPServerEX

l itemModbus.PLC1.40001

*This is the default topic for all DDE data that does not use an alias map entry.

Note: An example of the syntax is "MyDDE|_ddedata!Modbus.PLC1.40001".

Example 2: Accessing a Register Locally (Using an Alias Name as a Topic)
The syntax is <application>|<topic>!<item> where:

l application DDE service name
l topicModPLC1*
l item 40001

*This is the topic using the alias map entry.

Note: An example of the syntax is "MyDDE|ModPLC1!40001" . For additional possible syntax, refer to the
DDE client's specific help documentation.

 See Also:
Project Properties — DDE
Project Properties — FastDDE & SuiteLink
What is the Alias Map?

Use Dynamic Tag Addressing
This server can also be used to dynamically reference a physical device data address from the server. The
server dynamically creates a tag for the requested item. Users cannot browse for tags from one client that
were dynamically added by another. Before adding tags dynamically, users should note the following:

l The correct syntax must be used for the data address. For more information on the specific driver's
syntax, refer to its help documentation.

l If users do not specify the requested item's data type, it is set to the default setting by the applic-
ation. For more information on the specific driver's supported data types, refer to its help doc-
umentation.

Note: In the examples below, the Simulator Driver is used with a channel name of 'Channel1' and a
device name of 'Device1'.

Example 1: Using Dynamic Tag Addressing in a Non-OPC Client
To get data from register 'K0001' in the simulated device, use an item ID of "Channel1.Device1.K001." The
default data type for this register is Short. Since non-OPC clients do not provide an update rate to the
server, the Dynamic tag's default update rate is 100 ms. Both data type and update rate can be overridden
after the dynamic request is sent.

To override the tag defaults, use the commercial AT sign ('@') at the end of the item. If intending to add the
register as a DWord (unsigned 32-bit) data type, use an item ID of "Channel1.Device1.K0001@DWord." To
change the default update rate to 1000 ms, use "Channel1.Device1.K0001@1000." To change both defaults,
use "Channel1.Device1.K0001@DWord,1000."

Note: The client application must be able to accept special characters like the '@' in its address space.

Example 2: Using Dynamic Tag Addressing in an OPC Client

www. ptc.com

173

KEPServerEX

In an OPC client, the same syntax can be used to override the data type if the client application does not
provide a way to specify a data type when the OPC item is added. Since the item's update rate is not used in
OPC, there is no need to override it.

Note: The client application must be able to accept special characters like the '@' in its address space.

Use Ethernet Encapsulation
Ethernet Encapsulation mode is designed to provide communications with serial devices connected to ter-
minal servers on the Ethernet network. A terminal server is essentially a virtual serial port that converts
TCP/IP messages on the Ethernet network to serial data. Once the message has been converted to serial
form, users can connect standard devices that support serial communications to the terminal server. The
diagram below shows how to employ Ethernet Encapsulation mode.

Note: For unsolicited drivers that support Ethernet Encapsulation, users must configure the port and the
protocol settings at the channel level. This allows the driver to bind to the specified port and process incom-
ing requests from multiple devices. An IP address is not entered at the channel because the channel accepts
incoming requests from all devices.

Ethernet Encapsulation can be used over wireless network connections (such as 802.11b and CDPD packet
networks) and has been developed to support a wide range of serial devices. By using a terminal server
device, users can place RS-232 and RS-485 devices throughout the plant operations while still allowing a
single localized PC to access the remotely mounted devices. Furthermore, Ethernet Encapsulation mode
allows an individual network IP address to be assigned to each device as needed. While using multiple ter-
minal servers, users can access hundreds of serial devices from a single PC.

Configuring Ethernet Encapsulation Mode

www. ptc.com

174

KEPServerEX

To enable Ethernet Encapsulation mode, open Channel Properties and select the Serial Communications
group. In the Connection Type drop-down menu, select Ethernet Encap.

Note: Only the drivers that support Ethernet Encapsulation allows the option to be selected.

Note: The server's multiple channel support allows up to 16 channels on each driver protocol. This allows
users to specify one channel to use the local PC serial port and another channel to use Ethernet Encap-
sulation mode.

 When Ethernet Encapsulation mode is selected, the serial port settings (such as baud rate, data bits, and
parity) are unavailable. After the channel has been configured for Ethernet Encapsulation mode, users must
configure the device for Ethernet operation. When a new device is added to the channel, the Ethernet Encap-
sulation settings can be used to select an Ethernet IP address, an Ethernet Port number, and the Ethernet
protocol.

Note: The terminal server being used must have its serial port configured to match the requirements of
the serial device to be attached to the terminal server.

Work with Non-Normalized Floating-Point Values
A non-normalized floating-point value is defined as Infinity, Not-a-Number (NaN), or as a Denormalized
Number. For more information, refer to the table below.

Term Definition

Non-Normalized
Floating-Point
Value

An IEEE-754 floating point number that is one of the following:

l Negative Infinity to Quiet Negative NaN.
l Positive Infinity to Quiet Positive NaN.
l Negative Denormalized Values.
l Positive Denormalized Values.

NaN
A number that exists outside of the range that may be represented as floating
points. There are two types of NaN representations: Quiet and Signaling.*

Denormalized
Number

A non-zero floating point number whose magnitude is less than the magnitude of
the smallest IEEE 754-2008 value that may be represented for a Float or a Double.

l For Floats, these include numbers between -1.175494E-38 and -1.401298E-45
(Negative Denormalized) and 1.401298E-45 and 1.175494E-38 (Positive Denor-
malized).

l For Doubles, these include numbers between -2.225074E-308 and -
4.940657E-324 (Negative Denormalized) and 4.940657E-324 and 2.225074E-
308 (Positive Denormalized).

www. ptc.com

175

KEPServerEX

*A floating-point value that falls within the Signaling NaN range is converted to a Quiet NaN before being
transferred to a client for Float and Double data types. To avoid this conversion, use a single element float-
ing-point array.

Handling Non-Normalized IEEE-754 Floating-Point Values
Users can specify how a driver handles non-normalized IEEE-754 floating point values through the "Non-
Normalized Value Should Be" property located in Channel Properties — Advanced. When Unmodified is
selected, all values are transferred to clients without any modifications. For example, a driver that reads a
32-bit float value of 0xFF800000(-Infinity) transfers that value "as is" to the client. When Replaced with Zero
is selected, certain values are replaced with zero before being transferred to clients. For example, a driver
that reads a 32-bit float value of 0xFF800000(-Infinity) are replaced with zero before being transferred to a
client.

Note: For information on which values are replaced with zero before being transferred to clients, refer
to the tables below.

IEEE-754 Range for 32-Bit Floating-Point Values

Name
Hexadecimal
Range

Decimal Range

Quiet -NaN
0xFFFFFFFF to
0xFFC00001

N/A

Quiet +NaN
0x7FC00000 to
7FFFFFFF

N/A

Indeterminate 0xFFC00000 N/A

Signaling -NaN
0xFFBFFFFF to
0xFF800001

N/A

Signaling +NaN
0x7F800001 to
7FBFFFFF

N/A

-Infinity
(Negative Over-
flow)

0xFF800000 ≤ -3.4028235677973365E+38

+Infinity
(Positive Over-
flow)

0x7F800000 ≥ 3.4028235677973365E+38

Negative Normal-
ized
-1.m × 2(e-127)

0xFF7FFFFF to
0x80800000

-3.4028234663852886E+38 to -1.1754943508222875E-38

Negative Denor-
malized
-0.m × 2(-126)

0x807FFFFF to
0x80000001

-1.1754942106924411E-38 to -1.4012984643248170E-45 (-
7.0064923216240862E-46)

Positive Denor-
malized
0.m × 2(-126)

0x00000001 to
0x007FFFFF

(7.0064923216240862E-46) * 1.4012984643248170E-45
to 1.1754942106924411E-38

Positive Normal-
ized
1.m × 2(e-127)

0x00800000 to
0x7F7FFFFF

1.1754943508222875E-38 to 3.4028234663852886E+38

IEEE-754 Range for 64-Bit Floating-Point Values

www. ptc.com

176

KEPServerEX

Name Hexadecimal Range Decimal Range

Quiet -NaN
0xFFFFFFFFFFFFFFFF to
0xFFF8000000000001

N/A

Quiet +NaN
0x7FF8000000000000 to
0x7FFFFFFFFFFFFFFF

N/A

Indeterminate 0xFFF8000000000000 N/A

Signaling -NaN
0xFFF7FFFFFFFFFFFF to
0xFFF0000000000001

N/A

Signaling
+NaN

0x7FF0000000000001 to
0x7FF7FFFFFFFFFFFF

N/A

-Infinity
(Negative
Overflow)

0xFFF0000000000000 ≤ -1.7976931348623158E+308

+Infinity
(Positive Over-
flow)

0x7FF0000000000000 ≥ 1.7976931348623158E+308

Negative
Normalized
-1.m × 2(e-
1023)

0xFFEFFFFFFFFFFFFF to
0x8010000000000000

-1.7976931348623157E+308 to -2.2250738585072014E-
308

Negative
Denormalized
-0.m × 2(-
1022)

0x800FFFFFFFFFFFFF to
0x8000000000000001

-2.2250738585072010E-308 to -4.9406564584124654E-
324 (-2.4703282292062328E-324)

Positive Denor-
malized
0.m × 2(-1022)

0x0000000000000001 to
0x000FFFFFFFFFFFFF

(2.4703282292062328E-324) * 4.9406564584124654E-
324 to 2.2250738585072010E-308

Positive
Normalized
1.m × 2(e-
1023)

0x0010000000000000 to
0x7FEFFFFFFFFFFFFF

2.2250738585072014E-308 to
1.7976931348623157E+308

www. ptc.com

177

KEPServerEX

Configuration API Service
The Configuration API allows an HTTPS RESTful client to add, edit, read, and delete objects such as channels,
devices, and tags in the server. The Configuration API offers the following features:

l Object definition in standard human-readable JSON data format
l Support for triggering and monitoring actions on some objects within the server
l Security via HTTP basic authentication and HTTP over SSL (HTTPS)
l Support for user-level access based on the User Manager and Security Policies Plug-In
l Transaction logging with configurable levels of verbosity and retention

Note: This document assumes familiarity with HTTPS communication and REST concepts.

Initialization - The Configuration API is installed as a Windows service and starts automatically with the sys-
tem.
Operation - The Configuration API supports connections and commands between the server and REST cli-
ents.
Shutdown - If the Configuration API must be stopped, use the Windows Service Control Manager to ter-
minate the Configuration API service.

Security
REST clients to the Configuration API must use HTTPS Basic Authentication. The user credentials are defined
in the server User Manager . Initial login to the Configuration API uses the Administrator username and the
password set during installation. Additional users and groups should be created to allow the appropriate
access.

The product Administrator password must be at least 14 characters and no more than 512 characters.
Passwords should be at least 14 characters and include a mix of uppercase and lowercase letters, numbers,
and special characters. Choose a strong unique password that avoids well-known, easily guessed, or com-
mon passwords.

The Administrator user account password cannot be reset, but additional administrative users can be
added to the Administrator user group. Best practices suggest each user with administrative access be
assigned unique accounts and passwords to ensure audit integrity and continual access through role and
staff changes.

Individual user accounts are locked for 10 minutes after 10 successive login attempts with different, incor-
rect passwords.

Documentation
Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable

actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-
port>/config/ (for default configurations).

Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-
umentation, include an “Accept” request header with “application/json”.

Configuration API Service — Architecture
The diagram below shows the layout of the components. The Configuration API Service is installed on the
same machine with the server.

www. ptc.com

178

KEPServerEX

Configuration API Service — Documentation Endpoint
The documentation endpoint can be used to retrieve information about the various endpoints, including:

l Supported properties of the endpoint
l Child nodes of the endpoint
l Property meta data (default values, state, data ranges, etc.)
l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.
 Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

Supported Actions

HTTP(S) Verb Action

GET Retrieves the current server properties

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/doc

Accessing the documentation endpoint URL via a browser prompts for authentication. User credentials
must be used to access the documentation.

Configuration API Service — Endpoint Mapping
The Configuration API allows uses the following endpoint mapping scheme:

Documentation Endpoints
/config
/config/{version}/doc

www. ptc.com

179

KEPServerEX

/config/{version}/doc/drivers/{driver_name}/channels
/config/{version}/doc/drivers/{driver_name}/devices
/config/{version}/doc/drivers/{driver_name}/models
/config/{version}/doc/drivers

Tip: The /config/{version}/doc endpoint provides a list of all endpoints for configuration objects and the
documentation endpoints for the specific object. This can be used to find definitions for all objects in the
API.

Project Connectivity Elements
/config/{version}/project
/config/{version}/project/aliases
/config/{version}/project/aliases/{alias_name}
/config/{version}/project/channels
/config/{version}/project/channels/{channel_name}
/config/{version}/project/channels/{channel_name}/devices
/config/{version}/project/channels/{channel_name}/devices/{device_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags/{tag_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags/{tag_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags/{tag_name}

Server Administration Endpoints
/config/{version}/admin
/config/{version}/admin/server_usergroups
/config/{version}/admin/server_users
/config/{version}/admin/ua_endpoints

Log Endpoints
/config/{version}/log
/config/{version}/event_log
/config/{version}/transaction_log

Health Status Endpoint
/config/{version}/status

About Endpoint
/config/{version}/about

Plug-in Endpoints
Plug-ins are considered project extensions and are managed under the Project endpoint:
/config/{version}/project/{namespace}
/config/{version}/project/{namespace}/{collection}
/config/{version}/project/{namespace}/{collection}/{object_name}

www. ptc.com

180

KEPServerEX

Configuration API Service — Health Status Endpoint
The health status endpoint is used to retrieve information about the Configuration API REST service status.
The two values returned from a successful Health Status check are "Name" and "Healthy". Name represents
the name of the server being checked and Healthy represents if the service is running or not. The Con-
figuration API REST Service is "healthy" if the value returned is true. If the Configuration API service is
unhealthy, no response is returned.

l Supported properties of the endpoint
l Child nodes of the endpoint
l Property meta data (default values, state, data ranges, etc.)
l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.
 Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

Supported Actions

HTTP(S) Verb Action

GET Retrieves the status of the Config API REST Service

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/status

Accessing the status endpoint URL requires no authentication. Passing in credentials will have the same
effect as its unauthenticated use.

Response Body:
[

{
 “Name”: “ConfigAPI REST service”,
 “Healthy”: true
 }
]

Configuration API Service — About Endpoint
The about endpoint returns relevant product information about the server runtime such as ProductID, Pro-
ductName, and ProductVersion.

Supported Actions

HTTP(S) Verb Action

GET Retrieves the product information about the server runtime

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/about

Accessing the status endpoint URL requires no authentication. Passing in credentials will have the same
effect as its unauthenticated use.

Response Body (Example):
{
 "product_id": "012",
 "product_name": "KEPServerEX",

www. ptc.com

181

KEPServerEX

 "product_version": "V6.12.0.0",
 "product_version_major": 6,
 "product_version_minor": 12,
 "product_version_build": 0,
 "product_version_patch": 0
}

Configuration API Service — Concurrent Clients
The Configuration API can serve multiple REST clients at the same time. To prevent a client from editing
stale configurations, the Server Runtime maintains a numeric project ID. Each time an object is edited
through the Configuration API or the local Configuration client, the Project ID changes. The current project
ID is returned in each GET response. PUT, POST, and DELETE requests will return a new Project ID in the
response HTTPS header if the update to the project is successful. The current project ID must be specified
by the client in all PUT requests.

The best practice is to issue a GET request, save the current project ID, and use that ID for the following PUT
request. If only one client is used, the client may put the property “FORCE_UPDATE”: true in the PUT request
body to force the Configuration API server to ignore the project ID.

Configuration API Service — Log Retrieval
Messages from the event log service can be read from a REST client by sending a GET to https://<host-
name>:<port>/config/v1/event_log. Messages from the API transaction log service can be read from a REST
client by sending a GET to https://<hostname>:<port>/config/v1/transaction_log. The response contains
comma-separated entries.

Refer to the Running in a Container for information about additional features and using KEPServerEX in a con-
tainer.

Event Log

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/event_log

Example Return:
[
{

 "timestamp": "2018-11-13T16:34:57.966",
 "event": "Security",
 "source": "KEPServerEX\\Runtime",
 "message": "Configuration session started by admin as Default User (R/W)."
},
{

 "timestamp": "2018-11-13T16:35:08.729",
 "event": "Warning",
 "source": "Licensing",
 "message": "Feature Modbus TCP/IP Ethernet is time limited and will expire at
11/13/2019 12:00 AM."
}

…
]

Filtering

www. ptc.com

182

KEPServerEX

Filtering: The Configuration API Event Log endpoint allows log items to be sorted or limited using filter para-
meters specified in the URI. The filters, which can be combined or used individually, allow the results of the
log query to be restricted to a specific event type (Information, Warning, Error, Security) or time period (e.g.
events which occurred since a given date, events which occurred before a given date, or events that
occurred between two dates). Example filtered log query:

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/event_log?event-
t=Warning,Error&limit=10&start=2016-01-01T00:00:00.000&end=2016-01-02T20:00:00.000

where:

1. event = Event type to filter. Multiple event types can be provided as comma-separated list. For
instance, event=Information,Warning,Error,Security. Selects all event types.

2. limit = Maximum number of log entries to return. The default setting is 100 entries.

3. start = Earliest time to be returned in YYYY-MM-DDTHH:mm:ss.sss (UTC) format.

4. end = Latest time to be returned in YYYY-MM-DDTHH:mm:ss.sss (UTC) format.

Note: The Limit filter overrides the result of the specified time period. If there are more log entries in the
time period than the Limit filter allows, only the newest specified quantity of records that match the filter cri-
teria are displayed.

Sorting

Sorting: Allows the Event Log to be sorted by a given property in ascending or descending order. For
instance, the following query sorts the Event Log messages by event type in ascending order (from lowest to
highest priority: Information, Warning, Error, Security):

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/event_log?sortProperty=event&sortOrder=ascending

where:

l sortProperty: The property to sort by (timestamp, event, source, message)
l sortOrder: The sort order (ascending or descending)

Pagination

Pagination: The Event Log response can be paginated to break up a long list of event log messages into mul-
tiple pages. Pagination is enabled when supplying the pageNumber and / or pageSize parameters:

l pageNumber: Represents the page index being accessed from a paginated response. The page
number must be an integer value between 1 and 2147483647. If this parameter is not specified but
pageSize is, the first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The
page size must be an integer value between 1 and 2147483647. If this parameter is not specified
but pageNumber is, 10 items per page are returned by default.

Below is an example of adding the pagination parameters to the eventlog endpoint:

l Requesting both pageSize and pageNumber:

www. ptc.com

183

KEPServerEX

https://<hostname_or_ip>:<port>/config/v1/event_log?pageNumber=1&pageSize=10

Note: Sorting and pagination of the eventlog is limited to the first 100,000 records. This means in Exten-
ded Data Store persistence mode, records beyond 100,000 are not considered for sorting and pagination.

Configuration API Service — Content Retrieval
Content is retrieved from the server by issuing an HTTP(S) GET request. The URI specified in the request can
target one of the following areas:

1. Online documentation (ex. https://<hostname_or_ip>:<port>/config/v1/doc or /config/v1/doc/drivers)

2. Event log entries (ex. https://<hostname_or_ip>:<port>/config/v1/event_log)

3. Transaction log entries (ex. https://<hostname_or_ip>:<port>/config/v1/transaction_log)

4. Project configuration (ex. https://<hostname_or_ip>:<port>/config/v1/project or /con-
fig/v1/project/channels/Channel1)

When targeting project configuration, a REST client can specify the type(s) of content that should be
returned. In this context the word “content” refers to a category or categories of data about a collection or
object instance.

By default, when a GET request is issued using an endpoint that identifies a collection, the server will return
a JSON array that contains one value for each instance in the collection where each value is a JSON object
that contains the properties of the instance.

By default, when a GET request is made using an endpoint that identifies an object instance, the server will
return a JSON object that contains the properties of that instance.

The default behavior of these requests can be altered by specifying one or more “content” query para-
meters appended to the URL as in https://<hostname>:<port>/config/v1/project?content=children. The fol-
lowing table shows the available content types and their applicability to each endpoint type:

Content Type Collection Endpoint Object Instance Endpoint

properties yes yes

property_definitions no yes

property_states no yes

type_definition yes yes

children yes yes

The following table shows the structure of the JSON response for a given content type:

GET Request URI JSON Response Structure

https://<hostname_or_ip>:<-
port>/config/v1/project?content=properties

{
<property name>: <value>,
<property name>: <value>,
...
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_definitions

[
{<property definition>},
{<property definition>},
...

www. ptc.com

184

KEPServerEX

GET Request URI JSON Response Structure
]

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_states

{
“allow”:
{
<property name>: true/false,

<property name>: true/false,

...
},
“enable”:
{
<property name>: true/false,

<property name>: true/false,

...
}
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=type_definition

{
"name": <type name>,
"collection": <collection
name>,
"namespace": <namespace
name>,
"can_create": true/false,
"can_delete": true/false,
"can_modify": true/false,
"auto_generated": true/-
false,
"requires_driver": true/-
false,
"access_controlled": true/-
false,
"child_collections": [<col-
lection names>]
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=children

{
<collection name>: [
{
“name”: <object instance
name>,
“href”: <object instance
uri>
},
...
],
<collection name>: [
{
“name”: <object instance
name>,
“href”: <object instance
uri>
},
...

www. ptc.com

185

KEPServerEX

GET Request URI JSON Response Structure
],
...
}

Multiple content types can be specified in the same request by separating with a comma. For example,
https://<hostname>:<port>/config/v1/project?content=children,type_definition. When multiple types are
specified, the JSON response will contain a single object with a member for each requested content type as
in:
{
 “properties”: <properties response structure>,
 “property_definitions”: <property definitions response structure>,
 “property_states”: <property states response structure>,
 “type_definition”: <type definition response structure>,
 “children”: <children response structure>
}

Type Definitions
The following table describes the members of the type definition JSON object.

Member Type Description

name string Object type name.

collection string
Collection name. Identifies the collection in which objects of this type will exist. This
name constitutes a valid endpoint that can be addressed using the REST interface.

namespace string
Namespace that implements the object type. Objects that are implemented by the
server exist in the “servermain” namespace. Other namespaces are defined by
optional components such as drivers, plug-ins and client interfaces.

can_create bool
Indicates whether or not instances of this type can be created by an end user. For
example, this is false for the “Project” type because it’s not something that can be
created.

can_delete bool
Indicates whether or not instances of this type can be deleted by an end user.
Again, the “Project” type is not something that can be deleted.

can_modify bool
Indicates whether or not instances of this type can be modified by an end user. For
example, the server has some auto-generated objects that exist to create a child col-
lection only and do not themselves have any modifiable properties.

auto_gen-
erated

bool
If true, instances of this type are auto-generated by the server. Typically objects of
this type will have the previous three members defined as “false”.

requires_
driver

bool
True if instances of this type cannot be created without supplying the name of an
installed driver.

access_con-
trolled

bool
True if the server provides group-level access control over the CRUD operations
that can be executed against an instance of this type (see User Manager in server
help).

child_col-
lections

array
An array of collection names that are supported as children under an object of this
type. For example, if a type includes “devices” in “child_collections”, then object
instances of that type will support one or more “Device” instance as a child.

Property Definitions
A property definition identifies the characteristics of a given property, including the type of data it supports,
applicable ranges, default value, etc. The JSON structure of a property definition object is defined as follows:

www. ptc.com

186

KEPServerEX

Member Type Description

symbolic_
name

string
Identifies the property by canonical name in the form <namespace>.<-
property name>.

display_
name

localized
string

The name the property would have if shown in the Server Configuration
property editor. Value will be returned in the language the server is cur-
rently configured to use.

display_
description

localized
string

The description the property would have if shown in the Server Con-
figuration property editor. Value will be returned in the language the
server is currently configured to use.

group_name
localized
string

The name of the property group in which this property belongs in the
Server Configuration property editor. The group represents the high-level
category to which the property belongs. Some objects may have only a
single group.

section_
name

localized
string

The name of the collapsible section to which this property belongs in the
Server Configuration property editor. This name would appear right
above the property in the property editor.

read_only Boolean
True if the property is informational, not expected to change once initially
defined.

type string
Determines the data type of the property value (see “Property Types”
below).

minimum_
value

number or
null (applies
to numeric
types)

Minimum value the property can have to be considered valid. If null,
there is no minimum.

maximum_
value

number or
null (applies
to numeric
types)

Maximum value the property can have to be considered valid. If null,
there is no maximum.

minimum_
length

number
(applies to
strings only)

Minimum length a string value may have. 0 means no minimum.

maximum_
length

number
(applies to
strings only)

Maximum length a string value may have. -1 means no maximum.

hints

arrays of
strings
(applies to
strings only)

An array of possible choices that may be assigned to the property value.
This member not included if no hints exist.

enumeration

object
(applies to
enumerations
only)

For enumeration properties, this object identifies the valid name / value
pairs the enumeration can have. Structure is as follows:

{
<name>: number,
<name>: number,
...
}

allow
array of
objects

Defines a conditional dependency on one or more other properties that
determines whether this property is relevant. Properties that are not

www. ptc.com

187

KEPServerEX

Member Type Description

allowed are not shown in the Server Configuration property editor (see
“Allow and Enable Conditions” below).

enable
array of
objects

Defines a conditional dependency on one or more other properties that
determines whether this property should be enabled for the client to
change. Properties that are not enabled are grayed out in the Server Con-
fig property editor (see “Allow and Enable Conditions” below).

To get specific information about the property definitions of a specific endpoint, add "?content=property_
definitions" to the end of the URL of a GET request.

For example, to get the property definitions for a channel named Channel1 with the server running on the
local host, the GET request would be sent to:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1?content=property_defin-
itions

The returned JSON block would look something like the following:
[

{
 "symbolic_name": "common.ALLTYPES_NAME",
 "display_name": "Name",
 "display_description": "Specify the identity of this object.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 1,
 "maximum_length": 256
 },

{
 "symbolic_name": "common.ALLTYPES_DESCRIPTION",
 "display_name": "Description",
 "display_description": "Provide a brief summary of this object or its use.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 0,
 "maximum_length": 255
 },
…

Property Types
The following table describes the different values that a property definition may contain for the “type” mem-
ber. The “Value Type” identifies what JSON type the property value should have.

Type Name Value Type Description

AllowDeny bool Describes a property that contains the choices “Allow”=true and

www. ptc.com

188

KEPServerEX

Type Name Value Type Description

“Deny”= false.

EnableDisable bool
Describes a property that contains the choices “Enable”=true and
“Disable”= false.

YesNo bool
Describes a property that contains the choices “Yes”=true and
“No”= false.

String string
Generic string. Properties of this type include minimum_length
and maximum_length specifiers.

StringArray array
Array of strings. Properties of this type include minimum_length
and maximum_length specifiers that apply to the strings them-
selves, not the length of the array.

Password string

Obfuscated string that contains a password. When changing the
value of a property of this type, a plain-text password is expected.
Password values should only be changed over a secure con-
nection.
The Administrator password must be at least 14 characters and

no more than 512 characters.

LocalFileSpec string A fully qualified file specification in the local file system.

UncFileSpec string A fully qualified file specification in a network location.

LocalPathSpec string A fully qualified path specification in the local file system.

UncPathSpec string A fully qualified path specification to a network location.

StringWithBrowser string
Describes a property that has a string value (normally chosen
from a collection of dynamically generated strings).

Integer number Unsigned 32-bit integer value.

Hex number
Unsigned 32-bit integer value intended to be displayed / edited in
hexadecimal notation.

Octal number
Unsigned 32-bit integer value intended to be displayed / edited in
octal notation.

SignedInteger number Signed 32-bit integer value.

Real4 number Single precision floating point value.

Real8 number Double precision floating point value.

Enumeration number
One of the possible numeric values from the “enumeration” mem-
ber of the property definition.

PropArray object
Describes a structure containing members that each have a fixed-
length array of values.

TimeOfDay number
Integer value containing the number seconds since midnight that
would define a specific time of day.

Date number Unix time value that specifies midnight on a given date.

DateAndTime number Unix time value that specifies a specific time on a given date.

Blob array
Array of byte values that represents an opaque collection of data.
Data of this type originates in the server and is hashed to prevent
modification.

Allow and Enable Conditions

www. ptc.com

189

KEPServerEX

For definitions that contain allow and/or enable conditions, this is the structure they would have in the
JSON:
<condition>:
[

{
 “depends_on”: <property name>
 “operation”: “==” or “!=”
 “value”: <value>
 },
...
]

Each condition identifies another property that is a dependent and how it depends as equal or not equal to
the value of that property. More than one dependency can exist, either on the same property or different
ones. If multiple exist, the “operation” will always be the same. Evaluation of the expression to determine
the state of the condition when multiple dependencies exist is a logical “or” for “==” and a logical “and” for
“!=”.

When using “content=property_states”, the returned JSON describes the outcome of the evaluation of these
conditions (if they exist) for each property.

Filtering
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be
filtered by providing a filter query parameter on the URL. If a filter value is specified, the query returns only
those objects that contain the filter value. The collection can be filtered by the Name or Description prop-
erty. The request only returns those objects where the Name or Description property contains the filter
value. The following example demonstrates the filter query parameter:

Filter channel list by channels that contain the text "_Siemens" through:
https://<hostname_or_ip>:<port>/config/v1/project/channels?filter=_Siemens

This only returns channel objects that include the string “_Siemens” in the name or description field.

Sorting
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be
sorted by any property. To request sorting, specify a property name and the sort order (ascending or des-
cending). The following examples demonstrate the query parameters for sorting.

Sort channels by description, ascending:
https://<hostname_or_ip>:<-
port>/config/v1/project/channels?sortOrder=ascending&sortProperty&=common.ALLTYPES_
DESCRIPTION)

Sort devices by tag count, descending:
https://<hostname_or_ip>:<-
port>/-
con-
fig/v1/-
project/channels/Simulator/devices?sortOrder=descending&sortProperty=servermain.DEVICE_
STATIC_TAG_COUNT)

www. ptc.com

190

KEPServerEX

Tip: Sorting by a string type property value, such as common.ALLTYPES_NAME, sorts objects by number
ordering (e.g. “A1”, “A10”, “A11”, “A100”). Sorting by a numeric type property value, such as server-
main.CHANNEL_UNIQUE_ID, sorts objects by numeric value (e.g. 1, 2, 10, 20).

Language Specifications
The server supports multiple languages. It will return localized text to the client in the language it is con-
figured to use. The client can override the configured language in a GET request by specifying an “Accept-
Language” field in the request header.
See the Protocol Specifications for more information.

As an example, if the server is configured for English and the client wants German, it can specify the fol-
lowing in the request header: “Accept-Language: de”

Note: If the client specifies a language that is not supported by the server, the currently configured lan-
guage is used.

Pagination Parameters

During content retrieval (GET requests) on project configuration endpoints, collections can be paginated to
break up a response into multiple pages. Pagination is enabled when supplying the pageNumber and / or
pageSize parameters:

l pageNumber: Represents the page index being accessed from a paginated response. The page num-
ber must be an integer value between 1 and 2147483647. If this parameter is not specified but
pageSize is, the first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The
page size must be an integer value between 1 and 2147483647. If this parameter is not specified but
pageNumber is, 10 items per page are returned by default.

Below are examples of adding the pagination parameters to a Project Configuration endpoint:

l Requesting both pageSize and pageNumber:
https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=1&pageSize=1

l Requesting the specified number of items with only the pageSize parameter:
https://<hostname_or_ip>:<port>/config/v1/channels/?pageSize=1

Note: without specifying the pageNumber parameter, the first page of results is returned.
l Requesting the specified page with only the pageNumber parameter:

https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=2

Note: without specifying the pageSize parameter, up to 10 items are returned for the specified
page.

When information is paginated, an additional object is appended to the body of the collection being
retrieved. Here is an example of pagination information returned with the body of a paginated response:
“pageIndex”: 1,
“totalPages”: 1,
“totalCount”: 1,
“hasPreviousPage”: false,
“hasNextPage”: false

Definitions for the returned pagination information:

www. ptc.com

191

https://www.rfc-editor.org/rfc/rfc9110.html

KEPServerEX

l pageIndex: An integer representing page being accessed. This page contains a subset of content
returned from an unpaginated request. The pageIndex value is the same as the pageNumber para-
meter.

l totalPages: The total integer number of pages used to present the collection content
l totalCount: The number of objects within the entire collection.
l hasPreviouPage: A Boolean value returning true if there are any prior pages with content before the

page being accessed and false otherwise.
l hasNextPage: A Boolean value returning true if there is another page containing objects after the

page being accessed and false otherwise.

The table below describes the pagination behavior based on the parameters supplied in the request:

pageNumber pageSize Paginated? Page Index Returned Items Per Page

N/A N/A False N/A Total

x y True x Up to y

x N/A True x 10

N/A y True 1 Up to y

If no pagination parameters are specified, requests return the entire JSON response body and no pagination
information. Below is an example of a non-paginated request and response:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/

Example JSON response where collection of object size N=2:
[

{
 Object Information
 },

{
 Object Information
 }
]

If the pageNumber and/or pageSize pagination parameters are specified, requests return a subset of the
entire JSON response body with pagination information. Below is an example of a paginated request and
response.

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

Example JSON response where collection of object size N=2:
[

{
 Object Information
 },

{
 "pageIndex": 1,
 "totalPages": 2,
 "totalCount": 2,

www. ptc.com

192

KEPServerEX

 "hasPreviousPage": false,
 "hasNextPage": true
 }
]

If a collection is empty and pagination is specified, only the pagination information is returned in the JSON
response body:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

Example JSON response where collection of object size N=0:
[

{
 "pageIndex": 1,
 "totalPages": 0,
 "totalCount": 0,
 "hasPreviousPage": false,
 "hasNextPage": false
 }
]

Pagination only works for collections of objects. If the JSON payload contains a single object instance, pagin-
ation information is not appended to the response.

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>? pageNum-
ber=1&pageSize=1

Note: there is only one channel created in this instance.

Example JSON response where Just an object Instance is returned:
[

{
 Object Information
 }
]

Configuration API Service — Server Administration
The server administration endpoint is used to manage general server settings, independent of the currently
loaded project.

Supported Actions
HTTP(S) Verb Action

GET Retrieves the current server properties

PUT Updates the server properties

Child Endpoints
Endpoint Description

https://<hostname_or_ip>:<port>/config/v1/admin/server_
usergroups

Endpoint used to manage the servers
user groups

https://<hostname_or_ip>:<port>/config/v1/admin/server_
users

Endpoint used to manage the server
users

www. ptc.com

193

KEPServerEX

GET /config/v1/admin
Returns the set of server properties as they are configured when the request is processed.

Resource Information

Type Description

Resource URL https://<hostname/port>:<port>/config/v1/admin

Response Format JSON

Parameters

Type Description

content=properties Returns the server properties

content=property_definitions
Returns a detailed description for each property in the admin end-
point

content=property_states Returns the property states

content=type_definition Returns the type definitions

content=children
Returns a collection of child endpoints underneath the admin end-
point

Properties

Property Name Type Description

common.ALLTYPES_
DESCRIPTION

String Provide a brief summary of this object or its use.

libadminsettings.EVENT_
LOG_CONNECTION_PORT

Integer
The TCP/IP port number that should be used for the event log. You
may need to configure your network firewall settings to permit
communication on this port.

libadminsettings.EVENT_
LOG_PERSISTENCE

Enum The persistence mode to use for event log records.

libadminsettings.EVENT_
LOG_MAX_RECORDS

Integer
The number of records the log can contain. Once reached, oldest
records will be discarded.

libadminsettings.EVENT_
LOG_LOG_FILE_PATH

String The directory where log files will be stored.

libadminsettings.EVENT_
LOG_MAX_SINGLE_FILE_
SIZE_KB

Integer The maximum size in KB that any one log file can contain.

libadminsettings.EVENT_
LOG_MIN_DAYS_TO_
PRESERVE

Integer
The age at which log files whose newest record is older than the
specified value are to be deleted.

libadminsettings.OPC_
DIAGS_PERSISTENCE

Enum The persistence mode to use for OPC Diagnostics records.

libadminsettings.OPC_
DIAGS_MAX_RECORDS

Integer
The number of records the log can contain. Once reached, oldest
records will be discarded.

libadminsettings.OPC_
DIAGS_LOG_FILE_PATH

String The directory where log files will be stored.

libadminsettings.OPC_ Integer The maximum size in KB that any one log file can contain.

www. ptc.com

194

KEPServerEX

Property Name Type Description

DIAGS_MAX_SINGLE_FILE_
SIZE_KB

libadminsettings.OPC_
DIAGS_MIN_DAYS_TO_
PRESERVE

Integer
The age at which log files whose newest record is older than the
specified value are to be deleted.

libadminsettings.COMM_
DIAGS_PERSISTENCE

Enum
The persistence mode to use for Communications Diagnostics
records.

libadminsettings.COMM_
DIAGS_MAX_RECORDS

Integer
The number of records the log can contain. Once reached, oldest
records will be discarded.

libadminsettings.COMM_
DIAGS_LOG_FILE_PATH

String The directory where log files will be stored.

libadminsettings.COMM_
DIAGS_MAX_SINGLE_FILE_
SIZE_KB

Integer The maximum size in KB that any one log file can contain.

libadminsettings.COMM_
DIAGS_MIN_DAYS_TO_
PRESERVE

Integer
The age at which log files whose newest record is older than the
specified value are to be deleted.

libadminsettings.CONFIG_
API_PERSISTENCE

Enum The persistence mode to use for Configuration API records.

libadminsettings.CONFIG_
API_MAX_RECORDS

Integer
The number of records the log can contain. Once reached, oldest
records will be discarded.

libadminsettings.CONFIG_
API_LOG_FILE_PATH

String The directory where log files will be stored.

libadminsettings.CONFIG_
API_MAX_SINGLE_FILE_
SIZE_KB

Integer The maximum size in KB that any one log file can contain.

libadminsettings.CONFIG_
API_MIN_DAYS_TO_
PRESERVE

Integer
The age at which log files whose newest record is older than the
specified value are to be deleted.

Configuration API Service — Data
The Configuration API Service receives requests in standard JSON format from the REST client. These
requests are consumed by the server and broken down into create, read, update, or delete commands.

Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable
actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-
port>/config/ (for default configurations).

Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-
umentation, include an “Accept” request header with “application/json”.

 Object names containing spaces, or other characters disallowed in URL formatting, must be percent-
encoded to be correctly interpreted by the Configuration API. Percent encoding involves replacing dis-
allowed characters with their hexadecimal representation. For example, an object named 'default object' is
percent-encoded as default%20object. The following characters are not permitted in a URL and must be
encoded:

www. ptc.com

195

KEPServerEX

*spac-
e*

! # $ & ' () * + , / : ; = ? @ []

%20
%2-
1

%2-
3

%2-
4

%2-
6

%2-
7

%2-
8

%2-
9

%2-
A

%2-
B

%2-
C

%2-
F

%3-
A

%3-
B

%3-
D

%3-
F

%4-
0

%5-
B

%5-
D

All leading and trailing spaces are removed from object names before the server validates them. This can
create a discrepancy between the object name in the server and the object name a user provides via the
Configuration API. Users can send a GET on the parent object after sending a PUT/POST to verify the new or
modified object name in the server matches what was sent via the API.

An attempt to perform a POST/PUT/DELETE with the API as a non-admin user fails if a user has the server
configuration open at the same time. The error is a 401 status code (unauthorized). Only one user can write
to the runtime at a time; the API cannot take permissions from the server configuration if it has insufficient
credentials.

Create an Object
An object can be created by sending an HTTPS POST request to the Configuration API. When creating a new
object, the JSON must include required properties for the object (ex. each object must have a name), but
doesn’t require all properties. All properties not included in the JSON are set to the default value on cre-
ation.

Example POST JSON body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
}

Create Multiple Objects
Multiple objects may be added to a given collection by including the JSON property objects in an array.

Example POST JSON body:
[
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 },
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 }
]

When a POST includes multiple objects, if one or more cannot be processed due to a parsing failure or
some other non-property validation error, the HTTPS status code 207 (Multi-Status) will be returned along
with a JSON object array containing the status for each object in the request.

For example, if two objects are included in the request and the second one specifies a non-validation error
(in this case a parsing error), two objects are output. One is a success, and the other is an error:
[
{

www. ptc.com

196

KEPServerEX

 “code”: 201,
 “message”: “Created”
 },
{

 “code”: 400,
 “message”: "Failed to parse JSON document at line 21: Property servermain.CHANNEL_
WRITE_OPTIMIZATIONS_DUTY_CYCLE cannot be converted to the expected type."
 }
]

If the error is a property validation error, the same HTTPS status code 207 is returned, but two error objects
are returned rather than one per property validation error. The basic error object contains the error code
and error message (such as above). The more comprehensive error message returns the property that
caused the error, the error description, the line of input that caused the error, the error code, and error mes-
sage.
Tip: When there is a property validation error on multi-object requests, the order of the objects returned

maintains the sequential order of the input.

For example, if two objects are included in the request and the second one specifies the same name as the
first, this is a property validation error:
{
 “property”: “common.ALLTYPES_NAME”,
 “description”: “The name “Channel1” is already used.”,
 “error_line”: 7,
 “code”: 400,
 “message”: "Validation failed on property common.ALLTYPES_NAME in object definition at
line 7: The name 'Channel1' is already used."
}

The first object returned is a response to successful creation of Channel1, while the second and third
response objects correspond to the property validation error.

Create an Object with Child Hierarchy
An object may be created with a full child object hierarchy beneath it. To do this, include that hierarchy in
the POST request just as it would appear when saved in a JSON project file.

For example, to create a channel with a device underneath it, the following JSON could be used:
{
"common.ALLTYPES_NAME": "Channel1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"devices":
[
{
"common.ALLTYPES_NAME": "Device1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"servermain.DEVICE_MODEL": 0
}
]

}

There is no response body when a child object is created unless there is an error during creation (such as a
parsing error or property validation error). A response header with the Project_ID is returned with a suc-
cessful request. That response header includes the Project_ID value, which is a new Project_ID after suc-
cessful object creation.

www. ptc.com

197

KEPServerEX

Header Information

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Read an Object
An object can be read by sending an HTTPS GET request to the Configuration API. All object properties are
returned on every GET request and each object includes a Project_ID. The Project_ID property is used to
track changes in the configuration and is updated on any change from the Configuration API or a server con-
figuration client. This property should be saved and used in all PUT requests to prevent stale data manip-
ulations.

Example response body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678
}

The header of a successful GET request contains the Project_ID.

Header Information

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

 See Also: Content Retrieval

Edit an Object
An object can be edited by sending an HTTPS PUT request to the Configuration API. PUT requests require
the Project_ID or Force_Update property in the JSON body. Setting Force_Update to True ignores Project_ID
validation.

Example PUT body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678,
 "FORCE_UPDATE": true
}

Normally, when a PUT request succeeds and all properties are assigned successfully, there is no response
body returned to the client; there is only a 200 status code to indicate success. There can be cases where a
property is included in a PUT request that is not assigned to the object instance by the Server Runtime. In
these cases, a response body will be generated as follows:

The header of a successful PUT request contains the new Project_ID that changed.

Header Information

www. ptc.com

198

KEPServerEX

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Body:
{,
 "not_applied":,

{,
 "servermain.CHANNEL_UNIQUE_ID": 2466304381
 },
 "code": 200,
 "message": "Not all properties were applied. This could be due to active client ref-
erence or property is disallowed/disabled/read-only."
}

The response indicates which property or properties were not applied to the object instance where each
contains the value that is actually in use. There are several possible reasons why the property value could
not be applied, such as:

l The property is read-only and cannot be changed.
l There is a client reference on the object that restricts what properties can be updated.
l The property is not allowed based on the values of other properties on which this condition

depends.
l The property is not enabled based on the values of other properties on which this condition

depends.
l The value was transformed in some way (ex. rounded or truncated).

Delete an Object
An object can be deleted by sending an HTTPS DELETE request to the Configuration API. The Configuration
API does not allow deleting multiple items on the same level with a single request (such as deleting all of the
devices in a channel), but can delete an entire tree (such as deleting a device deletes all its child tags).

The header of a successful DELETE request contains the new Project_ID that changed.

Header Information

Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Errors
All Configuration API Service requests return errors in JSON format.

Example:
{
 "code": 400,
 "message": "Invalid property: 'NAME'."
}

www. ptc.com

199

KEPServerEX

See Also: Troubleshooting

Configuration API Service — Channel Properties
The following properties define a channel using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

Note: Changing this property causes the API endpoint URL to change.

common.ALLTYPES_DESCRIPTION

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.CHANNEL_DIAGNOSTICS_CAPTURE

Ethernet Communication Properties

servermain.CHANNEL_ETHERNET_COMMUNICATIONS_NETWORK_ADAPTER_STRING

Advanced Properties

servermain.CHANNEL_NON_NORMALIZED_FLOATING_POINT_HANDLING

Write Optimizations

servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD

servermain.CHANNEL_WRITE_OPTIMIZATIONS_DUTY_CYCLE

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Channel
To create a channel via the Configuration API service, only a minimum set of properties are required; all oth-
ers are set to the default value. Once a channel is defined, its properties and settings are used by all devices
assigned to that channel. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the channel end-
point.

The example below creates a channel named Channel1 that uses the Simulator driver on a server running
on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels

Body:
{
 “common.ALLTYPES_NAME”: “Channel1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

www. ptc.com

200

KEPServerEX

Refer to the driver specific help documentation to find out what properties are required to create a channel for
that driver.

Configuration API Service — Updating a Channel
To update a property or collection of properties on a channel, a GET request must first be sent to the end-
point to be updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the channel being updated is Channel1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1

The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Channel1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.CHANNEL_DIAGNOSTICS_CAPTURE": false,
 "servermain.CHANNEL_UNIQUE_ID": 2154899492,
 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…

To update or change a channel property, a PUT request is sent to the channel with the Project ID and the
new property value defined. In the following example, the channel name will change from Channel1 (from
above) to Simulator.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

Following the PUT, a GET can be sent to the channel’s endpoint to validate that the property changed. In this
case, because the name was changed, the endpoint also changed and the GET request would be the fol-
lowing.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator

The response from the GET request should show the property value has changed. The response to the GET
above should look similar to the following:

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",

www. ptc.com

201

KEPServerEX

 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",

"servermain.CHANNEL_DIAGNOSTICS_CAPTURE": false,
"servermain.CHANNEL_UNIQUE_ID": 2154899492,

 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…

Configuration API Service — Removing Channel
To remove a channel, send a DELETE command to the channel endpoint to be removed. This causes the
channel and all of its children to be removed.

In the example below, the channel Simulator will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can
also be verified with a GET to the "channels" endpoint; the removed channel will not be in the list of chan-
nels returned from the GET request.

Configuration API Service — Device Properties
The following properties define a device using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

common.ALLTYPES_DESCRIPTION

servermain.DEVICE_CHANNEL_ASSIGNMENT

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.DEVICE_MODEL * Not required, but verify the default is acceptable

servermain.DEVICE_ID_STRING * Required parameter

servermain.DEVICE_DATA_COLLECTION

servermain.DEVICE_SIMULATED

Scan Mode

servermain.DEVICE_SCAN_MODE

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_PROVIDE_INITIAL_UPDATES_FROM_CACHE

Auto Demotion

www. ptc.com

202

KEPServerEX

servermain.DEVICE_AUTO_DEMOTION_ENABLE_ON_COMMUNICATIONS_FAILURES

servermain.DEVICE_AUTO_DEMOTION_DEMOTE_AFTER_SUCCESSIVE_TIMEOUTS

servermain.DEVICE_AUTO_DEMOTION_PERIOD_MS

servermain.DEVICE_AUTO_DEMOTION_DISCARD_WRITES

Tag Generation

servermain.DEVICE_TAG_GENERATION_ON_STARTUP

servermain.DEVICE_TAG_GENERATION_DUPLICATE_HANDLING

servermain.DEVICE_TAG_GENERATION_GROUP

servermain.DEVICE_TAG_GENERATION_ALLOW_SUB_GROUPS

Tip: To Invoke Automatic Tag Generation, send a PUT with an empty body to the TagGeneration service
endpoint on the device.
See Also: For more information, see Services help.

Timing
servermain.DEVICE_CONNECTION_TIMEOUT_SECONDS

servermain.DEVICE_REQUEST_TIMEOUT_MILLISECONDS

servermain.DEVICE_RETRY_ATTEMPTS

servermain.DEVICE_INTER_REQUEST_DELAY_MILLISECONDS

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Device
To create a device via the Configuration API service, only a minimum set of properties are required; all oth-
ers are set to the default value. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the device end-
point under a channel.

The example below will create a device named Device1 under Channel1 that uses the Simulator driver on a
server running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices

Body:
{
 “common.ALLTYPES_NAME”: “Device1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

Refer to the driver specific help documentation to find out what properties are required to create a device for
that driver.

www. ptc.com

203

KEPServerEX

Configuration API Service — Updating a Device
To update a property or collection of properties on a device, a GET request must first be sent to the end-
point to be updated to get the Project ID.

For more information about the Project ID, see the Concurrent Clients section.

In the example below, the device being updated is Device1 under Channel1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1

The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Device1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <project_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

To update or change a device property a PUT request is sent to the device with the Project ID and the new
property value defined. In the following example the device name will change from Device1 (from above) to
Simulator.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

Following the PUT, a GET can be sent to the device endpoint to validate that the property changed. In this
case, because the name was changed, the endpoint also changed and the GET request would be the fol-
lowing.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

The response from the GET request will show the property value has changed. The response to the GET
above should look similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",
 "common.ALLTYPES_DESCRIPTION": "",

www. ptc.com

204

KEPServerEX

 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <device_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

Configuration API Service — Removing a Device
To remove a device, send a DELETE to the device endpoint to be removed. This will cause the device and all
of its children to be removed.

In the example below, the device Simulator will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can
also be verified with a get to the devices endpoint and the removed device will not be in the list of devices
returned from the GET request.

Configuration API Service — Creating a Tag
To create a tag via the Configuration API service, only a minimum set of properties are required; all others
are set to the default value. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tags endpoint
under a device.

The example below will create a tag named MyTag for address R5 under Channel1/Device1 that uses the
Simulator driver on a server running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tags

Body:
{
 “common.ALLTYPES_NAME”: “MyTag”,
 "servermain.TAG_ADDRESS": "R5"
}

Tags can also be created within a tag group. The process for adding a tag group is the same except the URL
changes to include the tag_group endpoint and the group name.
In the following example, the tag group RampTags already exists and a tag named MyTag is created under it
with the address R5.
For more information on creating a tag group, see Creating a Tag Group section.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
group/RampTags/tags

Body:
{
 “common.ALLTYPES_NAME”: “MyTag”,

www. ptc.com

205

KEPServerEX

 "servermain.TAG_ADDRESS": "R5"
}

Refer to the driver specific help documentation to find out what properties are required to create a tag for that
driver.

Configuration API Service — Updating a Tag
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to
be updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the tag being updated is MyTag under Channel1/Device1.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "MyTag",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…

To update or change a tag property, a PUT request is sent to the tag with the Project ID and the new prop-
erty value defined.
In the following example, the tag name will change from MyTag (from above) to Tag1.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1"
}

Following the PUT a GET can be sent to the tag’s endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

The response from the GET request will show the property value has changed. The response to the GET
above should look similar to the following.

www. ptc.com

206

KEPServerEX

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…

Configuration API Service — Removing a Tag
To remove a tag, send a DELETE to the tag’s endpoint to be removed. This will cause the tag and all of its chil-
dren to be removed.
In the example below, the tag Tag1 will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can
also be verified with a get to the tags endpoint and the removed tag will not be in the list of tags returned
from the GET request.

Configuration API Service — Creating a Tag Group
To create a tag group via the Configuration API service, only a group name is required.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tag_groups
endpoint under a device.

The example below will create a tag group named RampTags under Channel1/Device1 that uses the Sim-
ulator driver on a server running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups

Body:
{
 “common.ALLTYPES_NAME”: “RampTags”
}

Tag groups can have tags and more tag groups nested under them. To add a Tag, see the Creating a Tag sec-
tion.

To nest a Tag Group within another group, another POST action is required to add the existing group name
and the tag_groups endpoint to the end of the URL.

Continuing the example above, the new request would look like the following.

Endpoint (POST):

www. ptc.com

207

KEPServerEX

https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags/tag_groups

Body:
{
 “common.ALLTYPES_NAME”: “1-10”
}

Configuration API Service — Updating a Tag Group
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to
be updated to get the Project ID.
For more information about the Project ID, see the Concurrent Clients section.

In the example below, the tag group being updated is RampTags under Channel1/Device1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags

The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}

To update or change a tag group property, a PUT request is sent to the tag group with the Project ID and the
new property value defined.
In the following example, the tag group name will change from RampTags (from above) to RampGroup.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampGroup"
}

Following the PUT, a GET can be sent to the tag group endpoint to validate that the property changed. In
this case, because the name was changed, the endpoint also changed and the GET request would be the fol-
lowing.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup

The response from the GET request will show the property value has changed. The response to the GET
above should look similar to the following.

Body:

www. ptc.com

208

KEPServerEX

{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}

Configuration API Service — Removing a Tag Group
To remove a tag group, send a DELETE to the tag group endpoint to be removed. This will cause the tag
group and all of its children to be removed. In the example below the tag group RampGroup will be
removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can
also be verified with a get to the tag_groups endpoint and the removed tag group will not be in the list of tag
groups returned from the GET request.

Configuration API Service — Creating a User
To create a user via the Configuration API service, only a minimum set of properties are required; all others
are set to the default value.

Only members of the Administrators group can create users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_users
endpoint.

The example below creates a user named User1 that is a member of the server Administrators user group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Body:
{
 "common.ALLTYPES_NAME": "User1",
 "libadminsettings.USERMANAGER_USER_GROUPNAME": "Administrators",
 "libadminsettings.USERMANAGER_USER_PASSWORD": "<Password>"
}

 The Administrator user account password cannot be reset, but additional administrative users can be
added to the Administrator user group. Best practices suggest each user with administrative access be
assigned unique accounts and passwords to ensure audit integrity and continual access through role and
staff changes.

 The product Administrator password must be at least 14 characters and no more than 512. Passwords
should include a mix of uppercase and lowercase letters, numbers, and special characters. Choose a strong
unique password that avoids well-known, easily guessed, or common passwords.

www. ptc.com

209

KEPServerEX

Configuration API Service — Updating a User
To update a user via the Configuration API service, provide new values for the properties that require updat-
ing.
Only members of the Administrators group can update users.
There is no PROJECT_ID field for users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-
s/<username> endpoint.

The example below updates the user named User1 to add a description and move it to a different user
group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users/User1

Body:
{
"common.ALLTYPES_DESCRIPTION": "The user account of User1", "libadminsettings.USERMANAGER_
USER_GROUPNAME": "Operators"
}

Configuration API Service — Creating a User Group
To create a group via the Configuration API service, only a minimum set of properties are required; all oth-
ers are set to the default value. Once a user group is defined, its permissions are used by all users assigned
to that user group.

Only members of the Administrators group can create user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-
groups endpoint.

The example below creates a user group named Operators:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Body:
{
 “common.ALLTYPES_NAME”: “Operators”,
}

Configuration API Service — Updating a User Group
To edit a user group via the Configuration API service, provide new values for the properties that require
updating.
Only members of the Administrators group can update user groups.
There is no PROJECT_ID field for user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the server_user-
groups/<groupname> endpoint.

www. ptc.com

210

KEPServerEX

The example below updates the user group named Operators to have permissions to modify server set-
tings, cause clients to be disconnected, and loading new runtime projects; it also updates the description of
the group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators

Body:
{
 "common.ALLTYPES_DESCRIPTION": "User group for standard operators",
 "libadminsettings.USERMANAGER_SERVER_MODIFY_SERVER_SETTINGS": true,
 "libadminsettings.USERMANAGER_SERVER_DISCONNECT_CLIENTS": true,
 "libadminsettings.USERMANAGER_SERVER_REPLACE_RUNTIME_PROJECT": true
}

Note: Group permissions for the administrator group are locked and cannot be modified by any user to
prevent an administrator from accidentally disabling a permission that could prevent administrators from
modifying any user permissions. Only users in the Administrator group can modify the permissions for
other groups.

Configuration API Service — Removing a User or Group
To remove a user or user group via the Configuration API service, send a DELETE command to the endpoint
to be removed. Removing a group causes all of it’s users to be deleted as well. In the example below, the
group Operators is removed and all users that are members of that group are deleted.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users/Operators

Configuration API Service — User Management
The User Manager controls client access to the project's objects (which are the channels, devices, tags. etc.)
and their corresponding functions. The User Manager allows permissions to be specified by user groups.
For example, the User Manager can restrict user access to project tag data based on its permissions from
the parent user group.

The User Manager has built-in groups each contain a built-in user. The default groups are Administrators,
Server Users, Anonymous Clients, and ThingWorx Interface Users. The default users in these groups are
Administrator, Default User, Data Client, and ThingWorx Interface. Users cannot rename or change the
description fields of built-in user groups or users. Neither the default groups nor the default users can be
disabled.

The User Manager has built-in groups each contain a built-in user. The default groups are Administrators,
Server Users, and Anonymous Clients. The default users in these groups are Administrator, Default User,
and Data Client. Users cannot rename or change the description fields of built-in user groups or users.
Neither the default groups nor the default users can be disabled.

To allow adequate access for data transfer between the server and the ThingWorx Platform, project modi-
fication must be enabled for the ThingWorx Interface Users group. The request to grant the correct access
for this functionality should look similar to the following:

Endpoint (PUT):

www. ptc.com

211

KEPServerEX

https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/ThingWorx Interface User-
s/project_permissions/Servermain Project

Body:
{
 "libadminsettings.USERMANAGER_PROJECTMOD_EDIT": true
}

Notes:

1. The Administrator user account password cannot be reset, but additional administrative users can
be added to the Administrator user group. Best practices suggest each user with administrative
access be assigned unique accounts and passwords to ensure audit integrity and continual access
through role and staff changes.

2. A project cannot load without correct user information.
3. There is no ”Project_ID” property on the User Management endpoints. All PUTs are accepted and the

last PUT to a given endpoint is applied.

User Groups

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Supported Actions

HTTP(S) Verb Action

POST Create the specified group

GET Retrieves a list of all groups

DELETE Removes the specified group and all of its users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>

Supported Actions

HTTP(S) Verb Action

GET Retrieves the specified group

PUT Updates the specified group

DELETE Removes the specified user

Properties

Property Name Type Required Description

common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String No
Provide a brief summary of this object
or its use.

libadminsettings.USERMANAGER_
GROUP_ENABLED

Enable/Disable No
The group's enabled-state takes pre-
cedence over the users enabled state.

libadminsettings.USERMANAGER_
IO_TAG_READ

Enable/Disable No
Allow/deny clients belonging to the
group to access I/O tag data.

libadminsettings.USERMANAGER_
IO_TAG_WRITE

Enable/Disable No
Allow/deny clients belonging to the
group to modify I/O tag data. Note:
When USERMANAGER_IO_TAG_READ is

www. ptc.com

212

KEPServerEX

Property Name Type Required Description

set to false, this property is also set to
false and disabled to prevent write-only
tags.

libadminsettings.USERMANAGER_
IO_TAG_DYNAMIC_ADDRESSING

Enable/Disable No
Allow/deny clients belonging to the
group to add items using dynamic
addressing.

libadminsettings.USERMANAGER_
SYSTEM_TAG_READ

Enable/Disable No
Allow/deny clients belonging to the
group to access system tag data.

libadminsettings.USERMANAGER_
SYSTEM_TAG_WRITE

Enable/Disable No

Allow/deny clients belonging to the
group to modify system tag data. Note:
When USERMANAGER_SYSTEM_TAG_
READ is set to false, this property is also
set to false and disabled to prevent
write-only tags.

libadminsettings.USERMANAGER_
INTERNAL_TAG_READ

Enable/Disable No
Allow/deny clients belonging to the
group to access internal tag data.

libadminsettings.USERMANAGER_
INTERNAL_TAG_WRITE

Enable/Disable No

Allow/deny clients belonging to the
group to modify internal tag data. Note:
When USERMANAGER_INTERNAL_TAG_
READ is set to false, this property is also
set to false and disabled to prevent
write-only tags.

libadminsettings.USERMANAGER_
SERVER_MANAGE_LICENSES

Enable/Disable No
Allow/deny users belonging to the
group to access the license manager.

libadminsettings.USERMANAGER_
SERVER_RESET_OPC_DIAGS_LOG

Enable/Disable No
Allow/deny users belonging to the
group to clear all logged OPC dia-
gnostics messages.

libadminsettings.USERMANAGER_
SERVER_RESET_COMM_DIAGS_
LOG

Enable/Disable No
Allow/deny users belonging to the
group to clear all logged com-
munications diagnostics messages.

libadminsettings.USERMANAGER_
SERVER_MODIFY_SERVER_
SETTINGS

Enable/Disable No
Allow/deny users belonging to the
group to access this property sheet.

libadminsettings.USERMANAGER_
SERVER_DISCONNECT_CLIENTS

Enable/Disable No
Allow/deny users belonging to the
group to take action that can cause
data clients to be disconnected.

libadminsettings.USERMANAGER_
SERVER_RESET_EVENT_LOG

Enable/Disable No
Allow/deny users belonging to the
group to clear all logged event mes-
sages.

libadminsettings.USERMANAGER_
SERVER_OPCUA_DOTNET_
CONFIGURATION

Enable/Disable No
Allow/deny users belonging to the
group to access the OPC UA or XI con-
figuration manager.

libadminsettings.USERMANAGER_
SERVER_CONFIG_API_LOG_
ACCESS

Enable/Disable No
Allow/deny users belonging to the
group to access the Configuration API
Transaction Log.

libadminsettings.USERMANAGER_ Enable/Disable No Allow/deny users belonging to the

www. ptc.com

213

KEPServerEX

Property Name Type Required Description

SERVER_REPLACE_RUNTIME_
PROJECT

group to replace the running project.

libadminsettings.USERMANAGER_
BROWSE_BROWSENAMESPACE

Enable/Disable No
Allow/deny clients belonging to the
user group to browse the project
namespace.

Project Permissions

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_
permissions

Supported Actions

HTTP(S) Verb Action

GET Retrieves a list of all project permissions

Child Endpoints

Properties

Endpoint Description

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Alias

Configure default 'Servermain Alias' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Channel

Configure default 'Servermain Channel' access
permissions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Device

Configure default 'Servermain Device' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Meter Order

Configure default 'Servermain Meter Order'
access permissions for the selected user group.
Note: Add and delete properties are disabled

for this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Phone Number

Configure default 'Servermain Phone Number'
access permissions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Phone Priority

Configure default 'Servermain Phone Priority'
access permissions for the selected user group.
Note: Add and delete properties are disabled

for this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Project

Configure default 'Servermain Project' access
permissions for the selected user group.
Note: Add and delete properties are disabled

for this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_per-

Configure default 'Servermain Tag' access per-
missions for the selected user group.

www. ptc.com

214

KEPServerEX

Endpoint Description

missions/Servermain Tag

/config/v1/admin/server_user-
groups/<GroupName>/project_per-
missions/Servermain Tag Group

Configure default 'Servermain Tag Group' access
permissions for the selected user group.

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_
permissions/<PermissionName>

Supported Actions

HTTP(S) Verb Action

GET Retrieves the specified project permission

PUT Updates the specified project permission

Properties

Property Name Type Description

common.ALLTYPES_NAME String Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String
Provide a brief summary of this object or its
use.

libadminsettings.USERMANAGER_
PROJECTMOD_ADD

Enable/Disable
Allow/deny users belonging to the group to
add this type of object.

libadminsettings.USERMANAGER_
PROJECTMOD_EDIT

Enable/Disable
Allow/deny users belonging to the group to
edit this type of object.

libadminsettings.USERMANAGER_
PROJECTMOD_DELETE

Enable/Disable
Allow/deny users belonging to the group to
delete this type of object.

Users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Supported Actions

HTTP(S) Verb Action

POST Create the specified user

GET Retrieves a list of all users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_users/<UserName>

Supported Actions

HTTP(S) Verb Action

GET Retrieves the specified user

PUT Updates the specified user

Properties

www. ptc.com

215

KEPServerEX

Property Name Type Required Description

common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String No
Provide a brief summary of this object
or its use.

libadminsettings.USERMANAGER_
USER_GROUPNAME

String Yes The name of the parent group.

libadminsettings.USERMANAGER_
USER_ENABLED

Enable/Disable No
The group‘s enabled-state takes pre-
cedence over the users enabled state.

libadminsettings.USERMANAGER_
USER_PASSWORD

Password No

The user’s password. This is case-sens-
itive.

The password must be at least 14
characters and no more than 512 char-
acters. Passwords should include a mix
of uppercase and lowercase letters,
numbers, and special characters. Avoid
well-known, easily guessed, or common
passwords.

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has
the appropriate permissions.

Configuration API Service — Configuring User Group Project Permissions
All user groups contain a collection of project permissions. Each project permission corresponds to a spe-
cific permission applied when interacting with objects in the project. All permissions are always present
under a user group (and therefore cannot be created nor deleted). An individual project permission can be
granted or denied by updating that specific project permission under the desired User Group.
Only members of the Administrators group can update a user group’s project permissions.
There is no PROJECT_ID field for project permissions.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the project_per-
missions/<permission_name> endpoint.

The example below updates the user-created user group named Operators to grant permission to users of
that group to add, edit, and delete channels:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators/project_per-
missions/Servermain Channel

Body:
{
 "libadminsettings.USERMANAGER_PROJECTMOD_ADD": true,
 "libadminsettings.USERMANAGER_PROJECTMOD_EDIT": true,
 "libadminsettings.USERMANAGER_PROJECTMOD_DELETE": true
}

Configuration API Service — Invoking Services
Objects may provide services if there are actions that can be invoked on the object beyond the standard
CRUD (Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic inter-
face through which remote clients can trigger and monitor these actions. Services can be found in a

www. ptc.com

216

KEPServerEX

collection called ‘services’ underneath the object on which they operate. For example, the project load ser-
vice is located at the https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it
operates on the project. Any object may provide services, so query if the service collection exists, then query
the collection to see the available services.

Service Architecture
Services are designed to provide stateless interaction with the object on which they operate. Services are
comprised of two components: a service and a job. The job executes the work asynchronously and provides
a mechanism through which a client can monitor the job for completion or for any errors that occurred dur-
ing its operation. After a job completes, it is scheduled for deletion automatically by the server; no action is
required by the client to clean up the job after it completes.

Service
The service is the interface through which an action is invoked. The service exposes all parameters that can
be specified during its invocation as properties. To see the available parameters, perform a HTTPS GET on
the service endpoint. All properties, besides the name and description of the service, are the parameters
that can be included when invoking a service. Depending on the service, some or all parameters may be
required.

Invocation of a service is accomplished by performing a HTTPS PUT request on the service endpoint with
any parameters specified in the body of the request. Services may limit the total number of concurrent
invocations. If the maximum number of concurrent invocations has been reached, the request is rejected
with an "HTTPS 429 Too Many Requests" response. If the limit has not been reached, the server responds
with an "HTTPS 202 Accepted" response and the body of the response including a link to the newly created
job.

Successful PUT response example:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

Busy PUT response example:
{
 "code": 429,
 "message": "The server is busy. Retry the operation at a later time."
}

Job
The job represents a specific request accepted by the server. To check the status of a job, perform a HTTPS
GET request on the job endpoint. The servermain.JOB_COMPLETE property represents the current state of
the job as a Boolean. The value of this property remains false until the job has finished executing. If the job
fails to execute for any reason, it provides the client with an appropriate error message in the server-
main.JOB_STATUS_MSG property.

Job Cleanup
Jobs are automatically deleted by the server after a configurable amount of time. By default, after a job has
completed, the client has 30 seconds to interact with it before the job is deleted. If a longer amount of time
is required by the client or the client is operating over a slow connection, the client can use the server-
main.JOB_TIME_TO_LIVE_SECOND parameter when invoking the service to increase the time-to-live up to a
maximum of five minutes. Each job has its own time-to-live and it may not be changed after a job has been

www. ptc.com

217

KEPServerEX

created. Clients are not allowed to manually delete jobs from the server, so it is best to choose the shortest
time-to-live without compromising the client’s ability to get the information from the job before it is deleted.

Service Automatic Tag Generation
The Automatic Tag Generation service operates under a device endpoint for a driver that supports Auto-
matic Tag Generation. The properties that support Automatic Tag Generation for the device must be con-
figured prior to initiating Automatic Tag Generation. See the driver specific documentation for related
properties.

To initiate Automatic Tag Generation, a PUT is sent to the TagGeneration endpoint with a defined empty pay-
load. In the following example, Automatic Tag Generation is initiated on Channel1/Device1.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration

The response should look something like the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/con-
fig/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by
querying the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the
following.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.
Note: Not all drivers support Automatic Tag Generation.

Service Project Load
Projects can be loaded by interacting with the ProjectLoad service on the ProjectLoad endpoint. First a GET
request must be sent to get the Project ID to later be used in the PUT request.

The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

The server should respond with something similar to the following.

Body:
{
 "PROJECT_ID": 3531905431,
 "common.ALLTYPES_NAME": "ProjectLoad",

www. ptc.com

218

KEPServerEX

 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,
 "servermain.PROJECT_FILENAME": "",
 "servermain.PROJECT_PASSWORD": ""
}

To initiate the project load, a PUT request is sent to the server with the project file name, the project file
password, and the Project ID. If there is no password on the project, that field is not required. Project load-
ing supports SOPF, OPF, and JSON file types. The request should look similar to the following.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

Body:
{
 "PROJECT_ID": 3531905431,
 "servermain.PROJECT_FILENAME": "MyProject.json",
 "servermain.PROJECT_PASSWORD": ""
}

where the .json or .opf project file full path is specified, such as /<install directory>/<version>/.

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by
querying the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the
following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

Service Project Save
Projects can be loaded by interacting with the ProjectSave service on the ProjectSave endpoint. A GET
request must be sent to get the Project ID to later be used in the PUT request. The GET request should look
similar to the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

The server should respond with something similar to the following.

Body:
{
 "PROJECT_ID": 2401921849,
 "common.ALLTYPES_NAME": "ProjectSave",
 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,

www. ptc.com

219

KEPServerEX

 "servermain.PROJECT_FILENAME": ""
}

To initiate the project save, a PUT request is sent with the project file path and name of the file with the
extension (SOPF, OPF, or JSON), the password to encrypt it with, and the Project ID. The password property
is required for SOPF file and ignored otherwise. The path is relative to the user data folder. The PUT request
should look similar to the following.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

Body:
{
 "PROJECT_ID": 2401921849,
 "servermain.PROJECT_FILENAME": "Projects/MyProject.SOPF",
 "servermain.PROJECT_PASSWORD": "MyPassword"
}

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectSave/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by
querying the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the
following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

Configuration API Service — Reinitialize Runtime Service
The Runtime Service can be reinitialized by interacting with the ReinitializeRuntime service. To initiate the
reinitialization, a PUT request is sent to the endpoint with a body that defines the service name and the job’s
desired Time to Live (timeout).

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime

Body:
{
 "common.ALLTYPES_NAME" : "ReinitializeRuntime",
 "servermain.JOB_TIME_TO_LIVE_SECONDS" : 30
}

The server should respond with something similar to the following.

www. ptc.com

220

KEPServerEX

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ReinitializeRuntime/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by
querying the job by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime/jobs/job1

Jobs are automatically cleaned up after the wait time expires. This wait time is configurable.

See Also: Job Cleanup

Configuration API Service — Response Codes
One of the following response codes may be returned from a REST request. Where possible, the body of the
response contains specific error messages to help identify the cause of the error and possible solutions:

l HTTPS/1.1 200 OK
l HTTPS/1.1 201 Created
l HTTPS/1.1 202 Accepted
l HTTPS/1.1 207 Multi-Status
l HTTPS/1.1 400 Bad Request
l HTTPS/1.1 401 Unauthorized
l HTTPS/1.1 403 Forbidden
l HTTPS/1.1 404 Not Found
l HTTPS/1.1 429 Too Many Requests
l HTTPS/1.1 500 Internal Server Error
l HTTPS/1.1 503 Server Runtime Unavailable
l HTTPS/1.1 504 Gateway Timeout
l HTTPS/1.1 520 Unknown Error

Consult the Configuration API Service Event Log Messages

Device Demand Poll
Device Demand Poll is useful for customers that require full control of polling devices from their client
applications. It is particularly helpful in SCADA industries like oil and gas, water / waste water, electric, and
others that may experience significant communication delays.

Many client-side SCADA systems either do not have configurable scan rates or have scan rates whose min-
imum value is too long for the data updates that are required by SCADA operators. To bypass this limitation,
the SCADA system can perform writes to the Device Demand Poll tags available in the server. In this scen-
ario, each device in the server exposes a _DemandPoll tag that polls all referenced tags on the device when
written to by a client. During the poll, the _DemandPoll tag becomes True (1). It returns to False (0) when the
final active tag signals that the read requests have completed. Subsequent writes to the _DemandPoll tag
fails until the tag value returns to False. The demand poll respects the read / write duty cycle for the

www. ptc.com

221

KEPServerEX

channel. Client-side SCADA scripts (such as a Refresh button script) can be developed to write to the _
DemandPoll tag and cause a poll to occur. The poll results are passed on to the client application.

For more information, refer to System Tags.

Note: The procedure described above is not OPC-compliant behavior. If this is a problem, it is recom-
mended that communications be separated onto two devices. One device can use the classic OPC update
interval, and the other device can set the Scan Mode to "Do not scan, demand poll only" and only poll when
the _DemandPoll tag is written.

Regardless of whether Device Demand Poll is being utilized, clients that are limited by tag scan rates may
also encounter operator wait time due to the server complying with the OPC client's group update rate. To
circumvent this OPC-compliant behavior, users can configure the "Ignore group update rate, return data as
soon as it is available" setting. This returns the poll results immediately and disregards the update interval.

For more information, refer to Project Properties — OPC DA Compliance.

See Also: Device Properties — Scan Mode

www. ptc.com

222

KEPServerEX

Configuring from iFIX Applications
For information on configuring process database blocks to reference IGS I/O addresses, select a link from
the list below.

Overview: Creating Datablocks Inside iFIX Applications
Setting Options for IGS
Entering Driver Information in iFIX Database Manager
Specifying I/O Drivers in the Device Field
Specifying I/O Addresses in iFIX Database Manager
Specifying Signal Conditioning in iFIX Database Manager
I/O Signal Conditioning Options
Using Offset fields with Analog and Digital Registers (AR/DR)
Project Startup for iFIX Applications

Overview: Creating Datablocks Inside iFIX Applications
The IGS Driver Configuration program does not need to be used to create all of the IGS driver tags. With the
correct information, users can add IGS driver tags while configuring the database in the iFIX Database Man-
ager. To do so, the following information is required:

l The driver's three-letter acronym. For the IGS driver, the acronym is "IGS".
l The name of the channel, device, and tag from which data will be collected (as defined in the IGS

Driver Configuration program).
l Any other information about the tag, such as the array element of the bit offset.

 For more information on entering data in the Database Manager for automatic datablock creation, refer to
Entering Driver Information in iFIX Database Manager.

Entering Driver Information in iFIX Database Manager
For information on entering driver specifications for a database block in the iFIX Database Manager, refer to
the instructions below.

1. In the iFIX Database Manager, click Blocks | Add.

www. ptc.com

223

KEPServerEX

2. Select the type of block and click OK.

3. In Tag Name, specify a name for the database block. Then, enter driver-appropriate information in
the remaining properties.

Note: This driver does not use the Hardware Options and Signal Conditioning fields.

See Also: For information on the valid entries required for each field, select a link from the list below.
Specifying the I/O Driver in iFIX Database Manager
Specifying I/O Addresses in iFIX Database Manager
Specifying Signal Conditioning in iFIX Database Manager

Specifying the I/O Driver in iFIX Database Manager
To identify the I/O driver that the database block will access, locate the Driver property in the Database
Manager. Then, specify the driver's three-letter acronym. To use the IGS driver, enter "IGS".

To find the default driver, open the System Configuration Utility (SCU) and click SCADA Configuration.
The default driver is the first driver listed in the Configured I/O Driver list box.

www. ptc.com

224

KEPServerEX

Note: For Database Manager to recognize the acronym entered, it must appear in the SCU's Configured
I/O Driver list box.

Specifying I/O Addresses in iFIX Database Manager
To specify the datablock address to be accessed, locate the I/O Address property in the Database Manager.
Then, enter the I/O address. This field is not case sensitive. For an IGS driver, I/O addresses typically consist
of the name of the channel, device, and tag and are specific to the driver.

Note: Multiple blocks may use the same I/O address with the IGS server.

The I/O address for the driver has the following format: Channel_Name.Device_Name.Tag_Name

where:

l Channel_Name This is the name of the protocol or driver being used in the IGS server project. It
must match the channel name in the IGS configuration.

l Device_Name This is the name of the PLC or other hardware with which the server communicates. It
must match the device name for the specified channel in the IGS configuration.

l Tag_Name This is the name of the address within the PLC or other hardware device with which the
server communicates. It must match the tag name for the specified channel and device in the IGS
configuration.

Note: If tags were imported from a Controllogix L5K file, the full path to the tag name must be included.

Bit Addressing
Bit addressing can be accomplished by using one of the following two methods:

1. If a Digital Register (DR) block is being used, bits within integer data (or bits within Boolean array
data) can be specified with the numbered fields F_0, F_1, F_2, and so forth. For more information,
refer to Using Offset fields with Analog and Digital Registers (AR/DR).

2. If a DR block is not being used, a tag should be configured in the IGS server project with the desired
bit specified in the tag address. Alternatively, specify the appropriate bit address in the block's I/O

www. ptc.com

225

KEPServerEX

address so that the tag may be dynamically created. For more information, refer to the IGS device
driver help documentation.

Notes:

1. Users may also specify an integer tag in the I/O address of DA and DI blocks; however, only the least
significant bit of that integer can be read or written to with these block types.

2. Because bit addressing is not supported when tags are imported from the L5K file, users must manu-
ally add bit addresses and their associated tag names in the IGS server configuration program. For
example, assume that the global controller tag "ValveArea3" is configured as a short data type in the
L5K import file. To address bit 1 of this tag in the iFIX PDB, users must first manually add the bit 1
address and its corresponding tag name in the IGS server configuration program. In this example,
"ValveArea3_1" is the designated tag name for the bit 1 address. The I/O addressing for the bit
address in the iFIX PDB is "Channel1.Device1.Global.ValveArea3_1".

Array Addressing
Many of the IGS server's device drivers support arrays. Users may access individual elements of an array tag
using Analog Register (AR) blocks and the numbered fields F_0, F_1, F_2, and so forth. Digital Registers (DR)
may be used to access any bit within any element of a Boolean or integer array. For more information, refer
to Using Offset fields with Analog and Digital Registers (AR/DR).

The entire array can be accessed in text form using a TX block. Access to individual elements or bits within
an array using other means is not currently supported. If other types of blocks are used, the data must be
addressed with individual tags. For more information on array addressing support and syntax, refer to the
IGS device driver help documentation.

Specifying Signal Conditioning in iFIX Database Manager
The IGS driver can apply signal conditioning to the data. Users can configure signal conditioning options for
each block defined in the iFIX Database Manager. For more information, refer to the instructions below.

1. In Signal Conditioning, specify the desired algorithm. For no signal conditioning, select None.

2. Specify the Engineering Units (EGU) range for the conditioned data.

Note: For more information on supported signal conditioning algorithms, refer to iFIX Signal Condi-
tioning Options.

www. ptc.com

226

KEPServerEX

iFIX Signal Conditioning Options
The following signal conditioning options are available through the iFIX Database Manager:

3BCD
4BCD
8AL
8BN
12AL
12BN
13AL
13BN
14AL
14BN
15AL
15BN
20P
TNON

Note: Linear and logarithmic scaling is available through the server for Static tags only. For more inform-
ation, refer to Tag Properties — Scaling and Static Tags (User-Defined).

3BCD Signal Conditioning
Description 3-digit Binary Coded Decimal (BCD) value

Input Range 0-999

Scaling Scales 3-digit Binary Coded Decimal values to the database block's EGU range.

Read
Algorithm

Reads from a 3-digit BCD register. The Raw_value is then separated into three nibbles (4
bits) prior to scaling the value. Each nibble is examined for a value greater than 9 (A-F
hex). If a hexadecimal value between A and F is found, a range alarm is generated, indic-
ating the value is not within BCD range. Otherwise, the value is scaled with the following
algorithm:
Result=((Raw_value/999) * Span_egu) + Lo_egu.

Read
Algorithm
Variables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write
Algorithm

Writes to a 3-digit BCD register using the following algorithm:
Result=(((InputData-Lo_egu) / Span_egu) * 999) + .5.

Write
Algorithm
Variables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

4BCD Signal Conditioning

www. ptc.com

227

KEPServerEX

Description 4-digit Binary Coded Decimal (BCD) value

Input Range 0-9999

Scaling Scales 4-digit Binary Coded Decimal values to the database block's EGU range.

Read Algorithm Reads from a 4-digit BCD register. The Raw_value is then separated into four
nibbles (4 bits) prior to scaling the value. Each nibble is examined for a value
greater than 9 (A-F hex). If a hexadecimal value between A and F is found, a range
alarm is generated, indicating the value is not within BCD range. Otherwise, the
value is scaled with the following algorithm:
Result=((Raw_value/9999) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write Algorithm Writes to a 4-digit BCD register using the following algorithm:
Result=(((InputData-Lo_egu) / Span_egu) * 9999) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

8AL Signal Conditioning
Description 8-bit binary number

Input Range 0-255

Scaling Scales 8-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 8BN, and returns a
status indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/255) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 8BN, and returns a status
indicating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 255) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

8BN Signal Conditioning
Description 8-bit binary number

Input Range 0-255

Scaling
Scales 8-bit binary values to the database block's EGU range. Ignores the most
significant byte.

Read Algorithm Reads from a 16-bit register using the following algorithm:

www. ptc.com

228

KEPServerEX

Description 8-bit binary number

Result =((Raw_value/255) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write Algorithm Writes to an 8-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 255) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

12AL Signal Conditioning
Description 12-bit binary number

Input Range 0-4095

Scaling Scales 12-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 12BN, and returns a
status indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/4095) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result-the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 12BN, and returns a
status indicating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 4095) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

12BN Signal Conditioning
Description 12-bit binary number

Input Range 0-4095

Scaling
Scales 12-bit binary values to the database block's EGU range. Ignores the most
significant nibble (4-bits). Out of range value are treated as 12-bit values. For
example, 4096 is treated as 0 because the four most significant bits are ignored.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/4095) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:

www. ptc.com

229

KEPServerEX

Description 12-bit binary number

Result =(((InputData-Lo_egu)/Span_egu) * 4095) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

13AL Signal Conditioning
Description 13-bit binary number

Input Range 0-8191

Scaling Scales 13-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 13BN, and returns a
status indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/8191) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 13BN, and returns a
status indicating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 8191) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result-the value sent to the process hardware.

13BN Signal Conditioning
Description 13-bit binary number

Input Range 0-8191

Scaling
Scales 13-bit binary values to the database block's EGU range. Ignores the most
significant 3 bits.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/8191) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 8191) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

14AL Signal Conditioning

www. ptc.com

230

KEPServerEX

Description 14-bit binary number

Input Range 0-16383

Scaling Scales 14-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register using the same algorithm as 14BN, and returns a
status indicating whether the value is out of range and in an alarm state, or OK.
Result=((Raw_value/16383) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the same algorithm as 14BN, and returns a
status indicating whether the value is out of range and in an alarm state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 16383) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

14BN Signal Conditioning
Description 14-bit binary number

Input Range 0-16383

Scaling
Scales 14-bit binary values to the database block's EGU range. Ignores the most
significant 2 bits.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result=((Raw_value/16383) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result=(((InputData-Lo_egu)/Span_egu) * 16383) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

15AL Signal Conditioning
Description 15-bit binary number

Input Range 0-32767

Scaling Scales 15-bit binary values to the database block's EGU range.

Read Algorithm Reads from a 16-bit register with alarming using the same algorithm as 15BN,
and returns a status indicating whether the value is out of range and in an alarm
state, or OK.
Result=((Raw_value/32767) * Span_egu) + Lo_egu.

Read Algorithm Vari- Lo_egu - the database block's low engineering value.

www. ptc.com

231

KEPServerEX

Description 15-bit binary number

ables Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register with alarming using the same algorithm as 15BN, and
returns a status indicating whether the value is out of range and in an alarm
state, or OK.
Result=(((InputData-Lo_egu)/Span_egu) * 32767) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

15BN Signal Conditioning
Description 15-bit binary number

Input Range 0-32767

Scaling
Scales 15-bit binary values to the database block's EGU range. Ignores the most
significant bit.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/32767) * Span_egu) + Lo_egu.

Read Algorithm Vari-
ables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 32767) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

20P Signal Conditioning
Description 6400 – 32000 clamp

Input Range 6400 – 32000

Scaling Scales binary values to the database block's EGU range. Clamps value to 6400 –
32000 range.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =(((Raw_value-6400)/25600) * Span_egu) + Lo_egu.

Read Algorithm
Variables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 25600) + 6400.5.

Write Algorithm Lo_egu - the low engineering value.

www. ptc.com

232

KEPServerEX

Description 6400 – 32000 clamp

Variables Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

TNON Signal Conditioning
Description 0 – 32000 Clamp

Input Range 0 – 32000

Scaling Scales binary values to the database block's EGU range. Clamps value to 0 –
32000 range.

Read Algorithm Reads from a 16-bit register using the following algorithm:
Result =((Raw_value/32000) * Span_egu) + Lo_egu.

Read Algorithm
Variables

Lo_egu - the database block's low engineering value.
Span_egu - the span of the engineering values.
Raw_value - the value stored in the field device's register.
Result - the scaled value stored in the database block.

Write Algorithm Writes to a 16-bit register using the following algorithm:
Result =(((InputData-Lo_egu)/Span_egu) * 32000) + .5.

Write Algorithm Vari-
ables

Lo_egu - the low engineering value.
Span_egu - the span of the engineering values.
InputData - the database block's current value.
Result - the value sent to the process hardware.

Project Startup for iFIX Applications
The server's iFIX interface has been enhanced to provide iFIX users with better startup performance. This
enhancement applies to iFIX applications that use Analog Output (AO), Digital Output (DO), and/or Alarm Val-
ues that were previously initialized improperly on startup. The server maintains a special iFIX configuration
file for the default server project that contains all items that to be accessed by the iFIX client. This con-
figuration file is used to automatically start scanning items before iFIX requests item data. Therefore, data
updates that are only requested once (such as AO/DO) have an initial value when requested by iFIX. For
information on using this feature for existing iFIX projects, refer to the instructions below.

1. To start, export the PDB database from the iFIX Database Manager.

2. Re-import the exported file so that each item in the database is re-validated with the server.

3. In the Confirm Tag Replacementmessage box, select Yes to all.

Note: A new configuration file is created in the same folder as the default server project file, con-
taining the name "default_FIX.ini".

4. Depending on how long it takes to read an initial value for all the items in the project, it may be
necessary to delay the start of SAC processing. Doing so allows the server enough time to retrieve all
initial updates before the iFIX client requests data from the server. For more information on the spe-
cific iFIX version, refer to the iFIX documentation.

5. Restart both the iFIX application and the server to put the changes into effect.

www. ptc.com

233

KEPServerEX

Note: For new projects (or when adding additional items to an existing iFIX database) users do not need
to perform the steps described above. The item is validated by the server upon its addition to the database.
If valid, the server adds the item to the configuration file.

Store and Forward Service
The Store and Forward Service allows different server components to store data on a local disk for a period
of time. The service installs with components that require store and forward functionality. The Store and For-
ward service starts and stops automatically based on features that support store and forward.

See Also:
ThingWorx Project Properties
Store and Forward Configuration Settings
Store and Forward System Tags
ThingWorx Access Rights

www. ptc.com

234

KEPServerEX

Built-In Diagnostics
When communications problems occur, users can utilize both OPC and channel diagnostics to help determ-
ine the cause of the issue. These views provide diagnostics on both the server-level and driver-level. Since
they may affect performance, users should only utilize diagnostics when debugging or trouble-shooting. For
more information, select a link from the list below.

OPC Diagnostics Viewer
Channel Diagnostics

OPC Diagnostics Viewer
The OPC Diagnostics Viewer provides both a real-time and historical view of OPC events occurring between
an OPC client and the server. An event is a method call that a client makes to the server, or a callback that
the server makes to a client.

Accessing the OPC Diagnostics Viewer
The OPC Diagnostics Viewer is separate from the main server configuration window. To access the OPC Dia-
gnostics Viewer, click View | OPC Diagnostics.

Note: Although the viewer can be accessed when capture is disabled, there are no diagnostics until it is
enabled.
 For information on enabling OPC diagnostics, refer to Project Properties — OPC DA, Project Properties —

OPC UA Settings, and Project Properties — OPC HDA.

 For information on the log settings properties, refer to Settings - Event Log.

Live Data Mode
The OPC Diagnostics Viewer opens in Live Data Mode, which displays the persisted OPC Diagnostics data
that is currently available from the Event Log. The viewer is updated in real time. To pause the display, click

www. ptc.com

235

KEPServerEX

View | Pause or select the Pause icon. Although data continues to be captured, the display does not
update.

To save an OPC Diagnostics file, click File | Save As and select OPC Diagnostic Files (*.opcdiag).

File Data Mode
The OPC Diagnostics Viewer can open and display saved OPC Diagnostics files. When a saved file is opened,
the viewer switches to File Data Mode and display the name and data from the loaded file. Users can switch
between the modes through the View menu. Once a file is closed, the view switches to Live Data, and the
File Data view is unavailable until another file is loaded.

View Menu

Descriptions of the options are as follows:

l Live DataWhen enabled, this option displays any persisted OPC Diagnostics data that is currently
available from the Event Log. The default setting is enabled. For more information, refer to Live
Data Mode.

l File DataWhen enabled, this option displays data from a saved OPC Diagnostics file. The default set-
ting is disabled. For more information, refer to File Data Mode.

l Always on TopWhen enabled, this option forces the OPC Diagnostics window to remain on the top
of all other application windows. The default setting is enabled.

l AutoscrollWhen enabled, this option scrolls the display as new events are received to ensure that
the most recent event is visible. It turns off when users manually select an event (or when a selection
is made by Find/Find Next).

l ToolbarWhen enabled, this option displays a toolbar of icons for quick access to the options avail-
able through the File, Edit, and View menus. The default setting is enabled.

l Information Bar When enabled, this option displays a bar of information above the
OPC Diagnostics data. The default setting is enabled.

Find
This dialog searches the Diagnostics View for key information transferred between the client and server. For
example, this search functionality can be used to find all actions on a particular item ID or group name.

www. ptc.com

236

KEPServerEX

Descriptions of the properties are as follows:

l Find What This field specifies the search criteria.
l Match CaseWhen enabled, the search criteria is case sensitive.
l Search DetailsWhen enabled, the search criteria includes details.

Note: When an event or detail with the specified text is found, the line containing the text is highlighted.
To perform a Find Next operation (and look for the next occurrence of the specified text), press "F3". When
the last occurrence is found, a message box indicates this condition. Users can change the search criteria at
any time by pressing "Ctrl+F".

Filter
This dialog specifies which events is visible in the OPC Diagnostics Viewer. For example, most clients make
continuous GetStatus calls into the server to determine whether the server is still available. By filtering this
event, users can just examine the diagnostics data. The filtering applied is to the view, not to the capture. All
event types are captured regardless of the filter settings. Furthermore, because filters can be applied while
the dialog is open, settings can be changed and applied independently. Changes may be made without clos-
ing and reopening the dialog.

Note: Each method (such as "IOPCCommon" or "GetErrorString") of every OPC Data Access 1.0, 2.0, and
3.0 interface that is supported by the server is available as a filter.

www. ptc.com

237

KEPServerEX

Descriptions of the options are as follows:

l Check Selected: When clicked, this button enables all events under the selected item for viewing. All
methods for all interfaces are selected by default.

For more information, refer to OPC DA Events and OPC UA Services.
l Uncheck SelectedWhen clicked, this button enables all event types and methods under the selec-

ted item.
l ImportWhen clicked, this button allows users to select an INI file for import to the Filter.
l ExportWhen clicked, this button allows users to export the Filter as an INI file.

Notes:

1. Because the Filter settings are persisted when the OPC Diagnostics Viewer is closed, users can
reopen and view the OPC diagnostic files at a later time. Files opened in File Data Mode may be
filtered. When a file is saved from the OPC Diagnostics Viewer, only the events that are displayed as a
result of the applied filter is saved. If an unfiltered data file is required, users must turn off filtering
before saving the file.

2. The server's performance is affected when diagnostic information is captured because it is an addi-
tional layer of processing that occurs between the client/server communications. Furthermore, log-
ging OPC Diagnostics in the Extended Datastore Persistence Mode can consume a lot of disk space.
The Windows Event Viewer reports any related errors. For information on persistence modes, refer to
Settings - Event Log.

OPC DA Events
For more information on a specific OPC Diagnostic Event, select a link from the list below.

www. ptc.com

238

KEPServerEX

IClassFactory
Server
IOPCCommon
IOPCServer
IConnectionPointContainer (Server)
IConnectionPoint (Server)
IOPCBrowse
IOPCBrowseServerAddressSpace
IOPCItemProperties
IOPCItemIO
Group
IOPCGroupStateMgt
IOPCGroupStateMgt2
IOPCItemMgt
IOPCItemDeadbandMgt
IOPCItemSamplingMgt
IOPCSyncIO
IOPCSyncIO2
IOPCAsyncIO
IDataObject
IAdviseSink
IAsyncIO2
IAsyncIO3
IConnectionPointContainer (Group)
IConnectionPoint (Group)
IOPCDataCallback
IEnumOPCItemAttributes

IClassFactory
The IClassFactory interface contains several methods intended to deal with an entire class of objects. It is
implemented on the class object for a specific class of objects and is identified by a CLSID.

l QueryInterface: The client can ask the object whether it supports any outgoing interfaces by calling
QueryInterface for IConnectionPointContainer. If the object answers "yes" by handing back a valid
pointer, the client knows it can attempt to establish a connection.

l AddRef: Increments the reference count for an interface on an object. It should be called for every
new copy of a pointer to an interface on a given object.

l Release: Decreases the reference count of the interface by 1.
l CreateInstance: Creates an uninitialized object.
l LockServer: Allows instances to be created quickly when called by the client of a class object to keep

a server open in memory.

Server
The client calls CoCreateInstance to create the server object and the initial interface.

www. ptc.com

239

KEPServerEX

l QueryInterface: The client can ask the object whether it supports any outgoing interfaces by calling
QueryInterface for IConnectionPointContainer. If the object answers "yes" by handing back a valid
pointer, the client knows it can attempt to establish a connection.

l AddRef: Increments the reference count for an interface on an object. It should be called for every
new copy of a pointer to an interface on a given object.

l Release: Decreases the reference count of the interface by 1.

IOPCCommon
This interface is used by all OPC server types (DataAccess, Alarm&Event, Historical Data, and so forth). It
provides the ability to set and query a Locale ID which would be in effect for the particular client/server ses-
sion. The actions of one client do not affect other clients.

l GetErrorString: Returns the error string for a server specific error code. The expected behavior is
that this includes handling of Win32 errors as well (such as RPC errors).

l GetLocaleID: Returns the default Locale ID for this server/client session.
l QueryAvailableLocaleIDs: Returns the available Locale IDs for this server/client session.
l SetClientName: Allows the client to optionally register a client name with the server. This is included

primarily for debugging purposes. The recommended behavior is that users set the Node name and
EXE name here.

l SetLocaleID: Sets the default Locale ID for this server/client session. This Locale ID is used by the
GetErrorString method on this interface. The default value for the server should be LOCALE_SYSTEM_
DEFAULT.

IOPCServer
This is an OPC server's main interface. The OPC server is registered with the operating system as specified
in the Installation and Registration Chapter of this specification.

l AddGroup: Adds a group to a server. A group is a logical container for a client to organize and manip-
ulate data items.

l CreateGroupEnumerator: Creates various enumerators for the groups provided by the server.
l GetErrorString: Returns the error string for a server specific error code.
l GetGroupByName: Returns an additional interface pointer when given the name of a private group

(created earlier by the same client). Use GetPublicGroupByName to attach to public groups. This
function can be used to reconnect to a private group for which all interface pointers have been
released.

l GetStatus: Returns current status information for the server.
l RemoveGroup Deletes the group. A group is not deleted when all the client interfaces are released,

since the server itself maintains a reference to the group. The client may still call GetGroupByName
after all the interfaces have been released. RemoveGroup() causes the server to release its 'last' ref-
erence to the group, which results in the group being deleted.

IConnectionPointContainer (Server)
This interface provides the access to the connection point for IOPCShutdown.

l EnumConnectionPoints: Creates an enumerator for the connection points supported between the
OPC group and the client. OPCServers must return an enumerator that includes IOPCShutdown.
Additional vendor specific callbacks are allowed.

l FindConnectionPoint: Finds a particular connection point between the OPC server and the client.
OPCServers must support IID_IOPCShutdown. Additional vendor specific callbacks are allowed.

IConnectionPoint (Server)

www. ptc.com

240

KEPServerEX

This interface establishes a call back to the client.

l Advise: Establishes an advisory connection between the connection point and the caller's sink
object.

l EnumConnections: Creates an enumerator object for iteration through the connections that exist to
this connection point.

l GetConnectionInterface: Returns the IID of the outgoing interface managed by this connection
point.

l GetConnectionPointContainer: Retrieves the IConnectionPointContainer interface pointer to the
connectable object that conceptually owns the connection point.

l Unadvise: Terminates an advisory connection previously established through the Advise method.
l ShutdownRequest Allows the server to request that all clients disconnect from the server.

IOPCBrowse
IOPCBrowse interface provides improved methods for browsing the server address space and for obtaining
the item properties.

l GetProperties: Returns an array of OPCITEMPROPERTIES, one for each item ID.
l Browse: Browses a single branch of the address space and returns zero or more

OPCBROWSEELEMENT structures.

IOPCBrowseServerAddressSpace
This interface provides a way for clients to browse the available data items in the server, giving the user a
list of the valid definitions for an item ID. It allows for either flat or hierarchical address spaces and is
designed to work well over a network. It also insulates the client from the syntax of a server vendor specific
item ID.

l BrowseAccessPaths: Provides a way to browse the available AccessPaths for an item ID.
l BrowseOPCItemIDs: Returns an IENUMString for a list of item IDs as determined by the passed

properties. The position from which the browse is made can be set in ChangeBrowsePosition.
l ChangeBrowserPosition: Provides a way to move up, down or to in a hierarchical space.
l GetItemID: Provides a way to assemble a fully qualified item ID in a hierarchical space. This is

required since the browsing functions return only the components or tokens that make up an item
ID and do not return the delimiters used to separate those tokens. Also, at each point one is brows-
ing just the names below the current node (e.g. the units in a cell).

l QueryOrganization: Provides a way to determine if the underlying system is inherently flat or hier-
archical and how the server may represent the information of the address space to the client. Flat
and hierarchical spaces behave somewhat different. If the result is flat, the client knows that there is
no need to pass the Branch or Leaf flags to BrowseOPCItem IDs or to call ChangeBrowsePosition.

IOPCItemProperties
This interface can be used to browse the available properties associated with an item ID as well as to read
the properties' current values.

l GetItemProperties: Returns a list of the current data values for the passed ID codes.
l LookUpItemIDs: Returns a list of item IDs for each of the passed ID codes if any are available. These

indicate the item ID which could be added to an OPC group and used for more efficient access to the
data corresponding to the item properties.

l QueryAvailableProperties: Returns a list of ID codes and descriptions for the available properties
for this item ID. This list may differ for different item IDs. This list is expected to be relatively stable
for a particular item ID, although it could be affected from time to time by changes to the underlying

www. ptc.com

241

KEPServerEX

system's configuration. The item ID is passed to this function because servers are allowed to return
different sets of properties for different item IDs.

IOPCItemIO
The purpose of this interface is to provide an easy way for basic applications to obtain OPC data.

l Read: Reads one or more values, qualities, and timestamps for the items specified. This is func-
tionally similar to the IOPCSyncIO::Read method.

l WriteVQT: Writes one or more values, qualities, and timestamps for the items specified. This is func-
tionally similar to the IOPCSyncIO2::WriteVQT except that there is no associated group. If a client
attempts to write VQ, VT, or VQT it should expect that the server will write them all or none at all.

Group
The client calls CoCreateInstance to create the server object and the initial interface.

l QueryInterface: The client can ask the object whether it supports any outgoing interfaces by calling
QueryInterface for IConnectionPointContainer. If the object answers "yes" by handing back a valid
pointer, the client knows it can attempt to establish a connection.

l AddRef: Increments the reference count for an interface on an object. It should be called for every
new copy of a pointer to an interface on a given object.

l Release: Decreases the reference count of the interface by 1.

IOPCGroupStateMgt
IOPCGroupStateMgt allows the client to manage the overall state of the group. Primarily, this accounts for
changes made to the group's update rate and active state.

l CloneGroup: Creates a second copy of a group with a unique name.
l GetState: Gets the current state of the group. This function is typically called to obtain the current

values of this information prior to calling SetState. This information was all supplied by or returned
to the client when the group was created.

l SetName: Changes the name of a private group. The name must be unique. The name cannot be
changed for public groups. Group names are required to be unique with respect to an individual cli-
ent to server connection.

l SetState: Sets various properties of the group. This represents a new group which is independent of
the original group.

IOPCGroupStateMgt2
This interface was added to enhance the existing IOPCGroupStateMgt interface.

l SetKeepAlive: Causes the server to provide client callbacks on the subscription when there are no
new events to report. Clients can be assured of the health of the server and subscription without
resorting to pinging the server with calls to GetStatus().

l GetKeepAlive: Returns the currently active keep-alive time for the subscription.

IOPCItemMgt
This interface allows a client to add, remove and control the behavior of items is a group.

l AddItems: Adds one or more items to a group. It is acceptable to add the same item to the group
more than once, generating a second item with a unique ServerHandle.

l CreateEnumerator: Creates an enumerator for the items in the group.

www. ptc.com

242

KEPServerEX

l RemoveItems: Removes items from a group. Removing items from a group does not affect the
address space of the server or physical device. It indicates whether or not the client is interested in
those particular items.

l SetActiveState: Sets one or more items in a group to active or inactive. This controls whether or not
valid data can be obtained from read cache for those items and whether or not they are included in
the IAdvise subscription to the group. Deactivating items does not result in a callback, since by defin-
ition callbacks do not occur for inactive items. Activating items generally results in an IAdvise callback
at the next UpdateRate period.

l SetClientHandles: Changes the client handle for one or more items in a group. In general, it is expec-
ted that clients set the client handle when the item is added and not change it later.

l SetDataTypes: Changes the requested data type for one or more items in a group. In general, it is
expected that clients set the requested data type when the item is added and not change it later.

l ValidateItems: Determines if an item is valid and could be added without error. It also returns
information about the item such as canonical datatype. It does not affect the group in any way.

IOPCItemDeadbandMgt
Force a callback to IOPCDataCallback::OnDataChange for all active items in the group, whether they have
changed or not. Inactive items are not included in the callback. The MaxAge value determines where the
data is obtained. There is only one MaxAge value, which determines the MaxAge for all active items in the
group. This means some of the values may be obtained from cache while others could be obtained from the
device, depending on the "freshness" of the data in the cache.

l SetItemDeadband: Overrides the deadband specified for the group for each item.
l GetItemDeadband: Gets the deadband values for each of the requested items.
l ClearItemDeadband: Clears the individual item PercentDeadband, effectively reverting them back

to the deadband value set in the group.

IOPCItemSamplingMgt
This optional interface allows the client to manipulate the rate at which individual items within a group are
obtained from the underlying device. It does not affect the group update rate of the callbacks for
OnDataChange.

l SetItemSamplingRate: Sets the sampling rate on individual items. This overrides the update rate of
the group as far as collection from the underlying device is concerned. The update rate associated
with individual items does not affect the callback period.

l GetItemSamplingRate: Gets the sampling rate on individual items, which was previously set with
SetItemSamplingRate.

l ClearItemSamplngRate: Clears the sampling rate on individual items, which was previously set with
SetItemSamplingRate. The item reverts to the update rate of the group.

l SetItemBufferEnable: Requests that the server turns on or off, depending on the value of the
Enable property, the buffering of data for the identified items, which are collected for items that
have an update rate faster than the group update rate.

l GetItemBufferEnable: Queries the current state of the servers buffering for requested items.

IOPCSyncIO
IOPCSyncIO allows a client to perform synchronous read and write operations to a server. The operations
run to completion.

l Read: Reads the value, quality and timestamp information for one or more items in a group. The
function runs to completion before returning. The data can be read from cache in which case it

www. ptc.com

243

KEPServerEX

should be accurate to within the UpdateRate and percent deadband of the group. The data can be
read from the device, in which case an actual read of the physical device must be performed. The
exact implementation of cache and device reads are not defined by the specification.

l Write: Writes values to one or more items in a group. The function runs to completion. The values
are written to the device, meaning that the function should not return until it verifies that the device
has actually accepted or rejected the data. Writes are not affected by the active state of the group or
item.

IOPCSyncIO2
This interface was added to enhance the existing IOPCSyncIO interface.

l ReadMaxAge: Reads one or more values, qualities and timestamps for the items specified. This is
functionally similar to the OPCSyncIO::Read method except no source is specified (device or cache).
The server determines whether the information is obtained from the device or cache. This decision is
based on the MaxAge property. If the information in the cache is within the MaxAge, the data is
obtained from the cache; otherwise, the server must access the device for the requested inform-
ation.

l WriteVQT: Writes one or more values, qualities and timestamps for the items specified. This is func-
tionally similar to the IOPCSyncIO::Write except that Quality and Timestamp may be written. If a cli-
ent attempts to write VQ, VT or VQT it should expect that the server will write to all or none.

IOPCAsyncIO
IOPCAsyncIO allows a client to perform asynchronous read and write operations to a server. The operations
are queued and the function returns immediately so that the client can continue to run. Each operation is
treated as a transaction and is associated with a Transaction ID. As the operations are completed, a callback
is made to the IAdvise Sink in the client (if one is established). The information in the callback indicates the
Transaction ID and the error results. By convention, 0 is an invalid Transaction ID.

l Cancel: Requests that the server cancel an outstanding transaction.
l Read: Reads one or more items in a group. The results are returned via the IAdvise Sink connection

established through the IDataObject. For cache reads the data is only valid if both the group and the
item are active. Device reads are not affected by the active state of the group or item.

l Refresh: Forces a callback for all active items in the group, whether they have changed or not. Inact-
ive items are not included in the callback.

l Write: Writes one or more items in a group. The results are returned via the IAdviseSink connection
established through the IDataObject.

IDataObject
IDataObject is implemented on the OPCGroup rather than on the individual items. This allows the creation
of an Advise connection between the client and the group using the OPC Data Stream Formats for the effi-
cient data transfer.

l DAdvise: Creates a connection for a particular stream format between the OPC group and the client.
l DUnadvise: Terminates a connection between the OPC group and the client.

IAdviseSink
The client only has to provide a full implementation of OnDataChange.

l OnDataChange: This method is provided by the client to handle notifications from the OPC group
for exception based data changes, Async reads and Refreshes and Async Write Complete.

IAsyncIO2

www. ptc.com

244

KEPServerEX

This interface is similar to IOPCAsync(OPC 1.0) and is intended to replace IOPCAsyncIO. It was added in OPC
2.05.

l Cancel2: Requests that the server cancel an outstanding transaction.
l GetEnable: Retrieves the last Callback Enable value set with SetEnable.
l Read: Reads one or more items in a group. The results are returned via the client's IOPCDataCall-

back connection established through the server's IConnectionPointContainer. Reads are from device
and are not affected by the active state of the group or item.

l Refresh2: Forces a callback to IOPCDataCallback::OnDataChange for all active items in the group,
whether they have changed or not. Inactive items are not included in the callback.

l SetEnable: Controls the operation of OnDataChange. Setting Enable to False disables any
OnDataChange callbacks with a transaction ID of 0 (not the result of a Refresh). The initial value of
this variable when the group is created is True; OnDataChange callbacks are enabled by default.

l Write: Writes one or more items in a group. The results are returned via the client's IOPCDataCall-
back connection established through the server's IConnectionPointContainer.

IAsyncIO3
This interface was added to enhance the existing IOPCAsyncIO2 interface.

l ReadMaxAge: Reads one or more values, qualities and timestamps for the items specified. This is
functionally similar to the OPCSyncIO::Read method except it is asynchronous and no source is spe-
cified (device or cache). The server determines whether the information is obtained from the device
or cache. This decision is based on the MaxAge property. If the information in the cache is within the
MaxAge, the data is obtained from the cache; otherwise, the server must access the device for the
requested information.

l WriteVQT: Writes one or more values, qualities and timestamps for the items specified. The results
are returned via the client's IOPCDataCallback connection established through the server's ICon-
nectionPointContainer. This is functionally similar to the IOPCAsyncIO2::Write except that Quality
and Timestamp may be written. If a client attempts to write VQ, VT or VQT it should expect that the
server will write them all or none at all.

l RefreshMaxAge: Forces a callback to IOPCDataCallback::OnDataChange for all active items in the
group, whether or not they have changed. Inactive items are not included in the callback. The
MaxAge value determines where the data is obtained. There is only one MaxAge value, which determ-
ines the MaxAge for all active items in the group. This means some of the values may be obtained
from cache while others can be obtained from the device, depending on the type of the data in the
cache.

IConnectionPointContainer (Group)
This interface provides functionality similar to the IDataObject but is easier to implement and to under-
stand. It also provides the functionality missing from the IDataObject interface. The client must use the new
IOPCAsyncIO2 interface to communicate via connections established with this interface. The old IOPCAsnyc
continues to communicate via IDataObject connections as in the past.

l EnumConnectionPoints: Creates an enumerator for the connection points supported between the
OPC group and the client.

l FindConnectionPoint: Finds a particular connection point between the OPC group and the client.

IConnectionPoint (Group)
This interface establishes a call back to the client.

l Advise: Establishes an advisory connection between the connection point and the caller's sink
object.

www. ptc.com

245

KEPServerEX

l EnumConnections: Creates an enumerator object for iteration through the connections that exist to
this connection point.

l GetConnectionInterface: Returns the IID of the outgoing interface managed by this connection
point.

l GetConnectionPointContainer: Retrieves the IConnectionPointContainer interface pointer to the
connectable object that conceptually owns the connection point.

l Unadvise: Terminates an advisory connection previously established through the Advise method.

IOPCDataCallback
To use connection points, the client must create an object that supports both the IUnknown and
IOPCDataCallback interface.

l OnDataChange: This method is provided by the client to handle notifications from the OPC group
for exception based data changes and Refreshes.

l OnReadComplete: This method is provided by the client to handle notifications from the OPC group
on completion of Async reads.

l OnWriteComplete: This method is provided by the client to handle notifications from the OPC
group on completion of AsyncIO2 Writes.

l OnCancelComplete: This method is provided by the client to handle notifications from the OPC
group on completion of Async cancel.

IEnumOPCItemAttributes
IEnumOPCItemAttributes allows clients to find out the contents of a group and the attributes of those items.
Most of the returned information is either supplied by or returned to the client at the time it called AddItem.

l Clone: Creates a second copy of the enumerator. The new enumerator is initially in the same state
as the current enumerator.

l Next: Fetches the next 'celt' items from the group.
l Reset: Resets the enumerator back to the first item.
l Skip: Skips over the next 'celt' attributes.

For more information on the general principles of connection points, refer to Microsoft documentation.

OPC UA Services
For more information on a specific OPC Diagnostic Event, select a link from the list below.

AttributeServiceSet
DiscoveryServiceSet
MonitoredItemServiceSet
OtherServices
SecureChannelServiceSet
SessionServiceSet
SubscriptionServiceSet
ViewServiceSet

AttributeServiceSet
This service set provides services to access attributes that are part of nodes.

www. ptc.com

246

KEPServerEX

l Read: This service is used to read one or more attributes of one or more nodes. For constructed
attribute values whose elements are indexed, such as an array, this service allows clients to read the
entire set of indexed values as a composite, to read individual elements or to read ranges of ele-
ments of the composite.

l Write: This service is used to write values to one or more attributes of one or more nodes. For con-
structed attribute values whose elements are indexed, such as an array, this service allows clients to
write the entire set of indexed values as a composite, to write individual elements or to write ranges
of elements of the composite.

DiscoveryServiceSet
This service set defines services used to discover the endpoints implemented by a server and to read the
security configuration for those endpoints.

l FindServers: This service returns the servers known to a server or discovery server.
l GetEndpoints: This service returns the endpoints supported by a server and all of the configuration

information required to establish a secure channel and session.

MonitoredItemServiceSet
This service set allows clients to define monitored items to subscribe to data and events. Each monitored
item identifies the item to be monitored and the subscription to use to send notifications. The item to be
monitored may be any node attribute.

l CreateMonitoredItems: This service is used to create and add one or more MonitoredItems to a
Subscription. A MonitoredItem is deleted automatically by the server when the Subscription is
deleted.

l DeleteMonitoredItems: This service is used to remove one or more MonitoredItems of a Sub-
scription. When a MonitoredItem is deleted, its triggered item links are also deleted.

l ModifyMonitoredItems: This service is used to modify MonitoredItems of a Subscription. Changes
to the MonitoredItem settings are immediately applied by the server.

l SetMonitoringMode: This service is used to set the monitoring mode for one or more Mon-
itoredItems of a Subscription. Setting the mode to disabled causes all queued notifications to be
deleted.

l SetTriggering: This service is used to create and delete triggering links for a triggering item.
Triggered items and their links cause a monitored item to report samples when their monitoring
mode doesn’t allow for that by default.

OtherServices
OtherServices represents miscellaneous services and notifications.

l ServiceFault: This response is provided any time a service fails.
l Unsupported: These services are not supported by this server.

SecureChannelServiceSet
This service set defines services used to open a communication channel that ensures the confidentiality and
integrity of all messages exchanged with the server.

www. ptc.com

247

KEPServerEX

l CloseSecureChannel: This service is used to terminate a SecureChannel.
l OpenSecureChannel: This service is used to open or renew a SecureChannel that can be used to

ensure confidentiality and integrity for message exchange during a session. This service requires the
communication stack to apply the various security algorithms to the messages as they are sent and
received.

SessionServiceSet
This service set defines services for an application layer connection establishment in the context of a ses-
sion.

l ActivateSession: This service is used by the client to specify the identity of the user associated with
the session.

l Cancel: This service is used to cancel any outstanding service requests. Successfully cancelled ser-
vice requests shall respond with Bad_RequestCancelledByClient ServiceFaults.

l CloseSession: This service is used to terminate a session.
l CreateSession: This service is used by the client to create a Session and the server returns two val-

ues which uniquely identify the Session. The first value is the sessionId which is used to identify the
Session in the Server’s AddressSpace. The second is the authenticationToken which is used to asso-
ciate an incoming request with a Session.

SubscriptionServiceSet
Subscriptions are used to report notifications from MonitoredItems to a client.

l CreateSubscription: This service is used to create a subscription. Subscriptions monitor a set of
MonitoredItems for Notifications and return them to the client in response to Publish requests.

l DeleteSubscriptions: This service is invoked to delete one or more subscriptions that belong to the
client’s session. Successful completion of this service causes all MonitoredItems that use the Sub-
scription to be deleted.

l ModifySubscription: This service is used to modify a subscription.
l Publish: This service is used for two purposes. First, it is used to acknowledge the receipt of Noti-

ficationMessages for one or more Subscriptions. Second, it is used to request the server to return a
NotificationMessage or a keep-alive message. Since Publish requests are not directed to a specific
Subscription, they may be used by any Subscription.

l Republish: This service requests the Subscription to republish a NotificationMessage from its
retransmission queue.

l SetPublishingMode: This service is used to enable or disable sending of notifications on one or
more subscriptions.

l TransferSubscriptions: This service is used to transfer a subscription and its MonitoredItems from
one Session to another.

ViewServiceSet
Clients use the browse services of this service set to navigate through the AddressSpace.

l Browse: This service is used to discover the References of a specified Node. The browse service also
supports a primitive filtering capability.

l BrowseNext: This service is used to request the next set of Browse or BrowseNext response inform-
ation that is too large to be sent in a single response. “Too large” in this context means that the

www. ptc.com

248

KEPServerEX

server is not able to return a larger response or that the number of results to return exceeds the
maximum number of results to return that was specified by the client in the original browse request.

l RegisterNodes: This service can be used by clients to register the Nodes that they know they will
access repeatedly (e.g. Write, Read). It allows Servers to set up anything needed so that the access
operations will be more efficient.

l TranslateBrowsePathsToNodeIds: This service is used to request that the server translates one or
more browse paths to NodeIds. Each browse path is constructed of a starting Node and a Rel-
ativePath. The specified starting Node identifies the Node from which the RelativePath is based. The
RelativePath contains a sequence of ReferenceTypes and BrowseNames.

l UnregisterNodes: This service is used to unregister NodeIds that have been obtained via the
RegisterNodes service.

For more information on the general principles of connection points, refer to Microsoft documentation.

Communication Diagnostics
The server's diagnostic features provide real-time information on the communication driver's performance.
All read and write operations can be viewed in the Diagnostics Viewer or tracked directly in the OPC client
application with built-in Diagnostics tags. The Diagnostic Viewer also provides a real-time protocol view,
which is useful when making changes to key communication parameter settings (such as baud rate, parity,
or device IDs). The changes' effects are displayed in real-time. Once the correct communication and device
settings are set, the data exchange with the device is visible.

Enabling Communication Diagnostics
To enable Communication Diagnostics, right-click on the channel in the Project View and click Properties |
Enable Diagnostics. Alternatively, double-click on the channel and select Enable Diagnostics. Users may
enable diagnostics after channel creation.
See Also: Channel Properties — General

Accessing the Communication Diagnostics Viewer
To access the Communication Diagnostics Viewer, right-click on the channel or device in the Project View
and select Diagnostics. Alternatively, select the channel or device and click View | Communication Dia-
gnostics. The Communication Diagnostics Viewer operates in a mode-less form that allows it to exist while
other dialogs in the server are open. Once the viewer is open, it should begin capturing the real-time pro-
tocol data. If communications are occurring properly, there is a stream of communications messages
between the server and the device. Users should be able to view the TX and RX events, as well as the Total
Event count.

Note: Although the Communication Diagnostics Viewer can be opened when capture is disabled, there
are no diagnostics until it is enabled. When enabled, the viewer displays "Capturing". When disabled, the
viewer displays "Diagnostics capture disabled".

www. ptc.com

249

KEPServerEX

Reset Statistics
Clicking Reset Statistics sets the counts for TX, RX, Good Reads, Failed Reads, Good Writes, and Failed Writes
to zero. Total Events are not set to zero because it specifies the actual number of events in the viewer.
 For information on the log settings, refer to Settings - Event Log.

Accessing the Context Menu
If communications do not appear to be working normally, users can access the channel properties and
modify the communications parameters. The Diagnostic Window remains displayed even after the channel
properties are displayed, allowing users to change the properties and monitor their effect. The Diagnostic
Window must be displayed before any dialogs are accessed.

If a communications problem persists, right-click in the Diagnostic Window to invoke the context menu.
Then, use the available selections to tailor the Diagnostic Window's operation.

www. ptc.com

250

KEPServerEX

Descriptions of the options are as follows:

l HexWhen enabled, the TX/RX details are formatted using hexadecimal notation.
l ASCIIWhen enabled, the TX/RX details are formatted using ASCII notation.
l Find This option invokes a dialog for entering a search string to be applied to the event details. For

more information, refer to Find.
l Copy: This option formats the protocol capture buffer's contents as text for easy "cut and paste" into

an email or fax message. This information helps Technical Support analyze and diagnose many com-
munications issues.

l Save as Text File: This option saves all the events in the view to a specified file name (as text).
l Autoscroll: This option scrolls the display as new events are received to ensure that the most recent

one is visible. It is turned off when users manually select an event (or when a selection is made by
Find/Find Next).

l Always on Top: This option forces the Diagnostics Window to remain on the top of all other applic-
ation windows. This is the default setting.

l Delete All Events: This option clears the log being maintained by the Event Log and results in the
deletion of data.

Find
This dialog searches the Diagnostics View for key information transferred between the client and server.

Search all data for This field specifies the search criteria.

Note: When an event or detail with the specified text is found, the line containing the text is highlighted.
To perform a Find Next operation (and look for the next occurrence of the specified text), press "F3". When
the last occurrence is found, a message box is displayed indicating this condition. Users can change the
search criteria at any time by pressing "Ctrl+F".

www. ptc.com

251

KEPServerEX

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Con-
sult the OPC server help on filtering and sorting the Event Log detail view. Server help contains many com-
mon messages, so should also be searched. Generally, the type of message (informational, warning) and
troubleshooting information is provided whenever possible.

Server Summary Information
The server provides basic summary information about itself and any drivers and plug-ins that are currently
installed.

About the Server
The server version is readily available for review and provides a way to find driver-specific information. To
access, click Help | Support Information in the server Configuration. To display the version information of
all installed components, click Versions.

Component Version Information
The Version Information window displays all installed drivers and plug-ins along with their version numbers.
For driver-specific information, select a component and click Summary.

Driver Information
The Driver Information window provides a summary of the driver's default settings. For example, each
driver displays its maximum number of supported channels.

www. ptc.com

252

KEPServerEX

Descriptions of the sections of information available is as follows:

Summary provides the driver name and type, the maximum number of supported channels, and the num-
ber of models in the driver.

COMM Defaults displays the driver's default settings, which may or may not match the settings of the
device being configured.

Driver flag definitions displays the driver library functions and indicates whether they have been enabled
in the driver.

Model Information displays device-specific addressing and features. It lists the name for each supported
model in addition to its addressing values and other features.

The <name> device driver was not found or could not be loaded.
Error Type:
Error

Possible Cause:

www. ptc.com

253

KEPServerEX

1. If the project has been moved from one PC to another, the required drivers may have not been
installed yet.

2. The specified driver may have been removed from the installed server.

3. The specified driver may be the wrong version for the installed server version.

Possible Solution:

1. Re-run the server install and add the required drivers.

2. Re-run the server install and re-install the specified drivers.

3. Ensure that a driver has not been placed in the installed server directory (which is out of sync with
the server version).

Unable to load the '<name>' driver because more than one copy exists
('<name>' and '<name>'). Remove the conflicting driver and restart the
application.
Error Type:
Error

Possible Cause:
Multiple versions of the driver DLL exist in the driver's folder in the server.

Possible Solution:

1. Re-run the server install and re-install the specified drivers.

2. Contact Technical support and verify the correct version. Remove the driver that is invalid and restart
the server and load the project.

Invalid project file.
Error Type:
Error

Failed to open modem line '<line>' [TAPI error = <code>].
Error Type:
Error

Possible Cause:
TAPI attempted to open the modem line for the server and encountered an error.

Possible Solution:
Correct the condition for the specified error. Then re-attempt to open the modem line.

Unable to add channel due to driver-level failure.
Error Type:

www. ptc.com

254

KEPServerEX

Error

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Unable to add device due to driver-level failure.
Error Type:
Error

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Version mismatch.
Error Type:
Error

Invalid XML document:
Error Type:
Error

Possible Cause:
The server is unable to parse the specified XML file.

Possible Solution:
If the server project was edited using a third-party XML editor, verify that the format is correct via the
schemas for the server and drivers.

Unable to load project <name>:
Error Type:
Error

Possible Cause:

1. The project was created using a version of the server that contained a feature or configuration that
has been obsoleted and no longer exists in the server that is trying to load it.

2. The project was created in a server version that is not compatible with the version trying to load it.

3. The project file is corrupt.

Possible Solution:

www. ptc.com

255

KEPServerEX

Save project as XML(V5) or JSON(V6), remove the unsupported feature that is defined in the project file and
then save and load the updated project file into the server that is trying to load it.

 Note:
Every attempt is made to ensure backwards compatibility in the server so that projects created in older ver-
sions may be loaded in newer versions. However, since new versions of the server and driver may have
properties and configurations that do not exist in older versions, it may not be possible to open or load an
older project in a newer version.

Unable to backup project file to '<path>' [<reason>]. The save operation
has been aborted. Verify the destination file is not locked and has
read/write access. To continue to save this project without a backup,
deselect the backup option under Tools | Options | General and re-save
the project.
Error Type:
Error

Possible Cause:

1. The destination file may be not locked by another application.

2. The destination file or the folder where it is located does not allow read/write access.

Possible Solution:

1. Ensure that the destination file is not locked by another application, unlock the file, or close the
application.

2. Ensure that the destination file and with the folder where it is located allow read and write access.

<feature name> was not found or could not be loaded.
Error Type:
Error

Possible Cause:
The feature is not installed or is not in the expected location.

Possible Solution:
Re-run the server install and select the specified feature for installation.

Unable to save project file <name>:
Error Type:
Error

Device discovery has exceeded <count> maximum allowed devices. Limit
the discovery range and try again.
Error Type:

www. ptc.com

256

KEPServerEX

Error

<feature name> is required to load this project.
Error Type:
Error

The current language does not support loading XML projects. To load XML
projects, change the product language selection to English in Server
Administration.
Error Type:
Error

Possible Cause:
Loading XML projects file allowed only in English environment.

Possible Solution:
Change the product language selection to English in Server Administration and try again.

Unable to load the project due to a missing object. | Object = '<object>'.
Error Type:
Error

Possible Cause:
Editing the JSON project file may have left it in an invalid state.

Possible Solution:
Revert any changes made to the JSON project file.

Invalid Model encountered while trying to load the project. | Device =
'<device>'.
Error Type:
Error

Possible Cause:
The specified device has a model that is not supported in this version of the server.

Possible Solution:
Open this project with a newer version of the server.

Cannot add device. A duplicate device may already exist in this channel.
Error Type:
Error

Auto-generated tag '<tag>' already exists and will not be overwritten.
Error Type:

www. ptc.com

257

KEPServerEX

Warning

Possible Cause:
Although the server is regenerating tags for the tag database, it has been set not to overwrite tags that
already exist.

Possible Solution:
If this is not the desired action, change the setting of the "On Duplicate Tag" property for the device.

Unable to generate a tag database for device '<device>'. The device is not
responding.
Error Type:
Warning

Possible Cause:

1. The device did not respond to the communications request.

2. The specified device is not on, not connected, or in error.

Possible Solution:

1. Verify that the device is powered on and that the PC is on (so that the server can connect to it).

2. Verify that all cabling is correct.

3. Verify that the device IDs are correct.

4. Correct the device failure and retry the tag generation.

Unable to generate a tag database for device '<device>':
Error Type:
Warning

Possible Cause:
The specified device is not on, not connected, or in error.

Possible Solution:
Correct the device failure and retry the tag generation.

Auto generation produced too many overwrites, stopped posting error
messages.
Error Type:
Warning

Possible Cause:

www. ptc.com

258

KEPServerEX

1. To keep from filling the error log, the server has stopped posting error messages on tags that cannot
be overwritten during automatic tag generation.

2. Reduce the scope of the automatic tag generation or eliminate problematic tags.

Failed to add tag '<tag>' because the address is too long. The maximum
address length is <number>.
Error Type:
Warning

Line '<line>' is already in use.
Error Type:
Warning

Possible Cause:
The target modem line is already open, likely because it is in use by another application.

Possible Solution:
Find the application holding the modem open and close or release it.

Hardware error on line '<line>'.
Error Type:
Warning

Possible Cause:
A hardware error was returned after a request was made for a tag in a device connected to the modem.

Possible Solution:
Disable data collection on the device. Enable it after the modem connects to the destination modem.

 Note:
The error occurs on first scan and is not repeated.

No comm handle provided on connect for line '<line>'.
Error Type:
Warning

Possible Cause:
An attempt was made to connect to the modem line with no specified COMM handle.

Possible Solution:
Verify the modem is installed and initialized correctly.

Unable to dial on line '<line>'.
Error Type:

www. ptc.com

259

KEPServerEX

Warning

Possible Cause:
The modem is not in a state that allows dialing.

Possible Solution:
To dial a number, the line must be idle. Monitor the _Mode Modem tag and dial when it indicates an idle
state.

Unable to use network adapter '<adapter>' on channel '<name>'. Using
default network adapter.
Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC. The server uses the default network
adapter.

Possible Solution:
Select the network adapter to use for the PC and save the project.

 See Also:
Channel Properties - Network Interface

Rejecting attempt to change model type on a referenced device '<channel
device>'.
Error Type:
Warning

TAPI line initialization failed: <code>.
Error Type:
Warning

Possible Cause:
The telephony service is not required to be running for the Runtime to start. When the service is disabled
and a serial driver is added to the project, this error message is reported.

Possible Solution:

1. If modem communication is not used, no action is required.

2. If modem communications are required, the telephony service must be started on the PC.

Validation error on '<tag>': <error>.
Error Type:
Warning

www. ptc.com

260

KEPServerEX

Possible Cause:
An attempt was made to set invalid parameters on the specified tag.

Unable to load driver DLL '<name>'.
Error Type:
Warning

Possible Cause:
The specified driver could not be loaded when the project started.

Possible Solution:

1. Verify the version of the installed driver. Check the website to see if the driver version is correct for
the server version installed.

2. If the driver corrupted, delete it and re-run the server install.

 Note:
This problem is usually due to corrupted driver DLLs or drivers that are not compatible with the server ver-
sion.

Validation error on '<tag>': Invalid scaling parameters.
Error Type:
Warning

Possible Cause:
An attempt was made to set invalid scaling parameters on the specified tag.

 See Also:
Tag Properties - Scaling

Unable to apply modem configuration on line '<line>'.
Error Type:
Warning

Possible Cause:
TAPI Manager was unable to apply configuration changes to the server.

Possible Solution:

1. Verify the cabling to the modem.

2. Verify that the modem is set to accept configuration changes.

3. Verify that the modem is not being used by another application.

Device '<device>' has been automatically demoted.
Error Type:

www. ptc.com

261

KEPServerEX

Warning

Possible Cause:
Communications with the specified device failed. The device has been demoted from the poll cycle.

Possible Solution:

1. If the device fails to reconnect, investigate the reason behind the communications loss and correct it.

2. To stop the device from being demoted, disable Auto-Demotion.

 See Also:
Auto-Demotion

<Source>: Invalid Ethernet encapsulation IP '<address>'.
Error Type:
Warning

Possible Cause:
The IP address specified for a device on an Ethernet encapsulated channel is not a valid IP address.

Possible Solution:
Correct the IP in the XML file and re-load the project.

 Note:
This error can occur when loading XML formatted projects that were created or edited with third-party XML
software.

Unable to load plug-in DLL '<name>'.
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is com-
patible with the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

 Note:
This problem is usually due to corrupted plug-in DLLs or plug-ins that are not compatible with the server ver-
sion.

www. ptc.com

262

KEPServerEX

The time zone set for '<device>' is '<zone>'. This is not a valid time zone
for the system. Defaulting the time zone to '<zone>'.
Error Type:
Warning

Unable to load driver DLL '<name>'. Reason:
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is com-
patible with the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

Unable to load plug-in DLL '<name>'. Reason:
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is com-
patible with the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

Channel requires at least one number in its phonebook for automatic dial-
ing. | Channel = '<channel>'.
Error Type:
Warning

Possible Cause:
The Auto-Dial property is set to Enable and there are no entries in the phonebook.

Possible Solution:
If auto-dialing is desired, add a phone number entry to the phonebook. If auto-dialing is not desired, disable
Auto-Dial.

www. ptc.com

263

KEPServerEX

Channel requires Auto-Dial enabled and at least one number in its phone-
book to use a shared modem connection. | Channel = '<channel>'.
Error Type:
Warning

Possible Cause:
Channel shares a modem with one or more existing channels and does not have Auto-Dial enabled or a
phone number for auto-dialing.

Possible Solution:

1. Enable Auto-Dial on the reported channel.

2. Add a phone number to the phonebook of the reported channel.

The specified network adapter is invalid on channel '%1' | Adapter = '%2'.
Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC.

Possible Solution:
Select the network adapter to use for the PC and save the project.

 See Also:
Channel Properties - Network Interface

No tags were created by the tag generation request. See the event log for
more information.
Error Type:
Warning

Possible Cause:
The driver produced no tag information but declined to provide a reason why.

Possible Solution:
Event log may contain information that will help troubleshoot the issue.

The tag import filename is invalid, file paths are not allowed.
Error Type:
Warning

Possible Cause:
The tag import filename includes a path.

Possible Solution:

www. ptc.com

264

KEPServerEX

Remove the path from the filename.

TAPI configuration has changed, reinitializing...
Error Type:
Informational

<Product> device driver loaded successfully.
Error Type:
Informational

Starting <name> device driver.
Error Type:
Informational

Stopping <name> device driver.
Error Type:
Informational

Dialing '<number>' on line '<modem>'.
Error Type:
Informational

Line '<modem>' disconnected.
Error Type:
Informational

Dialing on line '<modem>' canceled by user.
Error Type:
Informational

Line '<modem>' connected at <rate> baud.
Error Type:
Informational

Remote line is busy on '<modem>'.
Error Type:
Informational

Remote line is not answering on '<modem>'.
Error Type:
Informational

www. ptc.com

265

KEPServerEX

No dial tone on '<modem>'.
Error Type:
Informational

The phone number is invalid (<number>).
Error Type:
Informational

Dialing aborted on '<modem>'.
Error Type:
Informational

Line dropped at remote site on '<modem>'.
Error Type:
Informational

Incoming call detected on line '<modem>'.
Error Type:
Informational

Modem line opened: '<modem>'.
Error Type:
Informational

Modem line closed: '<modem>'.
Error Type:
Informational

<Product> device driver unloaded from memory.
Error Type:
Informational

Line '<modem>' connected.
Error Type:
Informational

Simulation mode is enabled on device '<device>'.
Error Type:
Informational

Simulation mode is disabled on device '<device>'.
Error Type:

www. ptc.com

266

KEPServerEX

Informational

Attempting to automatically generate tags for device '<device>'.
Error Type:
Informational

Completed automatic tag generation for device '<device>'.
Error Type:
Informational

Initiating disconnect on modem line '<modem>'.
Error Type:
Informational

A client application has enabled auto-demotion on device '<device>'.
Error Type:
Informational

Possible Cause:
A client application connected to the server has enabled or disabled Auto Demotion on the specified device.

Possible Solution:
To restrict the client application from doing this, disable its ability to write to system-level tags through the
User Manager.

 See Also:
User Manager

Data collection is enabled on device '<device>'.
Error Type:
Informational

Data collection is disabled on device '<device>'.
Error Type:
Informational

Object type '<name>' not allowed in project.
Error Type:
Informational

Created backup of project '<name>' to '<path>'.
Error Type:
Informational

www. ptc.com

267

KEPServerEX

Device '<device>' has been auto-promoted to determine if com-
munications can be re-established.
Error Type:
Informational

Failed to load library: <name>.
Error Type:
Informational

Failed to read build manifest resource: <name>.
Error Type:
Informational

The project file was created with a more recent version of this software.
Error Type:
Informational

A client application has disabled auto-demotion on device '<device>'.
Error Type:
Informational

Phone number priority has changed. | Phone Number Name = '<name>',
Updated Priority = '<priority>'.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>, Tags
overwritten = <count>.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>, Tags
not overwritten = <count>.
Error Type:
Informational

www. ptc.com

268

KEPServerEX

Access to object denied. | User = '<account>', Object = '<object path>', Per-
mission =
Error Type:
Security

User moved from user group. | User = '<name>', Old group = '<name>',
New group = '<name>'.
Error Type:
Security

User group has been created. | Group = '<name>'.
Error Type:
Security

User added to user group. | User = '<name>', Group = '<name>'.
Error Type:
Security

User group has been renamed. | Old name = '<name>', New name =
'<name>'.
Error Type:
Security

Permissions definition has changed on user group. | Group = '<name>'.
Error Type:
Security

User has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

User has been disabled. | User = '<name>'.
Error Type:
Security

User group has been disabled. | Group = '<name>'.
Error Type:
Security

User has been enabled. | User = '<name>'.
Error Type:
Security

www. ptc.com

269

KEPServerEX

User group has been enabled. | Group = '<name>'.
Error Type:
Security

Password for user has been changed. | User = '<name>'.
Error Type:
Security

The endpoint '<url>' has been added to the UA Server.
Error Type:
Security

The endpoint '<url>' has been removed from the UA Server.
Error Type:
Security

The endpoint '<url>' has been disabled.
Error Type:
Security

The endpoint '<url>' has been enabled.
Error Type:
Security

User information replaced by import. | File imported = '<absolute file
path>'.
Error Type:
Security

User has been deleted. | User = '<name>'.
Error Type:
Security

Group has been deleted. | Group = '<name>'.
Error Type:
Security

Account '<name>' does not have permission to run this application.
Error Type:
Error

Possible Cause:

www. ptc.com

270

KEPServerEX

The current logged in user does not have adequate permissions.

Possible Solution:

1. Log in with an administrator account.

2. Verify or correct access rights to the application data directory for the user running this application.

3. Contact the system administrator to update permissions.

 See Also:
Application Data (in server help) and the Application Data User Permissions section of the <a href-
f="https://www.ptc.com/support/help/kepware_doc_resources">Secure Deployment Guide

Failed to import user information.
Error Type:
Error

Possible Cause:
User import file contained users and groups with slashes in the names.

Possible Solution:
Remove the slashes from user and group names in an older version of the server and export them again.

Changing runtime operating mode.
Error Type:
Informational

Runtime operating mode change completed.
Error Type:
Informational

Shutting down to perform an installation.
Error Type:
Informational

OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'.
Error Type:
Informational

OPC ProgID has been removed from the ProgID Redirect list. | ProgID =
'<ID>'.
Error Type:
Informational

www. ptc.com

271

KEPServerEX

The invalid ProgID entry has been deleted from the ProgID Redirect list. |
ProgID = '<ID>'.
Error Type:
Informational

Password for administrator was reset by the current user. | Administrator
name = '<name>', Current user = '<name>'.
Error Type:
Security

User moved from user group. | User = '<name>', Old group = '<name>',
New group '<name>'.
Error Type:
Security

User group has been created. | Group = '<name>'.
Error Type:
Security

User added to user group. | User = '<name>', Group = '<name>'.
Error Type:
Security

User information replaced by import. | File imported = '<absolute file
path>'.
Error Type:
Security

User group has been renamed. | Old name = '<name>', New name =
'<name>'.
Error Type:
Security

Permissions definition has changed on user group. | Group = '<name>'.
Error Type:
Security

User has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

www. ptc.com

272

KEPServerEX

User has been disabled. | User = '<name>'.
Error Type:
Security

User group has been disabled. | Group = '<name>'.
Error Type:
Security

User has been enabled. | User = '<name>'.
Error Type:
Security

User group has been enabled. | Group = '<name>'.
Error Type:
Security

Failed to reset password for administrator. | Administrator name =
'<name>'.
Error Type:
Security

Password reset for administrator failed. Current user is not a Windows
administrator. | Administrator name = '<name>', Current user = '<name>'.
Error Type:
Security

Password for user has been changed. | User = '<name>'.
Error Type:
Security

General failure during CSV tag import.
Error Type:
Error

Connection attempt to runtime failed. | User = '<name>', Reason =
'<reason>'.
Error Type:
Error

Invalid or missing user information.
Error Type:
Error

www. ptc.com

273

KEPServerEX

Insufficient user permissions to replace the runtime project.
Error Type:
Error

Runtime project update failed.
Error Type:
Error

Failed to retrieve runtime project.
Error Type:
Error

Unable to replace devices on channel because it has an active reference
count. | Channel = '<name>'.
Error Type:
Error

Failed to replace existing auto-generated devices on channel, deletion
failed. | Channel = '<name>'.
Error Type:
Error

Channel is no longer valid. It may have been removed externally while
awaiting user input. | Channel = '<name>'.
Error Type:
Error

No device driver DLLs were loaded.
Error Type:
Error

Device driver was not found or could not be loaded. | Driver = '<name>'.
Error Type:
Error

Error importing CSV data. \n\nField buffer overflow reading identification
record.
Error Type:
Error

www. ptc.com

274

KEPServerEX

Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'.

Error Type:
Error

Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'.
Error Type:
Error

Error importing CSV data. \n\nMissing field identification record.
Error Type:
Error

Error importing CSV record. \n\nField buffer overflow. | Record index =
'<number>'.
Error Type:
Error

Error importing CSV record. \n\nInsertion failed. | Record index = '<num-
ber>', Record name = '<name>'.
Error Type:
Error

Unable to launch application. | Application = '<path>', OS error = '<code>'.
Error Type:
Error

Error importing CSV record. \n\n'Mapped To' tag address is not valid for
this project. | Record index = '<number>', Tag address = '<address>'.
Error Type:
Error

Error importing CSV record. \n\nAlias name is invalid. Names cannot con-
tain double quotations or start with an underscore. | Record index =
'<number>'.
Error Type:
Error

Invalid XML document:
Error Type:
Error

www. ptc.com

275

KEPServerEX

Rename failed. There is already an object with that name. | Proposed
name = '<name>'.
Error Type:
Error

Failed to start channel diagnostics
Error Type:
Error

Rename failed. Names can not contain periods, double quotations or start
with an underscore. | Proposed name = '<name>'.
Error Type:
Error

Synchronization with remote runtime failed.
Error Type:
Error

Account '<name>' does not have permission to run this application.
Error Type:
Error

Possible Cause:
The current logged in user does not have adequate permissions.

Possible Solution:

1. Log in with an administrator account.

2. Contact the system administrator to verify or update permissions.

3. Verify or correct access rights to the application data directory for this application.

 See Also:
Application Data (in server help) and the Application Data User Permissions section of the <a href-
f="https://www.ptc.com/support/help/kepware_doc_resources">Secure Deployment Guide

Error importing CSV record. Tag name is invalid. | Record index = '<num-
ber>', Tag name = '<name>'.
Error Type:
Warning

www. ptc.com

276

KEPServerEX

Error importing CSV record. Tag or group name exceeds maximum name
length. | Record index = '<number>', Max. name length (characters) =
'<number>'.
Error Type:
Warning

Error importing CSV record. Missing address. | Record index = '<number>'.
Error Type:
Warning

Error importing CSV record. Tag group name is invalid. | Record index =
'<index>', Group name = '<name>'.
Error Type:
Warning

Close request ignored due to active connections. | Active connections =
'<count>'.
Error Type:
Warning

Failed to save embedded dependency file. | File = '<path>'.
Error Type:
Warning

The configuration utility cannot run at the same time as third-party con-
figuration applications. Close both programs and open only the one you
want to use. | Product = '<name>'.
Error Type:
Warning

Opening project. | Project = '<name>'.
Error Type:
Informational

Closing project. | Project = '<name>'.
Error Type:
Informational

Virtual Network Mode changed. This affects all channels and virtual net-
works. See help for more details regarding the Virtual Network Mode. |
New mode = '<mode>'.
Error Type:

www. ptc.com

277

KEPServerEX

Informational

Beginning device discovery on channel. | Channel = '<name>'.
Error Type:
Informational

Device discovery complete on channel. | Channel = '<name>', Devices
found = '<count>'.
Error Type:
Informational

Device discovery canceled on channel. | Channel = '<name>'.
Error Type:
Informational

Device discovery canceled on channel. | Channel = '<name>', Devices
found = '<count>'.
Error Type:
Informational

Unable to begin device discovery on channel. | Channel = '<name>'.
Error Type:
Informational

Shutting down for the purpose of performing an installation.
Error Type:
Informational

Runtime project has been reset.
Error Type:
Informational

Runtime project replaced. | New project = '<path>'.
Error Type:
Informational

Connection attempt to runtime failed. | User = '<name>', Reason =
'<reason>'.
Error Type:
Informational

www. ptc.com

278

KEPServerEX

Discovered device for Channel '<name>' renamed due to duplicate name. |
Discovered name = '<name>', New name = '<name>'.
Error Type:
Informational

Not connected to the event logger service.
Error Type:
Security

Attempt to add item '<name>' failed.
Error Type:
Error

No device driver DLLs were loaded.
Error Type:
Error

Invalid project file: '<name>'.
Error Type:
Error

Could not open project file: '<name>'.
Error Type:
Error

Rejecting request to replace the project because it's the same as the one
in use: '<name>'.
Error Type:
Error

Filename must not overwrite an existing file: '<name>'.
Error Type:
Error

Filename must not be empty.
Error Type:
Error

Filename is expected to be of the form subdir/name.{json, <binary ext>,
<secure binary ext>}
Error Type:
Error

www. ptc.com

279

KEPServerEX

Filename contains one or more invalid characters.
Error Type:
Error

Saving project files with Project File Encryption enabled as .OPF file type is
not supported. Supported file types are .SOPF and .JSON.
Error Type:
Error

Saving project files with Project File Encryption disabled as .SOPF file type
is not supported. Supported file types are .OPF and .JSON.
Error Type:
Error

Account '<name>' does not have permission to run this application.
Error Type:
Error

Possible Cause:
The current logged in user does not have adequate permissions.

Possible Solution:

1. Log in with an administrator account.

2. Contact the system administrator to verify or update permissions.

3. Verify or correct access rights to the application data directory for this application.

 See Also:
Application Data (in server help) and the Application Data User Permissions section of the <a href-
f="https://www.ptc.com/support/help/kepware_doc_resources">Secure Deployment Guide

A password is required for saving encrypted project files (.<secure binary
extension>).
Error Type:
Error

Saving .<binary extension> and .JSON project files with a password is not
supported. To save encrypted project files, use .<secure binary extension>.

Error Type:
Error

www. ptc.com

280

KEPServerEX

A password is required for saving/loading encrypted project files (.<secure
binary extension>).
Error Type:
Error

Saving/loading .<binary extension> and .JSON project files with a password
is not supported. To save encrypted project files, use .<secure binary
extension>.
Error Type:
Error

File is expected to be located in the 'user_data' subdirectory of the install-
ation directory and of the form name.{json, <binary ext>, <secure binary
ext>}
Error Type:
Error

Addition of object to '<name>' failed: <reason>.
Error Type:
Warning

Move object '<name>' failed: <reason>.
Error Type:
Warning

Update of object '<name>' failed: <reason>.
Error Type:
Warning

Delete object '<name>' failed: <reason>.
Error Type:
Warning

Unable to load startup project '<name>': <reason>.
Error Type:
Warning

Failed to update startup project '<name>': <reason>.
Error Type:
Warning

www. ptc.com

281

KEPServerEX

Runtime project replaced with startup project defined. Runtime project
will be restored from '<name>' at next restart.
Error Type:
Warning

Ignoring user-defined startup project because a configuration session is
active.
Error Type:
Warning

Write request rejected on read-only item reference '<name>'.
Error Type:
Warning

Unable to write to item '<name>'.
Error Type:
Warning

Write request failed on item '<name>'. The write data type '<type>' cannot
be converted to the tag data type '<type>'.
Error Type:
Warning

Write request failed on item '<name>'. Error scaling the write data.
Error Type:
Warning

Write request rejected on item reference '<name>' since the device it
belongs to is disabled.
Error Type:
Warning

One or more changes were not applied to '<name>' since it is being ref-
erenced by a client.
Error Type:
Warning

Possible Cause:
The item is referenced by a client, so cannot be altered.

Possible Solution:
Remove the referenced item from the client and re-connect or disconnect the client.

www. ptc.com

282

KEPServerEX

<Name> successfully configured to run as a system service.
Error Type:
Informational

<Name> successfully removed from the service control manager database.

Error Type:
Informational

Runtime re-initialization started.
Error Type:
Informational

Runtime re-initialization completed.
Error Type:
Informational

Updated startup project '<name>'.
Error Type:
Informational

Runtime service started.
Error Type:
Informational

Runtime process started.
Error Type:
Informational

Runtime performing exit processing.
Error Type:
Informational

Runtime shutdown complete.
Error Type:
Informational

Shutting down to perform an installation.
Error Type:
Informational

www. ptc.com

283

KEPServerEX

Runtime project replaced from '<name>'.
Error Type:
Informational

Missing application data directory.
Error Type:
Informational

Runtime project saved as '<name>'.
Error Type:
Informational

Runtime project replaced.
Error Type:
Informational

Runtime service started. PID = <number>
Error Type:
Informational

Runtime process started. PID = <number>
Error Type:
Informational

Configuration session started by <name> (<name>).
Error Type:
Security

Configuration session assigned to <name> has ended.
Error Type:
Security

Configuration session assigned to <name> promoted to write access.
Error Type:
Security

Configuration session assigned to <name> demoted to read only.
Error Type:
Security

Permissions change applied on configuration session assigned to <name>.
Error Type:

www. ptc.com

284

KEPServerEX

Security

Failed to start Script Engine server. Socket error occurred binding to local
port. | Error = <error>, Details = '<information>'.
Error Type:
Error

Possible Cause:
The port conflicts with another application.

Possible Solution:
Use the server administration settings to update the Script Engine port.

An unhandled exception was thrown from the script. | Function = '<func-
tion>', error = '<error>'.
Error Type:
Error

Possible Cause:
An exception was thrown from the script.

Possible Solution:
Correct the condition that lead to the exception, or update the script logic.

Error executing script function. | Function = '<function>', error = '<error>'.
Error Type:
Error

Possible Cause:
An error was encountered while executing the script.

Possible Solution:
Correct the condition that lead to the error.

Script Engine service stopping.
Error Type:
Informational

Script Engine service starting.
Error Type:
Informational

Profile log message. | Message = '<log message>'.
Error Type:
Informational

www. ptc.com

285

KEPServerEX

Channel requires Auto-Dial enabled and at least one number in its phone-
book to use a shared modem connection. | Channel = '<channel>'.
Error Type:
Warning

Possible Cause:
Channel shares a modem with one or more existing channels and does not have Auto-Dial enabled or a
phone number for auto-dialing.

Possible Solution:

1. Enable Auto-Dial on the reported channel.

2. Add a phone number to the phonebook of the reported channel.

The Config API SSL certificate contains a bad signature.
Error Type:
Error

The Config API is unable to load the SSL certificate.
Error Type:
Error

Unable to start the Config API Service. Possible problem binding to port.
Error Type:
Error

Possible Cause:
The HTTP or HTTPS port specified in the Config API settings is already bound by another application.

Possible Solution:
Change the configuration of the Config API or blocking application to use a different port, or stop the applic-
ation blocking the port.

The Config API SSL certificate has expired.
Error Type:
Warning

The Config API SSL certificate is self-signed.
Error Type:
Warning

www. ptc.com

286

KEPServerEX

The configured version of TLS for the Configuration API is no longer con-
sidered secure. It is recommended that only TLS 1.2 or higher is used.
Error Type:
Warning

Configuration API started without SSL on port <port number>.
Error Type:
Informational

Configuration API started with SSL on port <port number>.
Error Type:
Informational

The OPC .NET server failed to start. Please see the windows application
event log for more details. Also make sure the .NET 3.5 Framework is
installed. | OS Error = '<error reason>'.
Error Type:
Error

The OPC .NET server failed to start because it is not installed. Please rerun
the installation.
Error Type:
Error

Timed out trying to start the OPC .NET server. Please verify that the
server is running by using the OPC .NET Configuration Manager.
Error Type:
Warning

Missing server instance certificate '<cert location>'. Please use the OPC UA
Configuration Manager to reissue the certificate.
Error Type:
Error

Failed to import server instance cert: '<cert location>'. Please use the OPC
UA Configuration Manager to reissue the certificate.
Error Type:
Error

Possible Cause:

www. ptc.com

287

KEPServerEX

1. The file containing the server instance certificate does not exist or is inaccessible.

2. Certificate decryption failed.

Possible Solution:

1. Verify the file references a valid instance certificate to which the user has permissions.

2. Import a new certificate.

3. Re-issue the certificate to refresh the encryption.

The UA server certificate is expired. Please use the OPC UA Configuration
Manager to reissue the certificate.
Error Type:
Error

Possible Cause:
The validity period of the certificate is before the current system date.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

A socket error occurred listening for client connections. | Endpoint URL =
'<endpoint URL>', Error = <error code>, Details = '<description>'.
Error Type:
Error

Possible Cause:
The endpoint socket returned an error while listening for client connections.

Possible Solution:
Note the details in the error message to diagnose the problem.

The UA Server failed to register with the UA Discovery Server. | Endpoint
URL: '<endpoint url>'.
Error Type:
Error

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to register the UA Server with the UA Discovery Server could not complete in the expec-
ted manner.

www. ptc.com

288

KEPServerEX

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

Unable to start the UA server due to certificate load failure.
Error Type:
Error

Possible Cause:

1. The UA Server application instance certificate validity period occurs before the current system date.

2. The file containing the server instance certificate does not exist or is inaccessible.

3. Certificate decryption failed.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

3. Verify the file references a valid instance certificate to which the user has permissions.

4. Re-issue the certificate to refresh the encryption.

Failed to load the UA Server endpoint configuration.
Error Type:
Error

Possible Cause:
The endpoint configuration file is corrupt or doesn't exist.

Possible Solution:
Re-configure the UA Endpoint configuration and reinitialize the server.

The UA Server failed to unregister from the UA Discovery Server. | End-
point URL: '<endpoint url>'.
Error Type:
Warning

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to unregister the UA Server from the UA Discovery Server could not complete in the
expected manner.

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

www. ptc.com

289

KEPServerEX

The UA Server failed to initialize an endpoint configuration. | Endpoint
Name: '<name>'.
Error Type:
Warning

Possible Cause:
The endpoint is configured to use a network adapter that does not have a valid ipv4 address.

Possible Solution:

1. Re-configure the network adapter property with an adapter that has a valid ipv4 address.

2. Restart the runtime to refresh the endpoint configurations.

The UA Server successfully registered with the UA Discovery Server. | End-
point URL: '<endpoint url>'.
Error Type:
Informational

The UA Server successfully unregistered from the UA Discovery Server. |
Endpoint URL: '<endpoint url>'.
Error Type:
Informational

The ReadProcessed request timed out. | Elapsed Time = <seconds> (s).
Error Type:
Error

The ReadAtTime request timed out. | Elapsed Time = <seconds> (s).
Error Type:
Error

Attempt to add DDE item failed. | Item = '<item name>'.
Error Type:
Error

DDE client attempt to add topic failed. | Topic = '<topic>'.
Error Type:
Error

Possible Cause:
Topic name is not valid.

Possible Solution:

www. ptc.com

290

KEPServerEX

View the Alias map to correct the reference to a valid topic.

 See Also:
Alias Maps

Unable to write to item. | Item = '<item name>'.
Error Type:
Warning

The area specified is not valid. Failed to set the subscription filter. | Area
= '<area name>'.
Error Type:
Error

The source specified is not valid. Failed to set the subscription filter. |
Source = '<source name>'.
Error Type:
Error

Connection to ThingWorx failed. | Platform = <host:port resource>, error =
<reason>.
Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform could not be established.

Possible Solution:

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryp-
tion.

Error adding item. | Item name = '<item name>'.
Error Type:
Error

Possible Cause:
The item <TagName> could not be added to the server for scanning.

Possible Solution:

www. ptc.com

291

KEPServerEX

1. Verify that the tag exists on a valid channel and device.

2. Verify that the tag may be read using another client, such as the QuickClient.

Failed to trigger the autobind complete event on the platform.
Error Type:
Error

Possible Cause:
The ThingWorx connection was terminated before the autobind process completed.

Possible Solution:
Wait to reinitialize or alter the ThingWorx project properties until after all autobinds have completed.

Connection to ThingWorx failed for an unknown reason. | Platform =
<host:port resource>, error = <error>.
Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform failed.

Possible Solution:

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryp-
tion.

4. Contact technical support with the error code and an application report.

One or more value change updates lost due to insufficient space in the
connection buffer. | Number of lost updates = <count>.
Error Type:
Error

Possible Cause:
Data is being dropped because the ThingWorx Platform is not available or too much data is being collected
by the instance.

Possible Solution:

1. Verify that some data is updating on the ThingWorx Platform and that the platform is reachable.

2. Slow down the tag scan rate to move less data into the ThingWorx Platform.

www. ptc.com

292

KEPServerEX

Item failed to publish; multidimensional arrays are not supported. | Item
name = '%s'.
Error Type:
Error

Possible Cause:
The item <ItemName> references a tag whose data is a multidimensional array.

Possible Solution:
Modify the item to reference a tag with a supported datatype.

Store and Forward datastore unable to store data due to full disk.
Error Type:
Error

Possible Cause:
The disk being used to store updates has been filled to within 500 MiB.

Possible Solution:

1. Free up some space on the disk being used to store updates.

2. Delete the data stored in the datastore using the _DeleteStoredData system tag.

3. Replace the disk being used to store data with a larger disk.

Store and Forward datastore size limit reached.
Error Type:
Error

Possible Cause:
The ThingWorx Interface is not able to send updates to the platform as fast as the updates are being gen-
erated.

Possible Solution:

1. Verify that the ThingWorx Interface can connect to the ThingWorx Platform.

2. Reduce the rate of updates being collected by the ThingWorx Interface.

Connection to ThingWorx was closed. | Platform = <host:port resource>.
Error Type:
Warning

Possible Cause:
The connection was closed. The service was stopped or the interface is no longer able to reach the platform.

Possible Solution:

www. ptc.com

293

KEPServerEX

1. Verify that the native interface is enabled in the project properties.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

Failed to autobind property. | Name = '<property name>'.
Error Type:
Warning

Possible Cause:
A property with this name already exists under this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

Failed to restart Thing. | Name = '<thing name>'.
Error Type:
Warning

Possible Cause:
When the AddItem service is complete, a restart service is called on the Thing. This allows the Composer to
visualize the changes. Data changes are sent to the platform even when this error has been presented.

Possible Solution:
Relaunch the Composer to restart the Thing.

Write to property failed. | Property name = '<name>', reason = <reason>.
Error Type:
Warning

Possible Cause:
Unable to write to a tag due to a conversion issue.

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and
consistent.

2. Verify that the value to be written is within the appropriate range for the data type.

ThingWorx request to add item failed. The item was already added. | Item
name = '<name>'.
Error Type:
Warning

www. ptc.com

294

KEPServerEX

Possible Cause:
The tag had already been added to this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

ThingWorx request to remove item failed. The item doesn't exist. | Item
name = '<name>'.
Error Type:
Warning

Possible Cause:
The tag was already removed from the Thing or no such tag exists.

Possible Solution:
If the tag still shows under the properties of the Thing, delete that property in the ThingWorx Composer.

The server is configured to send an update for every scan, but the push
type of one or more properties are set to push on value change only. |
Count = <count>.
Error Type:
Warning

Possible Cause:
The push type in the ThingWorx Platform is set to change only for some items. This push type only updates
data on the platform when the data value changes.

Possible Solution:
To use the Send Every Scan option, set this value to Always.

The push type of one or more properties are set to never push an update
to the platform. | Count = <count>.
Error Type:
Warning

Possible Cause:
The push type in the ThingWorx Platform is set to Never for some items, which prevents any data changes
from being automatically updated on the platform.

Possible Solution:
If this is not the desired behavior, change the push type in the ThingWorx Platform.

www. ptc.com

295

KEPServerEX

ThingWorx request to remove an item failed. The item is bound and the
force flag is false. | Item name = '<name>'.
Error Type:
Warning

Possible Cause:
The RemoveItems service could not remove the item because it is bound to a property and the Force Flag is
not set to True.

Possible Solution:
Re-run the service, explicitly calling the ForceRemove flag as True.

Write to property failed. | Thing name = '<name>', property name =
'<name>', reason = <reason>.
Error Type:
Warning

Possible Cause:
Unable to write to a tag due to a conversion issue.

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and
consistent.

2. Verify that the value to be written is within the appropriate range for the data type.

Error pushing property updates to thing. | Thing name = '<name>'.
Error Type:
Warning

Possible Cause:
Property updates for the named thing were not successfully published to the platform.

Possible Solution:
Check the platform's log for an indication of why property updates are failing, such as a permissions issue.

Unable to connect or attach to Store and Forward datastore. Using in-
memory store. | In-memory store size (updates) = <count>.
Error Type:
Warning

Possible Cause:

1. The Store and Forward service is not running.

2. The service does not have access to the specified storage directory.

www. ptc.com

296

KEPServerEX

3. There is a port conflict that prevents the Store and Forward service from accepting connections.

Possible Solution:

1. Restart the server runtime.

2. Verify the specified storage location is accessible by the Store and Forward service.

3. Resolve the port conflict by configuring a new port for Store and Forward in the server admin-
istration.

Store and Forward datastore reset due to file IO error or datastore cor-
ruption.
Error Type:
Warning

Possible Cause:

1. The datastore was corrupted by a user or another program.

2. The datastore was corrupted by a hardware error.

3. An error occurred while attempting to read data from disk, possibly due to a hardware issue.

Possible Solution:

1. Use User Access Controls to limit the which users have access to the datastore location.

2. Move the datastore to another disk.

Unable to apply settings change initiated by the Platform. Permission
Denied. | User = '<user name>'.
Error Type:
Warning

Possible Cause:
The user group "ThingWorx Interface Users" has the permissions "Project Modification:Servermain.Project"
set to "Deny".

Possible Solution:
Set the permission "Project Modification:Servermain.Project" on the user group "ThingWorx Interface
Users" to "Allow".

Configuration Transfer to ThingWorx Platform failed.
Error Type:
Warning

www. ptc.com

297

KEPServerEX

Configuration Transfer to ThingWorx Platform failed. | Reason =
'<reason>'
Error Type:
Warning

Possible Cause:

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

Failed to delete stored updates in the Store and Forward datastore.
Error Type:
Warning

Possible Cause:
A hardware or operating system error prevented the operation from completing.

Possible Solution:
Restart the machine and try again.

Configuration Transfer from ThingWorx Platform failed.
Error Type:
Warning

Configuration Transfer from ThingWorx Platform failed. | Reason =
'<reason>'
Error Type:
Warning

Possible Cause:

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

Check that your Application Key is properly formatted and valid.
Error Type:
Warning

Possible Cause:
The connection to the ThingWorx Platform failed due to bad authorization.

www. ptc.com

298

KEPServerEX

Possible Solution:

1. Verify that application key has not expired.

2. Verify that application key is properly formatted.

3. Verify that application key was inputted correctly.

The maximum number of configured Industrial Things has been reached,
count = <number>. Consider increasing the value of the Max Thing Count.
Error Type:
Warning

Possible Cause:
Max Thing Count is configured too low.

Possible Solution:
Verify that the Max Thing Count property is greater than the configured number of bound things.

The maximum number of updates has been reached, count = <count>.
Error Type:
Warning

Possible Cause:

1. Max Updates Per Publish is too high.

2. Too many updates are being sent at once to the platform.

Possible Solution:

1. Reduce Max Updates Per Publish to a value below the count displayed in the message.

2. Reduce the scan rate of properties being sent to Thingworx.

A publish to Thingworx has timed out.
Error Type:
Warning

Possible Cause:

1. Too many updates are being sent at once to the platform.

2. Network congestion has caused a timeout.

Possible Solution:

1. Reduce the scan rate of properties being sent to Thingworx.

2. Reduce Max Updates Per Publish.

www. ptc.com

299

KEPServerEX

Connected to ThingWorx. | Platform = <host:port resource>, Thing name =
'<name>'.
Error Type:
Informational

Possible Cause:
A connection was made to the ThingWorx Platform.

Reinitializing ThingWorx connection due to a project settings change ini-
tiated from the platform.
Error Type:
Informational

Possible Cause:
When using the SetConfiguration service, this message informs an operator viewing the server event log
that a change was made.

Dropping pending autobinds due to interface shutdown or reinitialize. |
Count = <count>.
Error Type:
Informational

Possible Cause:
A server shutdown or initialization was called while auto-binding was in process from an AddItems service
call.

Possible Solution:
Any Items not auto bound need to be manually created and bound in the ThingWorx Composer.

Serviced one or more autobind requests. | Count = <count>.
Error Type:
Informational

Possible Cause:
Part of the AddItems service is the autobind action. This action may take more time than the actual adding
of the item. This message alerts the operator to how many items have been autobound.

Reinitializing ThingWorx connection due to a project settings change ini-
tiated from the Configuration API.
Error Type:
Informational

Possible Cause:

www. ptc.com

300

KEPServerEX

When using the Configuration API, this message informs an operator viewing the server event log that a
change was made.

Resumed pushing property updates to thing: the error condition was
resolved. | Thing name = '<name>'.
Error Type:
Informational

Configuration transfer from ThingWorx initiated.
Error Type:
Informational

Configuration transfer from ThingWorx aborted.
Error Type:
Informational

Initialized Store and Forward datastore. | Datastore location: '<location>'.
Error Type:
Informational

Possible Cause:
ThingWorx Native Interface is configured to use Store and Forward.

Successfully deleted stored data from the Store and Forward datastore.
Error Type:
Informational

Possible Cause:
A client used the _DeleteStoredData system tag to delete data cached for ThingWorx Interface in the Store
and Forward datastore.

Store and Forward mode changed. | Forward Mode = '<mode>'.
Error Type:
Informational

Possible Cause:
The _ForwardMode system tag was written to by a connected client and the value of the write caused a set-
tings change.

Initialized Store and Forward datastore. | Forward Mode = '<mode>' |
Datastore location = '<location>'.
Error Type:
Informational

Possible Cause:

www. ptc.com

301

KEPServerEX

ThingWorx Native Interface is configured to use Store and Forward.

Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'.
Error Type:
Error

FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic
name>'.
Error Type:
Error

Possible Cause:
Topic names may not be valid.

Possible Solution:
View the Alias map for valid topics.

Error attaching to datastore due to an invalid datastore path. | Path =
'<path>'
Error Type:
Error

Possible Cause:
The path specified by the component using Store and Forward is invalid. Refer to that component's doc-
umentation and the validation error contained in the message's body for more information.

Possible Solution:
Correct the error noted in the message.

Failed to start Store and Forward server. Socket error occurred binding to
local port. | Error = <error>, Details = '<information>'.
Error Type:
Error

Possible Cause:
The port conflicts with another application.

Possible Solution:
Use the server administration settings to update the Store and Forward port.

Store and Forward service stopping.
Error Type:
Informational

www. ptc.com

302

KEPServerEX

Store and Forward service starting.
Error Type:
Informational

File corruption encountered when attaching to datastore; datastore recre-
ated. | Datastore path = '<path>'.
Error Type:
Informational

Possible Cause:
A file used by the datastore was corrupted by the system, another application, or a user.

Possible Solution:

1. The old datastore is automatically replaced, no user action is needed.

2. If this problem occurs repeatedly, consider changing the datastore directory to a location that cannot
be accessed by other applications or users.

Datastore overwritten due to a configuration change. | Datastore path =
'<path>'.
Error Type:
Informational

Possible Cause:
The datastore size parameter was changed.

 Note:
Changing the datastore size results in all of the datastore's files being recreated. Unless data was actively
being stored in the datastore due to a disconnect from the ThingWorx Platform, it is unlikely that data was
lost.

Unable to attach to existing datastore because that datastore was created
with an older version of the server. Datastore recreated. | Datastore path
= '<path>'.
Error Type:
Informational

Possible Cause:
The server was upgraded to a version which uses a newer datastore format.

Possible Solution:
The old datastore was replaced with a new version datastore; no user action is needed.

Com port is in use by another application. | Port = '<port>'.
Error Type:

www. ptc.com

303

KEPServerEX

Error

Possible Cause:
The serial port assigned to a device is being used by another application.

Possible Solution:

1. Verify that the correct port has been assigned to the channel.

2. Verify that only one copy of the current project is running.

Unable to configure com port with specified parameters. | Port =
COM<number>, OS error = <error>.
Error Type:
Error

Possible Cause:
The serial parameters for the specified COM port are not valid.

Possible Solution:
Verify the serial parameters and make any necessary changes.

Driver failed to initialize.
Error Type:
Error

Unable to allocate thread resource. Please check the memory usage of the
application.
Error Type:
Error

Possible Cause:
The server process has no resources available to create new threads.

Possible Solution:
Each tag group consumes a thread. The typical limit for a single process is about 2000 threads. Reduce the
number of tag groups in the project.

Com port does not exist. | Port = '<port>'.
Error Type:
Error

Possible Cause:
The specified COM port is not present on the target computer.

Possible Solution:
Verify that the proper COM port is selected.

www. ptc.com

304

KEPServerEX

Error opening com port. | Port = '<port>', OS error = <error>.
Error Type:
Error

Possible Cause:
The specified COM port could not be opened due an internal hardware or software problem on the target
computer.

Possible Solution:
Verify that the COM port is functional and may be accessed by other applications.

Connection failed. Unable to bind to adapter. | Adapter = '<name>'.
Error Type:
Error

Possible Cause:
Since the specified network adapter cannot be located in the system device list, it cannot be bound to for
communications. This can occur when a project is moved from one PC to another (and when the project spe-
cifies a network adapter rather than using the default). The server reverts to the default adapter.

Possible Solution:
Change the Network Adapter property to Default (or select a new adapter), save the project, and retry.

Winsock shut down failed. | OS error = <error>.
Error Type:
Error

Winsock initialization failed. | OS error = <error>.
Error Type:
Error

Possible Solution:

1. The underlying network subsystem is not ready for network communication. Wait a few seconds and
restart the driver.

2. The limit on the number of tasks supported by the Windows Sockets implementation has been
reached. Close one or more applications that may be using Winsock and restart the driver.

Winsock V1.1 or higher must be installed to use this driver.
Error Type:
Error

Possible Cause:
The version number of the Winsock DLL found on the system is older than 1.1.

www. ptc.com

305

KEPServerEX

Possible Solution:
Upgrade Winsock to version 1.1 or higher.

Socket error occurred binding to local port. | Error = <error>, Details =
'<information>'.
Error Type:
Error

Device is not responding.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communication parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

4. The response from the device took longer to receive than allowed by the Request Timeout device set-
ting.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

3. Verify that the device ID for the named device matches that of the actual device.

4. Increase the Request Timeout setting to allow the entire response to be handled.

Device is not responding. | ID = '<device>'.
Error Type:
Warning

Possible Cause:

1. The network connection between the device and the host PC is broken.

2. The communication parameters configured for the device and driver do not match.

3. The response from the device took longer to receive than allowed by the Request Timeout device set-
ting.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

www. ptc.com

306

KEPServerEX

3. Increase the Request Timeout setting to allow the entire response to be handled.

Serial communications error on channel. | Error mask = <mask>.
Error Type:
Warning

Possible Cause:

1. The serial connection between the device and the host PC is broken.

2. The communications parameters for the serial connection are incorrect.

Possible Solution:

1. Investigate the error mask code and the related information.

2. Verify the cabling between the PC and the PLC device.

3. Verify that the specified communication parameters match those of the device.

 See Also:
Error Mask Codes

Invalid array size detected writing to tag <device name>.<address>.
Error Type:
Warning

Possible Cause:
Client trying to write before being updated.

Possible Solution:
Perform a read on the array before attempting a write.

Unable to write to address on device. | Address = '<address>'.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

Possible Solution:

www. ptc.com

307

KEPServerEX

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Items on this page may not be changed while the driver is processing tags.

Error Type:
Warning

Possible Cause:
An attempt was made to change a channel or device configuration while data clients were connected to the
server and receiving data from the channel/device.

Possible Solution:
Disconnect all data clients from the server before making changes.

Specified address is not valid on device. | Invalid address = '<address>'.
Error Type:
Warning

Possible Cause:
A tag address has been assigned an invalid address.

Possible Solution:
Modify the requested address in the client application.

Address '<address>' is not valid on device '<name>'.
Error Type:
Warning

This property may not be changed while the driver is processing tags.
Error Type:
Warning

Unable to write to address '<address>' on device '<name>'.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

www. ptc.com

308

KEPServerEX

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Socket error occurred connecting. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy
when appropriate.

Socket error occurred receiving data. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy
when appropriate.

Socket error occurred sending data. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy
when appropriate.

www. ptc.com

309

KEPServerEX

Socket error occurred checking for readability. | Error = <error>, Details =
'<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy
when appropriate.

Socket error occurred checking for writability. | Error = <error>, Details =
'<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy
when appropriate.

%s |
Error Type:
Informational

<Name> Device Driver '<name>'
Error Type:
Informational

www. ptc.com

310

KEPServerEX

Index

%

%s | 310

<

<feature name> is required to load this project. 257

<feature name> was not found or could not be loaded. 256

<Name> Device Driver '<name>' 310

<Name> successfully configured to run as a system service. 283

<Name> successfully removed from the service control manager database. 283

<Product> device driver loaded successfully. 265

<Product> device driver unloaded from memory. 266

<Source>
Invalid Ethernet encapsulation IP '<address>'. 262

A

A client application has disabled auto-demotion on device '<device>'. 268

A client application has enabled auto-demotion on device '<device>'. 267

A password is required for saving encrypted project files (.<secure binary extension>). 280

A password is required for saving/loading encrypted project files (.<secure binary extension>). 281

A publish to Thingworx has timed out. 299

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>', Error =
<error code>, Details = '<description>'. 288

About Endpoint 181

About Endpoints 180

Absolute 96

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 269

Account '<name>' does not have permission to run this application. 270, 276, 280

ActiveTagCount 115

Add Numeric Range 102

Add Static Text 102

Add Text Sequence 103

Adding and Configuring a Channel 148

Adding and Configuring a Device 150

www. ptc.com

311

KEPServerEX

Adding Tag Scaling 158

Adding User-Defined Tags 152

Addition of object to '<name>' failed
<reason>. 281

Address 113

Address '<address>' is not valid on device '<name>'. 308

Administration 57

Alias 168

Alias Name 110

Alias Properties 109

Allow Desktop Interactions 167

Allow Sub Groups 95

An unhandled exception was thrown from the script. | Function = '<function>', error = '<error>'. 285

Anonymous 41, 65

API Command 220

Application Data 20

Apply 33

Architecture 178, 217

ASCII 251

Attempt to add DDE item failed. | Item = '<item name>'. 290

Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'. 302

Attempt to add item '<name>' failed. 279

Attempting to automatically generate tags for device '<device>'. 267

Attempts Before Timeout 97

AttributeServiceSet 246

authentication 178

Auto-Demotion 92, 142

Auto-Dial 84, 145

Auto-generated tag '<tag>' already exists and will not be overwritten. 257

Auto generation produced too many overwrites, stopped posting error messages. 258

Automatic Tag Generation 218

Autoscroll 251

B

Backup 61

Baud Rate 83

BCD 106

Beginning device discovery on channel. | Channel = '<name>'. 278

www. ptc.com

312

KEPServerEX

Boolean 106

Browsing for Tags 154

Built-In Diagnostics 235

Button Bar 30

Byte 106

C

Cannot add device. A duplicate device may already exist in this channel. 257

Certificate 74-75

Changing runtime operating mode. 271

Channel-Level Settings 85

Channel Assignment 90

Channel Creation Wizard 149

Channel is no longer valid. It may have been removed externally while awaiting user input. | Channel =
'<name>'. 274

Channel Properties — Advanced 81

Channel Properties — Communication Serialization 85

Channel Properties — Ethernet Communications 81

Channel Properties — Ethernet Encapsulation 84

Channel Properties — General 80

Channel Properties — Network Interface 86

Channel Properties — Serial Communications 82

Channel Properties — Write Optimizations 87

Channel requires at least one number in its phonebook for automatic dialing. | Channel =
'<channel>'. 263

Channel requires Auto-Dial enabled and at least one number in its phonebook to use a shared modem
connection. | Channel = '<channel>'. 264, 286

Char 106

Check that your Application Key is properly formatted and valid. 298

Child Endpoints 193, 214

Clamp 105

Clamp High 113

Clamp Low 113

Client Access 113

ClientCount 115

Close Idle Connection 83-84

Close request ignored due to active connections. | Active connections = '<count>'. 277

Closing project. | Project = '<name>'. 277

www. ptc.com

313

KEPServerEX

COM ID 83

COM Port 82

Com port does not exist. | Port = '<port>'. 304

Com port is in use by another application. | Port = '<port>'. 303

Comma-Separated Variable 112

Communication Diagnostics 249

Communication Parameters 92

Communication Serialization Tags 139

Communications Management 142

Communications Timeouts 96

Completed automatic tag generation for device '<device>'. 267

Components 21

Components and Concepts 79

Concurrent Clients 182

Configuration API Service 178

Configuration API started with SSL on port <port number>. 287

Configuration API started without SSL on port <port number>. 287

Configuration session assigned to <name> demoted to read only. 284

Configuration session assigned to <name> has ended. 284

Configuration session assigned to <name> promoted to write access. 284

Configuration session started by <name> (<name>). 284

Configuration transfer from ThingWorx aborted. 301

Configuration transfer from ThingWorx initiated. 301

Configuration Transfer from ThingWorx Platform failed. 298

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 298

Configuration Transfer to ThingWorx Platform failed. 297

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 298

Configuring from iFIX Applications 223

Configuring User Group Project Permissions 216

Connect Timeout 84-85, 97

Connected to ThingWorx. | Platform = <host
port resource>, Thing name = '<name>'. 300

Connection 62

Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'. 273, 278

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 305

Connection to ThingWorx failed for an unknown reason. | Platform = <host
port resource>, error = <error>. 292

Connection to ThingWorx failed. | Platform = <host
port resource>, error = <reason>. 291

www. ptc.com

314

KEPServerEX

Connection to ThingWorx was closed. | Platform = <host
port resource>. 293

Connection Type 82

Connectivity 23, 180

Content Retrieval 184

Context 250

CORS 73

Could not open project file
'<name>'. 279

Create 95

Create and Use an Alias 167

Created backup of project '<name>' to '<path>'. 267

Creating a Channel 200

Creating a Device 203

Creating a Tag 205

Creating a User 209

Creating a User Group 210

credentials 36

Credentials 41, 160

CSV 21, 112

Curl 200

D

Data 113, 195

Data Bits 83

Data Collection 90

Data collection is disabled on device '<device>'. 267

Data collection is enabled on device '<device>'. 267

Datastore overwritten due to a configuration change. | Datastore path = '<path>'. 303

datastore recreated. | Datastore path = '<path>'. 303

Date 115

DateTime 115

DateTimeLocal 115

Daylight Saving Time 96

DCOM 61

DDE 27, 42

DDE client attempt to add topic failed. | Topic = '<topic>'. 290

Decrypt 161

www. ptc.com

315

KEPServerEX

Default 20, 160-161

Defaults 33

Delete 95

DELETE 202, 205, 207, 209, 211

Delete object '<name>' failed
<reason>. 281

Delimiter 114

Demote on Failure 92

Demotion Period 92

Description 113

Designing a Project 147

Detail View 32

Device '<device>' has been auto-promoted to determine if communications can be re-established. 268

Device '<device>' has been automatically demoted. 261

Device Address 85

Device Creation Wizard 151

Device Demand Poll 221

Device Discovery 88

Device discovery canceled on channel. | Channel = '<name>', Devices found = '<count>'. 278

Device discovery canceled on channel. | Channel = '<name>'. 278

Device discovery complete on channel. | Channel = '<name>', Devices found = '<count>'. 278

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range and try
again. 256

Device driver was not found or could not be loaded. | Driver = '<name>'. 274

Device is not responding. 306

Device is not responding. | ID = '<device>'. 306

Device Properties — Auto-Demotion 92

Device Properties — Communication Parameters 92

Device Properties — Ethernet Encapsulation 93

Device Properties — General 89

Device Properties — Redundancy 97

Device Properties — Tag Generation 94

Device Properties — Time Synchronization 95

Device Properties — Timing 96

Diagnostics 80, 249

Dialing '<number>' on line '<modem>'. 265

Dialing aborted on '<modem>'. 266

Dialing on line '<modem>' canceled by user. 265

Directory 20, 160-161

www. ptc.com

316

KEPServerEX

Disaster recovery 61

Discard Requests when Demoted 92

Discovered device for Channel '<name>' renamed due to duplicate name. | Discovered name =
'<name>', New name = '<name>'. 279

DiscoveryServiceSet 247

Do Not Scan, Demand Poll Only 91

Documentation Endpoint 179

Documentation Endpoints 179

Double 106

Driver 90

Driver failed to initialize. 304

Drop 83

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 300

DTR 83

Duty Cycle 88

DWord 106

Dynamic Tags 106

E

Encrypt 48, 73, 147-148, 159, 161

Encryption 161

Endpoint Mapping 179

Eng. Units 113

Error adding item. | Item name = '<item name>'. 291

Error attaching to datastore due to an invalid datastore path. | Path = '<path>' 302

Error executing script function. | Function = '<function>', error = '<error>'. 285

Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'. 275

Error importing CSV data. \n\nField buffer overflow reading identification record. 274

Error importing CSV data. \n\nMissing field identification record. 275

Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'. 275

Error importing CSV record. \n\n'Mapped To' tag address is not valid for this project. | Record index =
'<number>', Tag address = '<address>'. 275

Error importing CSV record. \n\nAlias name is invalid. Names cannot contain double quotations or start
with an underscore. | Record index = '<number>'. 275

Error importing CSV record. \n\nField buffer overflow. | Record index = '<number>'. 275

Error importing CSV record. \n\nInsertion failed. | Record index = '<number>', Record name =
'<name>'. 275

Error importing CSV record. Missing address. | Record index = '<number>'. 277

www. ptc.com

317

KEPServerEX

Error importing CSV record. Tag group name is invalid. | Record index = '<index>', Group name =
'<name>'. 277

Error importing CSV record. Tag name is invalid. | Record index = '<number>', Tag name = '<name>'. 276

Error importing CSV record. Tag or group name exceeds maximum name length. | Record index = '<num-
ber>', Max. name length (characters) = '<number>'. 277

Error opening com port. | Port = '<port>', OS error = <error>. 305

Error pushing property updates to thing. | Thing name = '<name>'. 296

Ethernet Encap. 82

Ethernet Encapsulation 84, 93, 142

Ethernet Settings 81, 83

Event 33

Event Log 62

Event Log Display 110

Event Log Messages 252

Export 112

Extended Datastore 62

F

Failed to add tag '<tag>' because the address is too long. The maximum address length is
<number>. 259

Failed to autobind property. | Name = '<property name>'. 294

Failed to delete stored updates in the Store and Forward datastore. 298

Failed to import server instance cert
'<cert location>'. Please use the OPC UA Configuration Manager to reissue the certificate. 287

Failed to import user information. 271

Failed to load library
<name>. 268

Failed to load the UA Server endpoint configuration. 289

Failed to open modem line '<line>' [TAPI error = <code>]. 254

Failed to read build manifest resource
<name>. 268

Failed to replace existing auto-generated devices on channel, deletion failed. | Channel = '<name>'. 274

Failed to reset password for administrator. | Administrator name = '<name>'. 273

Failed to restart Thing. | Name = '<thing name>'. 294

Failed to retrieve runtime project. 274

Failed to save embedded dependency file. | File = '<path>'. 277

Failed to start channel diagnostics 276

Failed to start Script Engine server. Socket error occurred binding to local port. | Error = <error>, Details
= '<information>'. 285

www. ptc.com

318

KEPServerEX

Failed to start Store and Forward server. Socket error occurred binding to local port. | Error = <error>,
Details = '<information>'. 302

Failed to trigger the autobind complete event on the platform. 292

Failed to update startup project '<name>'
<reason>. 281

FastDDE/SuiteLink 28

FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic name>'. 302

File corruption encountered when attaching to datastore 303

File is expected to be located in the 'user_data' subdirectory of the installation directory and of the form
name.{json, <binary ext>, <secure binary ext>} 281

Filename contains one or more invalid characters. 280

Filename is expected to be of the form subdir/name.{json, <binary ext>, <secure binary ext>} 279

Filename must not be empty. 279

Filename must not overwrite an existing file
'<name>'. 279

Filtering 183, 190

Find 251

Float 106

Flow Control 83

Formats 43

G

General 89

General failure during CSV tag import. 273

Generate 94

Generating Multiple Tags 155

GET Request URI 184

Global Settings 86

Group has been deleted. | Group = '<name>'. 270

H

Hardware error on line '<line>'. 259

Health Status Endpoint 181

Health Status Endpoints 180

Hex 251

Hierarchy 197

How Do I... 167

HTTP 178

www. ptc.com

319

KEPServerEX

HTTP Port 73

HTTPS 178

HTTPS Port 73

Human Machine Interface (HMI) 23

I

Icons 33

ID 90

Identification 80, 89

Idle Time to Close 83-84

iFIX Database Manager 223

iFIX Native Interfaces 28

iFIX Signal Conditioning Options 227

Ignoring user-defined startup project because a configuration session is active. 282

Import 112

Incoming call detected on line '<modem>'. 266

Initial Updates from Cache 92

Initialization 178

Initialized Store and Forward datastore. | Datastore location
'<location>'. 301

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location =
'<location>'. 301

Initiating disconnect on modem line '<modem>'. 267

Insomnia 200

Insufficient user permissions to replace the runtime project. 274

Inter-Device Delay 81

Interface 23

Interfaces and Connectivity 23

Interval 96

Introduction 18

Invalid array size detected writing to tag <device name>.<address>. 307

Invalid Model encountered while trying to load the project. | Device = '<device>'. 257

Invalid or missing user information. 273

Invalid project file
'<name>'. 279

Invalid project file. 254

Invalid XML document 255, 275

IP Address 93

Item failed to publish 293

www. ptc.com

320

KEPServerEX

Items on this page may not be changed while the driver is processing tags. 308

J

Job 217

Job Cleanup 217

JSON Response Structure 184

L

Language 191

LBCD 106

License 57

Line '<line>' is already in use. 259

Line '<modem>' connected at <rate> baud. 265

Line '<modem>' connected. 266

Line '<modem>' disconnected. 265

Line dropped at remote site on '<modem>'. 266

Linear 105

LLong 106

Load Balanced 86

Location 20, 160-161

Log Endpoints 180

Log file path 62

Log Retrieval 182

Log Settings 62

Logging 73

Long 106

M

Man Machine Interface (MMI) 23

Mapped to 110

Member 186

Memory 62

Menu Bar 30

Method 96

Missing application data directory. 284

www. ptc.com

321

KEPServerEX

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Manager to reis-
sue the certificate. 287

Model 90

Modem 82, 84, 142

Modem line closed
'<modem>'. 266

Modem line opened
'<modem>'. 266

Modem Settings 84

Modem Tags 136

MonitoredItemServiceSet 247

Move object '<name>' failed
<reason>. 281

multidimensional arrays are not supported. | Item name = '%s'. 293

Multiple Objects 196

Multiple Tag Generation 101

N

Name 89

Navigating the User Interface 30

Negate 105

Negate Value 113

Network 1 - Network 500 85

Network Adapter 81, 84

Network Interface 86

Network Interface Selection 142

Network Mode 86

No comm handle provided on connect for line '<line>'. 259

No device driver DLLs were loaded. 274, 279

No dial tone on '<modem>'. 266

no persistence 62

No tags were created by the tag generation request. See the event log for more information. 264

Non-Normalized Float Handling 81

None 82

Not connected to the event logger service. 279

O

Object 196

www. ptc.com

322

KEPServerEX

Object type '<name>' not allowed in project. 267

On Device Startup 94

On Duplicate Tag 95

On Property Change 94

One or more changes were not applied to '<name>' since it is being referenced by a client. 282

One or more value change updates lost due to insufficient space in the connection buffer. | Number of
lost updates = <count>. 292

OnPoll 96

OPC-compliant 222

OPC .NET 26

OPC AE 24

OPC DA 23

OPC Diagnostic Events 238

OPC Diagnostics Viewer 235

OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'. 271

OPC ProgID has been removed from the ProgID Redirect list. | ProgID = '<ID>'. 271

OPC UA 25

OPC UA Services 246

Opening an Encrypted Project 161

Opening project. | Project = '<name>'. 277

Operating Mode 90

Operation 178

Operation with no Communications 84

Operational Behavior 83

Optimization Method 87

Optimize a Server Project 169

Options — General 34

Options — Runtime Connection 35

OtherServices 247

Overview: Creating Datablocks Inside iFIX Applications 223

Overwrite 95

P

Parent Group 95

Parity 83

Password 36, 41, 66, 69, 148, 160-161, 189

Password for administrator was reset by the current user. | Administrator name = '<name>', Current
user = '<name>'. 272

www. ptc.com

323

KEPServerEX

Password for user has been changed. | User = '<name>'. 270, 273

Password reset for administrator failed. Current user is not a Windows administrator. | Administrator
name = '<name>', Current user = '<name>'. 273

Permissions 20, 68

Permissions change applied on configuration session assigned to <name>. 284

Permissions definition has changed on user group. | Group = '<name>'. 269, 272

Persisted Datastores 63

Persistence Mode 62

Phone number priority has changed. | Phone Number Name = '<name>', Updated Priority =
'<priority>'. 268

Phonebook 144

Physical Medium 82

Plug-in Endpoints 180

Poll Delay 83

Port 62, 85, 93

Postman 200

Preserve 74

Preview 103

Priority 86

Process Array Data 170

Process Modes 21

Profile log message. | Message = '<log message>'. 285

Project Permissions 214

Project Properties 37

Project Properties — DDE 42

Project Properties — FastDDE/Suitelink 44

Project Properties — Identification 37

Project Properties — iFIX PDB Settings 45

Project Properties — OPC .NET 43

Project Properties — OPC AE 44

Project Properties — OPC DA 37

Project Properties — OPC HDA 47

Project Properties — OPC UA 40

Project Properties — ThingWorx Native Interface 48

Project Save 219

Project Startup for iFIX Applications 233

Project Tree View 31

Properly Name a Channel, Device, Tag, and Tag Group 170

Property Definitions 186

www. ptc.com

324

KEPServerEX

Property Editor 33

Property Tags 133

Property Types 188

Protocol 85, 93

Proxy 53

Q

Quick Client 57

QWord 106

R

Raise 83

Raw 105

Raw High 113

Raw Low 113

Read Processing 84

Redundancy 97

Reinitialize Runtime Service 220

Reinitializing ThingWorx connection due to a project settings change initiated from the Configuration
API. 300

Reinitializing ThingWorx connection due to a project settings change initiated from the platform. 300

Rejecting attempt to change model type on a referenced device '<channel device>'. 260

Rejecting request to replace the project because it's the same as the one in use
'<name>'. 279

Remote line is busy on '<modem>'. 265

Remote line is not answering on '<modem>'. 265

Removing a Device 205

Removing a Tag 207

Removing a Tag Group 209

Removing a User or Group 211

Removing Channel 202

Rename failed. Names can not contain periods, double quotations or start with an underscore. | Pro-
posed name = '<name>'. 276

Rename failed. There is already an object with that name. | Proposed name = '<name>'. 276

Replace with Zero 81

Report Communication Errors 83-84

Request Timeout 97

www. ptc.com

325

KEPServerEX

Resolve Comm Issues when a Connected Device is Power Cycled 171

Respect Data Type 113

Respect Tag-Specified Scan Rate 91

Response Codes 221

REST 178, 200, 203, 205

Restart 220

Resumed pushing property updates to thing
the error condition was resolved. | Thing name = '<name>'. 301

RS-485 83

RTS 83

Running the Server 147

Runtime 21

Runtime operating mode change completed. 271

Runtime performing exit processing. 283

Runtime process started. 283

Runtime process started. PID = <number> 284

Runtime project has been reset. 278

Runtime project replaced from '<name>'. 284

Runtime project replaced with startup project defined. Runtime project will be restored from '<name>' at
next restart. 282

Runtime project replaced. 284

Runtime project replaced. | New project = '<path>'. 278

Runtime project saved as '<name>'. 284

Runtime project update failed. 274

Runtime re-initialization completed. 283

Runtime re-initialization started. 283

Runtime service started. 283

Runtime service started. PID = <number> 284

Runtime shutdown complete. 283

S

Save 20, 160-161

Saving .<binary extension> and .JSON project files with a password is not supported. To save encrypted
project files, use .<secure binary extension>. 280

Saving project files with Project File Encryption disabled as .SOPF file type is not supported. Supported
file types are .OPF and .JSON. 280

Saving project files with Project File Encryption enabled as .OPF file type is not supported. Supported file
types are .SOPF and .JSON. 280

Saving the Project 158

www. ptc.com

326

KEPServerEX

Saving/loading .<binary extension> and .JSON project files with a password is not supported. To save
encrypted project files, use .<secure binary extension>. 281

SCADA 222

Scaled 105

Scaled Data Type 113

Scaled High 113

Scaled Low 113

Scaling 113

Scan Mode 91

Scan Rate 113

Scan rate override 110

Script Engine service starting. 285

Script Engine service stopping. 285

Search 251

secure 36

Secure 20, 159

SecureChannelServiceSet 247

security 28, 36, 45

Security 20, 36-37, 41, 48, 61, 65, 73, 75, 147-148, 159-160, 178, 184, 216

Select the Correct Network Cable 171

Serial Communications 82

Serial communications error on channel. | Error mask = <mask>. 307

Serial Port Settings 82

Server Administration Endpoints 180

Server Summary Information 252

Service 217

Service Port Assignments 77

Service Ports 76

Serviced one or more autobind requests. | Count = <count>. 300

SessionServiceSet 248

Settings 58

Settings - Certificate Store 75

Settings — Administration 58

Settings — Configuration 59

Settings — Configuration API Service Configuration 72

Settings — ProgID Redirect 63

Settings — Runtime Options 60

Settings — Runtime Process 59

Settings — User Manager 64

www. ptc.com

327

KEPServerEX

Settings — User Manager ThingWorx Interface Users 69

Shared 82

Short 106

Shutdown 178

Shutting down for the purpose of performing an installation. 278

Shutting down to perform an installation. 271, 283

Simulated 90

Simulation mode is disabled on device '<device>'. 266

Simulation mode is enabled on device '<device>'. 266

Single File 62

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 306

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 310

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 310

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 309

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 309

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 309

Sorting 190

Specified address is not valid on device. | Invalid address = '<address>'. 308

Specifying I/O Addresses in iFIX Database Manager 225

Specifying Signal Conditioning in iFIX Database Manager 226

Specifying the I/O Driver in iFIX Database Manager 224

Square Root 105

SSL 73, 75

Starting <name> device driver. 265

Starting a New Project 147

Static Tags (User-Defined) 107

Statistics 250

Statistics Tags 134

Status Bar 33

Stop Bits 83

Stopping <name> device driver. 265

Store and Forward — Fill Rate Example 53

Store and Forward — System Tags 54

Store and Forward datastore reset due to file IO error or datastore corruption. 297

Store and Forward datastore size limit reached. 293

Store and Forward datastore unable to store data due to full disk. 293

Store and Forward mode changed. | Forward Mode = '<mode>'. 301

Store and Forward Service 234

Store and Forward service starting. 303

www. ptc.com

328

KEPServerEX

Store and Forward service stopping. 302

String 106

SubscriptionServiceSet 248

Successfully deleted stored data from the Store and Forward datastore. 301

Synchronization with remote runtime failed. 276

System Requirements 19

System Services 216

System Tags 114

T

Tag Counts 80, 91

Tag Generation 94

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten =
<count>. 268

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten = <count>. 268

Tag generation results for device '<device>'. | Tags created = <count>. 268

Tag Group Properties 108

Tag Management 112

Tag Name 113

Tag Properties — General 99

Tag Properties — Scaling 104

TAPI configuration has changed, reinitializing... 265

TAPI line initialization failed
<code>. 260

Template 113

Testing the Project 161

The <name> device driver was not found or could not be loaded. 253

The area specified is not valid. Failed to set the subscription filter. | Area = '<area name>'. 291

The Config API is unable to load the SSL certificate. 286

The Config API SSL certificate contains a bad signature. 286

The Config API SSL certificate has expired. 286

The Config API SSL certificate is self-signed. 286

The configuration utility cannot run at the same time as third-party configuration applications. Close
both programs and open only the one you want to use. | Product = '<name>'. 277

The configured version of TLS for the Configuration API is no longer considered secure. It is recom-
mended that only TLS 1.2 or higher is used. 287

The current language does not support loading XML projects. To load XML projects, change the product
language selection to English in Server Administration. 257

The endpoint '<url>' has been added to the UA Server. 270

www. ptc.com

329

KEPServerEX

The endpoint '<url>' has been disabled. 270

The endpoint '<url>' has been enabled. 270

The endpoint '<url>' has been removed from the UA Server. 270

The invalid ProgID entry has been deleted from the ProgID Redirect list. | ProgID = '<ID>'. 272

The maximum number of configured Industrial Things has been reached, count = <number>. Consider
increasing the value of the Max Thing Count. 299

The maximum number of updates has been reached, count = <count>. 299

The OPC .NET server failed to start because it is not installed. Please rerun the installation. 287

The OPC .NET server failed to start. Please see the windows application event log for more details. Also
make sure the .NET 3.5 Framework is installed. | OS Error = '<error reason>'. 287

The phone number is invalid (<number>). 266

The project file was created with a more recent version of this software. 268

The push type of one or more properties are set to never push an update to the platform. | Count =
<count>. 295

The ReadAtTime request timed out. | Elapsed Time = <seconds> (s). 290

The ReadProcessed request timed out. | Elapsed Time = <seconds> (s). 290

The server is configured to send an update for every scan, but the push type of one or more properties
are set to push on value change only. | Count = <count>. 295

The source specified is not valid. Failed to set the subscription filter. | Source = '<source name>'. 291

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 264

The tag import filename is invalid, file paths are not allowed. 264

The time zone set for '<device>' is '<zone>'. This is not a valid time zone for the system. Defaulting the
time zone to '<zone>'. 263

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue the cer-
tificate. 288

The UA Server failed to initialize an endpoint configuration. | Endpoint Name
'<name>'. 290

The UA Server failed to register with the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 288

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 289

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 290

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 290

ThingWorx 48

ThingWorx Native Interface 28

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 294

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item name =
'<name>'. 296

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 295

This property may not be changed while the driver is processing tags. 308

www. ptc.com

330

KEPServerEX

Time Sync Threshold 96

Time Synchronization 95

Time Zone 96

Timed out trying to start the OPC .NET server. Please verify that the server is running by using the OPC
.NET Configuration Manager. 287

Timeouts to Demote 92

Timing 43, 96

Title Bar 30

Transaction Log 71

Transactions per Cycle 86

Type Definitions 186

U

Unable to add channel due to driver-level failure. 254

Unable to add device due to driver-level failure. 255

Unable to allocate thread resource. Please check the memory usage of the application. 304

Unable to apply modem configuration on line '<line>'. 261

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user
name>'. 297

Unable to attach to existing datastore because that datastore was created with an older version of the
server. Datastore recreated. | Datastore path = '<path>'. 303

Unable to backup project file to '<path>' [<reason>]. The save operation has been aborted. Verify the des-
tination file is not locked and has read/write access. To continue to save this project without a
backup, deselect the backup option under Tools | Options | General and re-save the project. 256

Unable to begin device discovery on channel. | Channel = '<name>'. 278

Unable to configure com port with specified parameters. | Port = COM<number>, OS error =
<error>. 304

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-memory store
size (updates) = <count>. 296

Unable to dial on line '<line>'. 259

Unable to generate a tag database for device '<device>' 258

Unable to generate a tag database for device '<device>'. The device is not responding. 258

Unable to launch application. | Application = '<path>', OS error = '<code>'. 275

Unable to load driver DLL '<name>'. 261

Unable to load driver DLL '<name>'. Reason 263

Unable to load plug-in DLL '<name>'. 262

Unable to load plug-in DLL '<name>'. Reason 263

Unable to load project <name> 255

www. ptc.com

331

KEPServerEX

Unable to load startup project '<name>'
<reason>. 281

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>'). Remove
the conflicting driver and restart the application. 254

Unable to load the project due to a missing object. | Object = '<object>'. 257

Unable to replace devices on channel because it has an active reference count. | Channel =
'<name>'. 274

Unable to save project file <name> 256

Unable to start the Config API Service. Possible problem binding to port. 286

Unable to start the UA server due to certificate load failure. 289

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network adapter. 260

Unable to write to address '<address>' on device '<name>'. 308

Unable to write to address on device. | Address = '<address>'. 307

Unable to write to item '<name>'. 282

Unable to write to item. | Item = '<item name>'. 291

Unmodified 81

Update of object '<name>' failed
<reason>. 281

Updated startup project '<name>'. 283

Updating a Channel 201

Updating a Device 204

Updating a Tag 206

Updating a Tag Group 208

Updating a User 210

Updating a User Group 210

Use an Alias to Optimize a Project 171

Use DDE with the Server 172

Use Dynamic Tag Addressing 173

Use Ethernet Encapsulation 174

User added to user group. | User = '<name>', Group = '<name>'. 269, 272

User group has been created. | Group = '<name>'. 269, 272

User group has been disabled. | Group = '<name>'. 269, 273

User group has been enabled. | Group = '<name>'. 270, 273

User group has been renamed. | Old name = '<name>', New name = '<name>'. 269, 272

User Groups 212

User has been deleted. | User = '<name>'. 270

User has been disabled. | User = '<name>'. 269, 273

User has been enabled. | User = '<name>'. 269, 273

User has been renamed. | Old name = '<name>', New name = '<name>'. 269, 272

User information replaced by import. | File imported = '<absolute file path>'. 270, 272

www. ptc.com

332

KEPServerEX

User Management 211

User moved from user group. | User = '<name>', Old group = '<name>', New group '<name>'. 272

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 269

Users 215

Using a Modem in the Server Project 143

V

Validation error on '<tag>'
<error>. 260
Invalid scaling parameters. 261

Verbose 74

Version mismatch. 255

ViewServiceSet 248

Virtual Network 85

Virtual Network Mode changed. This affects all channels and virtual networks. See help for more details
regarding the Virtual Network Mode. | New mode = '<mode>'. 277

W

What is a Channel? 79

What is a Device? 89

What is a Tag Group? 107

What is a Tag? 98

What is the Alias Map? 108

What is the Event Log? 110

Winsock initialization failed. | OS error = <error>. 305

Winsock shut down failed. | OS error = <error>. 305

Winsock V1.1 or higher must be installed to use this driver. 305

Word 106

Work with Non-Normalized Floating-Point Values 175

Write All Values for All Tags 87

Write Only Latest Value for All Tags 88

Write Only Latest Value for Non-Boolean Tags 88

Write request failed on item '<name>'. Error scaling the write data. 282

Write request failed on item '<name>'. The write data type '<type>' cannot be converted to the tag data
type '<type>'. 282

Write request rejected on item reference '<name>' since the device it belongs to is disabled. 282

Write request rejected on read-only item reference '<name>'. 282

Write to property failed. | Property name = '<name>', reason = <reason>. 294

www. ptc.com

333

KEPServerEX

Write to property failed. | Thing name = '<name>', property name = '<name>', reason = <reason>. 296

www. ptc.com

334

	Table of Contents
	KEPServerEX
	Introduction
	System Requirements
	Application Data
	Components
	Process Modes

	Interfaces and Connectivity
	OPC DA
	OPC AE
	OPC UA Interface
	OPC .NET
	DDE
	FastDDE / SuiteLink
	iFIX Native Interfaces
	ThingWorx Native Interface

	Navigating the User Interface
	Options — General
	Options — Runtime Connection

	Project Properties
	Project Properties — General
	Project Properties — OPC DA
	Project Properties — OPC UA
	Project Properties — DDE
	Project Properties — OPC .NET
	Project Properties — OPC AE
	Project Properties — FastDDE / SuiteLink
	Project Properties — iFIX PDB Settings
	Project Properties — OPC HDA
	Project Properties — ThingWorx
	Store and Forward — Fill Rate Example
	Store and Forward — System Tags

	Accessing the Administration Menu
	Settings
	Settings — Administration
	Settings — Configuration
	Settings — Runtime Process
	Settings — Runtime Options
	Settings — Event Log
	Settings — ProgID Redirect
	Settings — User Manager
	Settings — User Manager — ThingWorx Interface Users

	Settings — Configuration API Service Transaction Log
	Settings — Configuration API Service Configuration
	Settings — Certificate Store
	Settings — Service Ports
	Service Port Assignments

	Components and Concepts
	What is a Channel?
	Channel Properties — General
	Tag Counts

	Channel Properties — Advanced
	Channel Properties — Ethernet Communications
	Channel Properties — Serial Communications
	Channel Properties — Ethernet Encapsulation
	Channel Properties — Communication Serialization
	Channel Properties — Network Interface
	Channel Properties — Write Optimizations
	Device Discovery Procedure

	What is a Device?
	Device Properties — General
	Operating Mode
	Tag Counts

	Device Properties — Scan Mode
	Device Properties — Auto-Demotion
	Device Properties — Communication Parameters
	Device Properties — Ethernet Encapsulation
	Device Properties — Tag Generation
	Device Properties — Time Synchronization
	Device Properties — Timing
	Device Properties — Redundancy

	What is a Tag?
	Tag Properties — General
	Multiple Tag Generation
	Tag Properties — Scaling
	Dynamic Tags
	Static Tags (User-Defined)

	What is a Tag Group?
	Tag Group Properties

	What is the Alias Map?
	Alias Properties

	What is the Event Log?
	Event Log

	Tag Management
	CSV Import and Export
	System Tags
	Property Tags
	Statistics Tags
	Modem Tags
	Communication Serialization Tags

	Communications Management
	Using a Modem in the Server Project
	Phonebook
	Auto-Dial

	Designing a Project
	Running the Server
	Starting a New Project
	Adding and Configuring a Channel
	Channel Creation Wizard
	Adding and Configuring a Device
	Device Creation Wizard
	Adding User-Defined Tags (Example)
	Browsing for Tags
	Generating Multiple Tags
	Adding Tag Scaling
	Saving the Project
	Opening an Encrypted Project
	Testing the Project

	How Do I...
	Allow Desktop Interactions
	Create and Use an Alias
	Optimize a Server Project
	Properly Name a Channel, Device, Tag, and Tag Group
	Resolve Comm Issues when Server is Power Cycled
	Use an Alias to Optimize a Project
	Use DDE with the Server
	Use Dynamic Tag Addressing
	Use Ethernet Encapsulation
	Work with Non-Normalized Floating-Point Values

	Configuration API Service
	Security
	Documentation
	Configuration API Service — Architecture
	Configuration API Service — Documentation Endpoint
	Configuration API Service — Endpoint Mapping
	Configuration API Service — Health Status Endpoint
	Configuration API Service — About Endpoint
	Configuration API Service — Concurrent Clients
	Configuration API Service — Log Retrieval
	Configuration API Service — Content Retrieval
	Configuration API Service — Server Administration
	Configuration API Service — Data
	Configuration API Service — Channel Properties
	Configuration API Service — Creating a Channel
	Configuration API Service — Updating a Channel
	Configuration API Service — Removing Channel
	Configuration API Service — Device Properties
	Configuration API Service — Creating a Device
	Configuration API Service — Updating a Device
	Configuration API Service — Removing a Device
	Configuration API Service — Creating a Tag
	Configuration API Service — Updating a Tag
	Configuration API Service — Removing a Tag
	Configuration API Service — Creating a Tag Group
	Configuration API Service — Updating a Tag Group
	Configuration API Service — Removing a Tag Group
	Configuration API Service — Creating a User
	Configuration API Service — Updating a User
	Configuration API Service — Creating a User Group
	Configuration API Service — Updating a User Group
	Configuration API Service — Removing a User or Group
	Configuration API Service — User Management
	Configuration API Service — Configuring User Group Project Permissions
	Configuration API Service — Invoking Services
	Configuration API Service — Reinitialize Runtime Service
	Configuration API Service — Response Codes
	Device Demand Poll

	Configuring from iFIX Applications
	Overview: Creating Datablocks Inside iFIX Applications
	Entering Driver Information in iFIX Database Manager
	iFIX Signal Conditioning Options
	Project Startup for iFIX Applications
	Store and Forward Service

	Built-In Diagnostics
	OPC Diagnostics Viewer
	OPC DA Events
	OPC UA Services
	Communication Diagnostics

	Event Log Messages
	Server Summary Information
	The <name> device driver was not found or could not be loaded.
	Unable to load the '<name>' driver because more than one copy exists ('<name>...
	Invalid project file.
	Failed to open modem line '<line>' [TAPI error = <code>].
	Unable to add channel due to driver-level failure.
	Unable to add device due to driver-level failure.
	Version mismatch.
	Invalid XML document:
	Unable to load project <name>:
	Unable to backup project file to '<path>' [<reason>]. The save operation has ...
	<feature name> was not found or could not be loaded.
	Unable to save project file <name>:
	Device discovery has exceeded <count> maximum allowed devices. Limit the disc...
	<feature name> is required to load this project.
	The current language does not support loading XML projects. To load XML proje...
	Unable to load the project due to a missing object. | Object = '<object>'.
	Invalid Model encountered while trying to load the project. | Device = '<devi...
	Cannot add device. A duplicate device may already exist in this channel.
	Auto-generated tag '<tag>' already exists and will not be overwritten.
	Unable to generate a tag database for device '<device>'. The device is not re...
	Unable to generate a tag database for device '<device>':
	Auto generation produced too many overwrites, stopped posting error messages.
	Failed to add tag '<tag>' because the address is too long. The maximum addres...
	Line '<line>' is already in use.
	Hardware error on line '<line>'.
	No comm handle provided on connect for line '<line>'.
	Unable to dial on line '<line>'.
	Unable to use network adapter '<adapter>' on channel '<name>'. Using default ...
	Rejecting attempt to change model type on a referenced device '<channel devic...
	TAPI line initialization failed: <code>.
	Validation error on '<tag>': <error>.
	Unable to load driver DLL '<name>'.
	Validation error on '<tag>': Invalid scaling parameters.
	Unable to apply modem configuration on line '<line>'.
	Device '<device>' has been automatically demoted.
	<Source>: Invalid Ethernet encapsulation IP '<address>'.
	Unable to load plug-in DLL '<name>'.
	The time zone set for '<device>' is '<zone>'. This is not a valid time zone f...
	Unable to load driver DLL '<name>'. Reason:
	Unable to load plug-in DLL '<name>'. Reason:
	Channel requires at least one number in its phonebook for automatic dialing. ...
	Channel requires Auto-Dial enabled and at least one number in its phonebook t...
	The specified network adapter is invalid on channel '%1' | Adapter = '%2'.
	No tags were created by the tag generation request. See the event log for mor...
	The tag import filename is invalid, file paths are not allowed.
	TAPI configuration has changed, reinitializing...
	<Product> device driver loaded successfully.
	Starting <name> device driver.
	Stopping <name> device driver.
	Dialing '<number>' on line '<modem>'.
	Line '<modem>' disconnected.
	Dialing on line '<modem>' canceled by user.
	Line '<modem>' connected at <rate> baud.
	Remote line is busy on '<modem>'.
	Remote line is not answering on '<modem>'.
	No dial tone on '<modem>'.
	The phone number is invalid (<number>).
	Dialing aborted on '<modem>'.
	Line dropped at remote site on '<modem>'.
	Incoming call detected on line '<modem>'.
	Modem line opened: '<modem>'.
	Modem line closed: '<modem>'.
	<Product> device driver unloaded from memory.
	Line '<modem>' connected.
	Simulation mode is enabled on device '<device>'.
	Simulation mode is disabled on device '<device>'.
	Attempting to automatically generate tags for device '<device>'.
	Completed automatic tag generation for device '<device>'.
	Initiating disconnect on modem line '<modem>'.
	A client application has enabled auto-demotion on device '<device>'.
	Data collection is enabled on device '<device>'.
	Data collection is disabled on device '<device>'.
	Object type '<name>' not allowed in project.
	Created backup of project '<name>' to '<path>'.
	Device '<device>' has been auto-promoted to determine if communications can b...
	Failed to load library: <name>.
	Failed to read build manifest resource: <name>.
	The project file was created with a more recent version of this software.
	A client application has disabled auto-demotion on device '<device>'.
	Phone number priority has changed. | Phone Number Name = '<name>', Updated Pr...
	Tag generation results for device '<device>'. | Tags created = <count>.
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Access to object denied. | User = '<account>', Object = '<object path>', Perm...
	User moved from user group. | User = '<name>', Old group = '<name>', New grou...
	User group has been created. | Group = '<name>'.
	User added to user group. | User = '<name>', Group = '<name>'.
	User group has been renamed. | Old name = '<name>', New name = '<name>'.
	Permissions definition has changed on user group. | Group = '<name>'.
	User has been renamed. | Old name = '<name>', New name = '<name>'.
	User has been disabled. | User = '<name>'.
	User group has been disabled. | Group = '<name>'.
	User has been enabled. | User = '<name>'.
	User group has been enabled. | Group = '<name>'.
	Password for user has been changed. | User = '<name>'.
	The endpoint '<url>' has been added to the UA Server.
	The endpoint '<url>' has been removed from the UA Server.
	The endpoint '<url>' has been disabled.
	The endpoint '<url>' has been enabled.
	User information replaced by import. | File imported = '<absolute file path>'.
	User has been deleted. | User = '<name>'.
	Group has been deleted. | Group = '<name>'.
	Account '<name>' does not have permission to run this application.
	Failed to import user information.
	Changing runtime operating mode.
	Runtime operating mode change completed.
	Shutting down to perform an installation.
	OPC ProgID has been added to the ProgID Redirect list. | ProgID = '<ID>'.
	OPC ProgID has been removed from the ProgID Redirect list. | ProgID = '<ID>'.
	The invalid ProgID entry has been deleted from the ProgID Redirect list. | Pr...
	Password for administrator was reset by the current user. | Administrator nam...
	User moved from user group. | User = '<name>', Old group = '<name>', New grou...
	User group has been created. | Group = '<name>'.
	User added to user group. | User = '<name>', Group = '<name>'.
	User information replaced by import. | File imported = '<absolute file path>'.
	User group has been renamed. | Old name = '<name>', New name = '<name>'.
	Permissions definition has changed on user group. | Group = '<name>'.
	User has been renamed. | Old name = '<name>', New name = '<name>'.
	User has been disabled. | User = '<name>'.
	User group has been disabled. | Group = '<name>'.
	User has been enabled. | User = '<name>'.
	User group has been enabled. | Group = '<name>'.
	Failed to reset password for administrator. | Administrator name = '<name>'.
	Password reset for administrator failed. Current user is not a Windows admini...
	Password for user has been changed. | User = '<name>'.
	General failure during CSV tag import.
	Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'.
	Invalid or missing user information.
	Insufficient user permissions to replace the runtime project.
	Runtime project update failed.
	Failed to retrieve runtime project.
	Unable to replace devices on channel because it has an active reference count...
	Failed to replace existing auto-generated devices on channel, deletion failed...
	Channel is no longer valid. It may have been removed externally while awaitin...
	No device driver DLLs were loaded.
	Device driver was not found or could not be loaded. | Driver = '<name>'.
	Error importing CSV data. \n\nField buffer overflow reading identification re...
	Error importing CSV data. \n\nUnrecognized field name. | Field = '<name>'.
	Error importing CSV data. \n\nDuplicate field name. | Field = '<name>'.
	Error importing CSV data. \n\nMissing field identification record.
	Error importing CSV record. \n\nField buffer overflow. | Record index = '<num...
	Error importing CSV record. \n\nInsertion failed. | Record index = '<number>'...
	Unable to launch application. | Application = '<path>', OS error = '<code>'.
	Error importing CSV record. \n\n'Mapped To' tag address is not valid for this...
	Error importing CSV record. \n\nAlias name is invalid. Names cannot contain d...
	Invalid XML document:
	Rename failed. There is already an object with that name. | Proposed name = '...
	Failed to start channel diagnostics
	Rename failed. Names can not contain periods, double quotations or start with...
	Synchronization with remote runtime failed.
	Account '<name>' does not have permission to run this application.
	Error importing CSV record. Tag name is invalid. | Record index = '<number>',...
	Error importing CSV record. Tag or group name exceeds maximum name length. | ...
	Error importing CSV record. Missing address. | Record index = '<number>'.
	Error importing CSV record. Tag group name is invalid. | Record index = '<ind...
	Close request ignored due to active connections. | Active connections = '<cou...
	Failed to save embedded dependency file. | File = '<path>'.
	The configuration utility cannot run at the same time as third-party configur...
	Opening project. | Project = '<name>'.
	Closing project. | Project = '<name>'.
	Virtual Network Mode changed. This affects all channels and virtual networks....
	Beginning device discovery on channel. | Channel = '<name>'.
	Device discovery complete on channel. | Channel = '<name>', Devices found = '...
	Device discovery canceled on channel. | Channel = '<name>'.
	Device discovery canceled on channel. | Channel = '<name>', Devices found = '...
	Unable to begin device discovery on channel. | Channel = '<name>'.
	Shutting down for the purpose of performing an installation.
	Runtime project has been reset.
	Runtime project replaced. | New project = '<path>'.
	Connection attempt to runtime failed. | User = '<name>', Reason = '<reason>'.
	Discovered device for Channel '<name>' renamed due to duplicate name. | Disco...
	Not connected to the event logger service.
	Attempt to add item '<name>' failed.
	No device driver DLLs were loaded.
	Invalid project file: '<name>'.
	Could not open project file: '<name>'.
	Rejecting request to replace the project because it's the same as the one in ...
	Filename must not overwrite an existing file: '<name>'.
	Filename must not be empty.
	Filename is expected to be of the form subdir/name.{json, <binary ext>, <secu...
	Filename contains one or more invalid characters.
	Saving project files with Project File Encryption enabled as .OPF file type i...
	Saving project files with Project File Encryption disabled as .SOPF file type...
	Account '<name>' does not have permission to run this application.
	A password is required for saving encrypted project files (.<secure binary ex...
	Saving .<binary extension> and .JSON project files with a password is not sup...
	A password is required for saving/loading encrypted project files (.<secure b...
	Saving/loading .<binary extension> and .JSON project files with a password is...
	File is expected to be located in the 'user_data' subdirectory of the install...
	Addition of object to '<name>' failed: <reason>.
	Move object '<name>' failed: <reason>.
	Update of object '<name>' failed: <reason>.
	Delete object '<name>' failed: <reason>.
	Unable to load startup project '<name>': <reason>.
	Failed to update startup project '<name>': <reason>.
	Runtime project replaced with startup project defined. Runtime project will b...
	Ignoring user-defined startup project because a configuration session is active.
	Write request rejected on read-only item reference '<name>'.
	Unable to write to item '<name>'.
	Write request failed on item '<name>'. The write data type '<type>' cannot be...
	Write request failed on item '<name>'. Error scaling the write data.
	Write request rejected on item reference '<name>' since the device it belongs...
	One or more changes were not applied to '<name>' since it is being referenced...
	<Name> successfully configured to run as a system service.
	<Name> successfully removed from the service control manager database.
	Runtime re-initialization started.
	Runtime re-initialization completed.
	Updated startup project '<name>'.
	Runtime service started.
	Runtime process started.
	Runtime performing exit processing.
	Runtime shutdown complete.
	Shutting down to perform an installation.
	Runtime project replaced from '<name>'.
	Missing application data directory.
	Runtime project saved as '<name>'.
	Runtime project replaced.
	Runtime service started. PID = <number>
	Runtime process started. PID = <number>
	Configuration session started by <name> (<name>).
	Configuration session assigned to <name> has ended.
	Configuration session assigned to <name> promoted to write access.
	Configuration session assigned to <name> demoted to read only.
	Permissions change applied on configuration session assigned to <name>.
	Failed to start Script Engine server. Socket error occurred binding to local ...
	An unhandled exception was thrown from the script. | Function = '<function>',...
	Error executing script function. | Function = '<function>', error = '<error>'.
	Script Engine service stopping.
	Script Engine service starting.
	Profile log message. | Message = '<log message>'.
	Channel requires Auto-Dial enabled and at least one number in its phonebook t...
	The Config API SSL certificate contains a bad signature.
	The Config API is unable to load the SSL certificate.
	Unable to start the Config API Service. Possible problem binding to port.
	The Config API SSL certificate has expired.
	The Config API SSL certificate is self-signed.
	The configured version of TLS for the Configuration API is no longer consider...
	Configuration API started without SSL on port <port number>.
	Configuration API started with SSL on port <port number>.
	The OPC .NET server failed to start. Please see the windows application event...
	The OPC .NET server failed to start because it is not installed. Please rerun...
	Timed out trying to start the OPC .NET server. Please verify that the server ...
	Missing server instance certificate '<cert location>'. Please use the OPC UA ...
	Failed to import server instance cert: '<cert location>'. Please use the OPC ...
	The UA server certificate is expired. Please use the OPC UA Configuration Man...
	A socket error occurred listening for client connections. | Endpoint URL = '<...
	The UA Server failed to register with the UA Discovery Server. | Endpoint URL...
	Unable to start the UA server due to certificate load failure.
	Failed to load the UA Server endpoint configuration.
	The UA Server failed to unregister from the UA Discovery Server. | Endpoint U...
	The UA Server failed to initialize an endpoint configuration. | Endpoint Name...
	The UA Server successfully registered with the UA Discovery Server. | Endpoin...
	The UA Server successfully unregistered from the UA Discovery Server. | Endpo...
	The ReadProcessed request timed out. | Elapsed Time = <seconds> (s).
	The ReadAtTime request timed out. | Elapsed Time = <seconds> (s).
	Attempt to add DDE item failed. | Item = '<item name>'.
	DDE client attempt to add topic failed. | Topic = '<topic>'.
	Unable to write to item. | Item = '<item name>'.
	The area specified is not valid. Failed to set the subscription filter. | Are...
	The source specified is not valid. Failed to set the subscription filter. | S...
	Connection to ThingWorx failed. | Platform = <host:port resource>, error = <r...
	Error adding item. | Item name = '<item name>'.
	Failed to trigger the autobind complete event on the platform.
	Connection to ThingWorx failed for an unknown reason. | Platform = <host:port...
	One or more value change updates lost due to insufficient space in the connec...
	Item failed to publish; multidimensional arrays are not supported. | Item nam...
	Store and Forward datastore unable to store data due to full disk.
	Store and Forward datastore size limit reached.
	Connection to ThingWorx was closed. | Platform = <host:port resource>.
	Failed to autobind property. | Name = '<property name>'.
	Failed to restart Thing. | Name = '<thing name>'.
	Write to property failed. | Property name = '<name>', reason = <reason>.
	ThingWorx request to add item failed. The item was already added. | Item name...
	ThingWorx request to remove item failed. The item doesn't exist. | Item name ...
	The server is configured to send an update for every scan, but the push type ...
	The push type of one or more properties are set to never push an update to th...
	ThingWorx request to remove an item failed. The item is bound and the force f...
	Write to property failed. | Thing name = '<name>', property name = '<name>', ...
	Error pushing property updates to thing. | Thing name = '<name>'.
	Unable to connect or attach to Store and Forward datastore. Using in-memory s...
	Store and Forward datastore reset due to file IO error or datastore corruption.
	Unable to apply settings change initiated by the Platform. Permission Denied....
	Configuration Transfer to ThingWorx Platform failed.
	Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>'
	Failed to delete stored updates in the Store and Forward datastore.
	Configuration Transfer from ThingWorx Platform failed.
	Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>'
	Check that your Application Key is properly formatted and valid.
	The maximum number of configured Industrial Things has been reached, count = ...
	The maximum number of updates has been reached, count = <count>.
	A publish to Thingworx has timed out.
	Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<nam...
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Dropping pending autobinds due to interface shutdown or reinitialize. | Count...
	Serviced one or more autobind requests. | Count = <count>.
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Resumed pushing property updates to thing: the error condition was resolved. ...
	Configuration transfer from ThingWorx initiated.
	Configuration transfer from ThingWorx aborted.
	Initialized Store and Forward datastore. | Datastore location: '<location>'.
	Successfully deleted stored data from the Store and Forward datastore.
	Store and Forward mode changed. | Forward Mode = '<mode>'.
	Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastor...
	Attempt to add FastDDE/SuiteLink item failed. | Item = '<item name>'.
	FastDDE/SuiteLink client attempt to add topic failed. | Topic = '<topic name>'.
	Error attaching to datastore due to an invalid datastore path. | Path = '<path>'
	Failed to start Store and Forward server. Socket error occurred binding to lo...
	Store and Forward service stopping.
	Store and Forward service starting.
	File corruption encountered when attaching to datastore; datastore recreated....
	Datastore overwritten due to a configuration change. | Datastore path = '<pat...
	Unable to attach to existing datastore because that datastore was created wit...
	Com port is in use by another application. | Port = '<port>'.
	Unable to configure com port with specified parameters. | Port = COM<number>,...
	Driver failed to initialize.
	Unable to allocate thread resource. Please check the memory usage of the appl...
	Com port does not exist. | Port = '<port>'.
	Error opening com port. | Port = '<port>', OS error = <error>.
	Connection failed. Unable to bind to adapter. | Adapter = '<name>'.
	Winsock shut down failed. | OS error = <error>.
	Winsock initialization failed. | OS error = <error>.
	Winsock V1.1 or higher must be installed to use this driver.
	Socket error occurred binding to local port. | Error = <error>, Details = '<i...
	Device is not responding.
	Device is not responding. | ID = '<device>'.
	Serial communications error on channel. | Error mask = <mask>.
	Invalid array size detected writing to tag <device name>.<address>.
	Unable to write to address on device. | Address = '<address>'.
	Items on this page may not be changed while the driver is processing tags.
	Specified address is not valid on device. | Invalid address = '<address>'.
	Address '<address>' is not valid on device '<name>'.
	This property may not be changed while the driver is processing tags.
	Unable to write to address '<address>' on device '<name>'.
	Socket error occurred connecting. | Error = <error>, Details = '<information>'.
	Socket error occurred receiving data. | Error = <error>, Details = '<informat...
	Socket error occurred sending data. | Error = <error>, Details = '<informatio...
	Socket error occurred checking for readability. | Error = <error>, Details = ...
	Socket error occurred checking for writability. | Error = <error>, Details = ...
	%s |
	<Name> Device Driver '<name>'

	Index

