
Modbus TCP/IP Ethernet Driver

© 2024 PTC Inc. All Rights Reserved.



Modbus TCP/IP Ethernet Driver

Table of Contents

Modbus TCP/IP Ethernet Driver 1

Table of Contents 2

Modbus TCP/IP Ethernet Driver 5

Overview 5

Supported DeviceModels 5

Setup 7

Channel Properties — General 7

Tag Counts 8

Channel Properties — Ethernet Communications 8

Channel Properties — Write Optimizations 9

Channel Properties — Advanced 9

Channel Properties — Communication Serialization 10

Channel Properties — Ethernet 11

Device Properties — General 13

Device Properties — ScanMode 14

Device Properties — Timing 15

Device Properties — Auto-Demotion 16

Device Properties — Tag Generation 16

Device Properties — Variable Import Settings 18

Device Properties — Unsolicited 19

Modbus Client & Modbus Server Considerations 20

Device Properties — Error Handling 20

Device Properties — Ethernet 21

Device Properties — Settings 21

Device Properties — Block Sizes 24

Device Properties — Redundancy 25

Configuration API — Modbus TCP/IP Ethernet Example 26

Enumerations 27

Device Model Enumerations 28

Automatic Tag Database Generation 30

Importing fromCustomApplications 30

Optimizing Communications 31

Data Types Description 32

Address Descriptions 33

Driver System Tag Addressing 33

Function Codes Description 34

www.ptc.com

2



Modbus TCP/IP Ethernet Driver

Applicom Sub-Model and Addressing 34

Generic Modbus Addressing 34

TSX Quantum 38

TSX Premium 41

CEG Addressing 44

Fluenta Addressing 44

Instromet Addressing 44

Mailbox Addressing 44

Modbus Addressing 45

Roxar Addressing 48

Statistics Items 49

Event Log Messages 52

Failure to start winsock communications. 52

Failure to start unsolicited communications. 52

Unsolicited mailbox access for undefined device. Closing socket. | IP address = '<address>'. 52

Unsolicited mailbox unsupported request received. | IP address = '<address>'. 52

Unsolicited mailbox memory allocation error. | IP address = '<address>'. 53

Unable to create a socket connection. 53

Error opening file for tag database import. | OS error = '<error>'. 53

Bad array. | Array range = <start> to <end>. 53

Bad address in block. | Block range = <address> to <address>. 54

Failed to resolve host. | Host name = '<name>'. 54

Specified output coil block size exceeds maximum block size. | Block size specified = <number>
(coils), Maximum block size = <number> (coils). 54

Specified input coil block size exceeds maximum block size. | Block size specified = <number>
(coils), Maximum block size = <number> (coils). 54

Specified internal register block size exceeds maximum block size. | Block size specified = <num-
ber> (registers), Maximum block size = <number> (registers). 55

Specified holding register block size exceeds maximum block size. | Block size specified = <num-
ber> (registers), Maximum block size = <number> (registers). 55

Block request responded with exception. | Block range = <address> to <address>, Exception =
<code>. 55

Block request responded with exception. | Block range = <address> to <address>, Function code
= <code>, Exception = <code>. 55

Bad block length received. | Block range = <start> to <end>. 55

Tag import failed due to lowmemory resources. 56

File exception encountered during tag import. 56

Error parsing record in import file. | Record number = <number>, Field = <field>. 56

Description truncated for record in import file. | Record number = <number>. 56

www.ptc.com

3



Modbus TCP/IP Ethernet Driver

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name =
'<tag>'. 57

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsup-
ported data type = '<type>'. 57

Unable to write to address, device responded with exception. | Address = '<address>', Exception
= <code>. 57

Ethernet Manager started. 58

Ethernet Manager stopped. 58

Importing tag database. | Source file = '<filename>'. 58

A client application has changed the CEG extension via system tag _CEGExtension. | Extension =
'<extension>'. 58

Starting unsolicited communication. | Protocol = '<name>', Port = <number>. 58

Createdmemory for Modbus server device. | Modbus server device ID = <device>. 58

All channels are subscribed to a virtual network or all devices are listening to remote addresses,
stopping unsolicited communication. 58

Channel is in a virtual network, all devices reverted to use one socket per device. 59

Cannot change device ID fromModbus client mode to server mode with a client connected. 59

Cannot change device ID fromModbus server mode to client mode with a client connected. 59

Modbus server mode not allowed when the channel is in a virtual network. The device ID cannot
contain a loop-back or local IP address. 59

Mailbox model not allowed when the channel is in a virtual network. 59

Modbus Exception Codes 60

Modbus Ethernet Channel Properties 61

Modbus Ethernet Device Properties 61

Modbus Ethernet Tag Properties 62

Index 63

www.ptc.com

4



Modbus TCP/IP Ethernet Driver

Modbus TCP/IP Ethernet Driver
Help version 1.155

CONTENTS

Overview
What is the Modbus TCP/IP Ethernet Driver?

Setup
How do I configure a channel and device for use with this driver?

Configuration via API
How do I configure a channel and device using the Configuration API?

Automatic Tag Database Generation
How can I configure tags for the Modbus TCP/IP Ethernet Driver?

Optimizing Communications
How do I get the best performance from the Modbus TCP/IP Ethernet Driver?

Data Types Description
What data types does the Modbus TCP/IP Ethernet Driver support?

Address Descriptions
How do I reference a data location in a Modbus Ethernet device?

Event Log Messages
What messages does the Modbus TCP/IP Ethernet Driver produce?

Overview
The Modbus TCP/IP Ethernet Driver provides a reliable way to connect Modbus Ethernet devices to client
applications; including HMI, SCADA, Historian, MES, ERP, and countless custom applications. Users must
install TCP/IP properly to use this driver. For more information on setup, refer to the Windows documentation.

Note: The driver posts messages when a failure occurs during operation.

Supported Device Models

Applicom
This model supports Applicom addressing syntax for Generic Modbus, TSX Premium, and TSX Quantum
devices.

Ethernet to Modbus Plus Bridge
The driver also has the ability to talk to Modbus Plus devices via an Ethernet to Modbus Plus Bridge. The
Device ID used should be the IP address of the bridge along with the Modbus Plus Bridge Index. For example,
Bridge IP 205.167.7.12, Bridge Index 5 equates to a Device ID of 205.167.7.12.5. Consult the Modicon-
/Schneider Automation distributor on obtaining and setting up a MBE to MBP Bridge.

www.ptc.com

5



Modbus TCP/IP Ethernet Driver

CEG
This model supports the extended block size of CEG devices.

Fluenta
This model supports the non-standard Modbus mapping of the Fluenta FGM 100/130 Flow Computer.

Instromet
This model supports the non-standard Modbus mapping of Instromet devices.

Mailbox
This model affects the way unsolicited requests are handled. By defining a mailbox device, the driver does
not act like a PLC on the network. Instead, it acts as a storage area for every mailbox device that is defined.
When the driver receives an unsolicited command, the driver detects the IP address the message came
from and places the data in the storage area allocated for the device. If the message comes from a device
with an IP address that has not been defined as a mailbox device, the message is not processed. Any client
application that reads or writes to this type of device reads or writes to the storage area in the driver and not
the physical device.

For information on sending unsolicited requests to the Modbus TCP/IP Ethernet Driver, consult the Modicon
Documentation on the MSTR instruction.
Note: Modbus Mailbox does not support function code 22 (0x16). Only 0x10 (Holding Reg Write Multiple)

and 0x6 (Holding Reg Write Single) are supported. Users can write to a single bit by disabling Holding
Register Bit Writes in the device properties. This forces it to use the Read/Modify/Write sequence instead of
directly writing to the bit. Only the client Modbus device (not the Mailbox) has to change its setting to get this
to work.
Mailbox Client Privileges for Mailbox Device Model

Modbus Client
Most projects are configured to function as a Modbus client. In this mode, the driver accesses a physical
device (such as the TSX Quantum or any other Modbus Open Ethernet compatible device).

Modbus Unsolicited or Server Mode
The Modbus TCP/IP Ethernet Driver acts as a device on the network whenModbus is the selectedmodel and
is configured with a device ID equivalent to the host machine's IP address. The driver accepts all unsolicited
commands that are received and attempts to process them as if it were just another PLC. Any Modbus client
on the network can communicate with this simulated device using its IP address.

The device ID for a Modbus server device is specified as YYY.YYY.YYY.YYY.XXX. The YYY can either be the loop-
back address or the local IP address of the PC that is running the driver. The XXX designates the Modbus
server's Station ID and can be in the range 0 to 255.

Multiple Modbus server devices can have the same Station ID. In this scenario, all the devices that share the
Station ID point to one common simulated device. If the remote Modbus client requests data from a Modbus
server device (Station ID) that does not exist, the response contains data from station 0. Once a Modbus
server device is created in the project, that Modbus server is enabled and stays enabled until the server is
shut down. Changing the Station ID enables a newModbus server device that stays enabled until the server
is shut down.

Addresses 1 to 65536 are implemented for output coils, input coils, internal registers, and holding registers.
In Unsolicited Mode, the driver responds to any valid request to read or write these values from external
devices (Function Codes [decimal] 01, 02, 03, 04, 05, 06, 15, and 16). Furthermore, loopback (also known as

www.ptc.com

6



Modbus TCP/IP Ethernet Driver

Function code 08, sub code 00) has been implemented in this driver. These locations can be accessed locally
by the host PC as tags assigned to the Modbus server device.
Note:Write-only access is not allowed for unsolicited devices.

Roxar
This model supports the non-standard Modbus mapping of the Roxar RFM Water Cut meter.
See Also: Device Model Enumerations and Device Properties.

Setup

Channel and Device Limits
The maximum number of channels supported by this driver is 1024. The maximum number of devices sup-
ported by this driver is 8192 per channel.

Tip: Channel-level settings apply to all devices that have been configured on this channel.

Note: The Modbus TCP/IP Ethernet Driver requires Winsock V1.1 or higher.

Communication Serialization
The Modbus TCP/IP Ethernet Driver supports Communication Serialization, which specifies whether data
transmissions should be limited to one channel at a time.
 For more information, refer to Communication Serialization.

Notes:

l When Channel Serialization is enabled, Unsolicited communications and theMax Sockets per
Device property is disabled. Mailbox Model is unavailable for Channel Serialization.

l  Not all properties are available and applicable for all models.

See Also: Configuring a device with Configuration API commands, API Example with Modbus

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same com-
munications driver or with unique communications drivers. A channel acts as the basic building block of an
OPC link. This group is used to specify general channel properties, such as the identification attributes and
operating mode.

Identification

www.ptc.com

7



Modbus TCP/IP Ethernet Driver

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window
when browsing the OPC server's tag space. The channel name is part of the OPC browser information. The
property is required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during chan-
nel creation. It is a disabled setting in the channel properties. The property is required for creating a chan-
nel.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. Changes to the properties should not be made
once a large client application has been developed. Utilize proper user role and privilege management to
prevent operators from changing properties or accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this optionmakes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead pro-
cessing, it is recommended that they be utilized when needed and disabled when not. The default is dis-
abled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

Static Tags:  Provides the total number of defined static tags at this level (device or channel). This inform-
ation can be helpful in troubleshooting and load balancing.

Channel Properties — Ethernet Communications
Ethernet Communication can be used to communicate with devices.

Ethernet Settings

Network Adapter:  Specify the network adapter to bind. When left blank or Default is selected, the oper-
ating system selects the default adapter.

www.ptc.com

8



Modbus TCP/IP Ethernet Driver

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties to meet specific needs or improve application respons-
iveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags:  This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client applic-
ations is sent to the target device. This mode should be selected if the write operation order or the
write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize

the operation of HMI data without causing problems with Boolean operations, such as a momentary
push button.

l Write Only Latest Value for All Tags:  This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows optim-
ization for applications with continuous writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

www.ptc.com

9



Modbus TCP/IP Ethernet Driver

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as
a Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may
default to Unmodified. Non-normalized float handling allows users to specify how a driver handles non-nor-
malized IEEE-754 floating point data. Descriptions of the options are as follows:

l Replace with Zero:  This option allows a driver to replace non-normalized IEEE-754 floating point val-
ues with zero before being transferred to clients.

l Unmodified:  This option allows a driver to transfer IEEE-754 denormalized, normalized, non-num-
ber, and infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the
option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-
Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Communication Serialization
The server's multi-threading architecture allows channels to communicate with devices in parallel. Although
this is efficient, communication can be serialized in cases with physical network restrictions (such as Eth-
ernet radios). Communication serialization limits communication to one channel at a time within a virtual net-
work.

The term "virtual network" describes a collection of channels and associated devices that use the same
pipeline for communications. For example, the pipeline of an Ethernet radio is the client radio. All channels
using the same client radio associate with the same virtual network. Channels are allowed to communicate
each in turn, in a "round-robin" manner. By default, a channel can process one transaction before handing
communications off to another channel. A transaction can include one or more tags. If the controlling chan-
nel contains a device that is not responding to a request, the channel cannot release control until the trans-
action times out. This results in data update delays for the other channels in the virtual network.

Channel-Level Settings

www.ptc.com

10



Modbus TCP/IP Ethernet Driver

Virtual Network: Specify the channel's mode of communication serialization. Options include None and Net-
work 1 - Network 500. The default is None. Descriptions of the options are as follows:

l None:  This option disables communication serialization for the channel.

l Network 1 - Network 500:  This option specifies the virtual network to which the channel is
assigned.

Transactions per Cycle: Specify the number of single blocked/non-blocked read/write transactions that can
occur on the channel. When a channel is given the opportunity to communicate, this is the number of trans-
actions attempted. The valid range is 1 to 99. The default is 1.

Global Settings

Network Mode:  This property is used to control how channel communication is delegated. In Load Bal-
anced mode, each channel is given the opportunity to communicate in turn, one at a time. In Prioritymode,
channels are given the opportunity to communicate according to the following rules (highest to lowest pri-
ority):

1. Channels with pending writes have the highest priority.

2. Channels with pending explicit reads (through internal plug-ins or external client interfaces) are pri-
oritized based on the read's priority.

3. Scanned reads and other periodic events (driver specific).

The default is Load Balanced and affects all virtual networks and channels.
 Devices that rely on unsolicited responses should not be placed in a virtual network. In situations where

communications must be serialized, it is recommended that Auto-Demotion be enabled.

Due to differences in the way that drivers read and write data (such as in single, blocked, or non-blocked
transactions); the application's Transactions per cycle property may need to be adjusted. When doing so,
consider the following factors:

l Howmany tags must be read from each channel?

l How often is data written to each channel?

l Is the channel using a serial or Ethernet driver?

l Does the driver read tags in separate requests, or are multiple tags read in a block?

l Have the device's Timing properties (such as Request timeout and Fail after x successive timeouts)
been optimized for the virtual network's communicationmedium?

Channel Properties — Ethernet

Socket Usage

www.ptc.com

11



Modbus TCP/IP Ethernet Driver

Socket Utilization: Specify if the driver should share a single socket across all devices on this channel or
use multiple sockets to communicate with devices. In some cases, it is undesirable for the driver to maintain
a connection if the device has a limited number of connections available. The target device usually has lim-
ited ports available for connections. If the driver is using a port, no other systemmay access the target
device. This parameter is useful in these cases. The ability to put the driver into single-socket mode is import-
ant when using the driver to communicate with a Modbus-Ethernet-to-Modbus-RTU bridge product. Most of
these products allow connecting multiple RS-485 serial-based devices to a single Modbus-Ethernet-to-Mod-
bus-RTU bridge.

l One or More Sockets per Device: Specifies that the driver uses one or more socket for each device
on the network andmaintains that socket as an active connection. This is the default setting and beha-
vior. Because the driver does not re-establish a connection each time it reads or writes data to a
given device, connection overhead is reduced and performance may be improved when compared
withOne Socket per Channel. This setting is recommended if a gateway device is handling a num-
ber of serial devices.
Note: Gateways (and devices) typically limit the number of simultaneous connections to protect

against communications conflicts. Avoid exceeding these limits. If these limits are exceeded, the
driver posts failure-to-connect messages.

l One Socket per Channel (Shared): Specifies the driver communicates with all devices through the
same shared socket. This alternative configuration to share a single socket requires that each con-
nection be opened and closed as the socket is re-used for each device within the channel. Selecting
this optionmay require additional tuning to achieve optimum performance.

Max Sockets per Device: Specifies the maximum number of sockets available to the device. The default is
1.

Notes: Whenmore than one socket is configured, the driver may achieve significantly better performance
for read and write operations. This is because of the following behavior:

l The driver, whenmore than one socket is configured, spreads the data to read or write to a target
device across all of the available sockets in use with the target device. Reads or write operations are
then issued simultaneously to the device across all sockets.

l Device response messages may be received by the driver at the same time. The device’s responses
are processed sequentially by the single thread at the channel-level; however, this processing of data
at the channel-level can occur very fast (within tens of milliseconds) and therefore, when theMax
Sockets per Device setting is configured to use more than one socket, a significant performance
improvement can be achieved.

Unsolicited Settings
When the Modbus TCP/IP Ethernet Driver is in client mode, it has the ability to accept unsolicited requests.
The driver starts a listening thread for unsolicited data once the driver is loaded by the OPC server. This
thread is global to all channels configured in the OPC server. For example, if an OPC server project has three
channels defined and either setting is changed in one channel, that same change made is made to the other
two channels. The listening thread is restarted once the change is applied. The Event Log will post an event
for the restart.

Port: Specifies the port number that the driver uses when listening for unsolicited requests. The valid range
is 0 to 65535. The default is 502.

IP Protocol: Specifies the protocol that the driver uses when listening for unsolicited request. Options
include User Datagram Protocol (UDP) or Transmission Control Protocol (TCP/IP). The default is TCP/IP.

www.ptc.com

12



Modbus TCP/IP Ethernet Driver

Device Properties — General

Identification

Name: User-defined identity of this device.

Description: User-defined information about this device.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.
For more information on a specific device model, see Supported Device Models.

Model: The specific version of the device.

ID: Specify the device IP address along with a Modbus Bridge Index on the Ethernet network. Device IDs are
specified as <HOST>.XXX, where HOST is a standard UNC/DNS name or an IP address. The XXX designates the
Modbus Bridge Index of the device and can be in the range of 0 to 255. If no bridge is used, the index should
be set to 0. Depending on the model and device ID, a device could be configured to act as an unsolicited or
Modbus client device.

For more information on unsolicited mode, refer to Modbus Unsolicited or Server Mode.

Examples

1. When requesting data from a Modicon TSX Quantum device with IP address 205.167.7.19, the device
ID should be entered as 205.167.7.19.0.

2. When requesting data from a Modbus Plus device connected to bridge index 5 of a Modbus Ethernet
Bridge with an IP address of 205.167.7.50, the device ID should be entered as 205.167.7.50.5.

Operating Mode

Data Collection:  This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not attemp-
ted when a device is disabled. From a client standpoint, the data is marked as invalid and write operations
are not accepted. This property can be changed at any time through this property or the device system tags.

www.ptc.com

13



Modbus TCP/IP Ethernet Driver

Simulated:  This option places the device into Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The item's memory map is based on the group
Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).
The default is No.

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System
tag allows this property to be monitored from the client.

2. In Simulationmode, the item's memory map is based on client update rate(s) (Group Update Rate for
OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference
the same item with different update rates return different data.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production envir-
onment.

See Also: Configuring a device with Configuration API commands, API Example with Modbus

Device Properties — Scan Mode
The ScanMode specifies the subscribed-client requested scan rate for tags that require device com-
munications. Synchronous and asynchronous device reads and writes are processed as soon as possible;
unaffected by the ScanMode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions
of the options are:

l Respect Client-Specified Scan Rate:  This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate:  This mode specifies the value set as the maximum scan

rate. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate:  This mode forces tags to be scanned at the specified rate for sub-
scribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only:  This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the OPC client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate:  This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

www.ptc.com

14



Modbus TCP/IP Ethernet Driver

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the applic-
ation's needs. In many cases, the environment requires changes to these properties for optimum per-
formance. Factors such as electrically generated noise, modem delays, and poor physical connections can
influence howmany errors or timeouts a communications driver encounters. Timing properties are specific
to each configured device.

Communications Timeouts

Connect Timeout:  This property (which is used primarily by Ethernet based drivers) controls the amount of
time required to establish a socket connection to a remote device. The device's connection time often takes
longer than normal communications requests to that same device. The valid range is 1 to 30 seconds. The
default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not sup-
ported by the driver, it is disabled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout:  Specify an interval used by all drivers to determine how long the driver waits for a
response from the target device to complete. The valid range is 50 to 9999999 milliseconds (167 minutes).
The default is usually 1000 milliseconds, but can vary depending on the driver. The default timeout for most
serial drivers is based on a baud rate of 9600 baud or better. When using a driver at lower baud rates,
increase the timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout: Specify howmany times the driver issues a communications request before con-
sidering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is typ-
ically 3, but can vary depending on the driver's specific nature. The number of attempts configured for an
application depends largely on the communications environment. This property applies to both connection
attempts and request attempts.

Timing

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target
device. It overrides the normal polling frequency of tags associated with the device, as well as one-time
reads and writes. This delay can be useful when dealing with devices with slow turnaround times and in
cases where network load is a concern. Configuring a delay for a device affects communications with all
other devices on the channel. It is recommended that users separate any device that requires an inter-
request delay to a separate channel if possible. Other communications properties (such as communication
serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may

www.ptc.com

15



Modbus TCP/IP Ethernet Driver

limit the maximum value due to a function of their particular design. The default is 0, which indicates no
delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline for a specific time period, the driver can continue to
optimize its communications with other devices on the same channel. After the time period has been
reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,
the device is placed on-scan; otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted sys-

tem tag.

Timeouts to Demote: Specify howmany successive cycles of request timeouts and retries occur before the
device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is
reached. During this period, no read requests are sent to the device and all data associated with the read
requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for
another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000
milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the
off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard
writes; the server automatically fails any write request received from a client and does not post a message
to the Event Log.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation.
Select communications drivers can be configured to automatically build a list of tags that correspond to
device-specific data. These automatically generated tags (which depend on the nature of the supporting
driver) can be browsed from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

www.ptc.com

16



Modbus TCP/IP Ethernet Driver

If the target device supports its own local tag database, the driver reads the device's tag information and
uses the data to generate tags within the server. If the device does not natively support named tags, the
driver creates a list of tags based on driver-specific information. An example of these two conditions is as fol-
lows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the
tag names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/Omodule types, the com-
munications driver automatically generates tags in the server that are based on the types of I/Omod-
ules plugged into the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more inform-
ation, refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the
On Property Change option is shown. It is set to Yes by default, but it can be set toNo to control over when
tag generation is performed. In this case, the Create tags actionmust be manually invoked to perform tag
generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as
follows:

l Do Not Generate on Startup:  This option prevents the driver from adding any OPC tags to the tag
space of the server. This is the default setting.

l Always Generate on Startup:  This option causes the driver to evaluate the device for tag inform-
ation. It also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup:  This option causes the driver to evaluate the target device for tag
information the first time the project is run. It also adds any OPC tags to the server tag space as
needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save
from the Tools | Optionsmenu.

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to
do with the tags that it may have previously added or with tags that have been added or modified after the
communications driver since their original creation. This setting controls how the server handles OPC tags
that were automatically generated and currently exist in the project. It also prevents automatically gen-
erated tags from accumulating in the server.

For example, if a user changes the I/Omodules in the rack with the server configured to Always Generate
on Startup, new tags would be added to the server every time the communications driver detected a new

www.ptc.com

17



Modbus TCP/IP Ethernet Driver

I/Omodule. If the old tags were not removed, many unused tags could accumulate in the server's tag space.
The options are:

l Delete on Create:  This option deletes any tags that were previously added to the tag space before
any new tags are added. This is the default setting.

l Overwrite as Necessary:  This option instructs the server to only remove the tags that the com-
munications driver is replacing with new tags. Any tags that are not being overwritten remain in the
server's tag space.

l Do not Overwrite:  This option prevents the server from removing any tags that were previously gen-
erated or already existed in the server. The communications driver can only add tags that are com-
pletely new.

l Do not Overwrite, Log Error:  This option has the same effect as the prior option, and also posts an
error message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the com-
munications driver as well as any tags that have been added using names that match generated tags.
Users should avoid adding tags to the server using names that may match tags that are automatically
generated by the driver.

Parent Group:  This property keeps automatically generated tags frommixing with tags that have been
enteredmanually by specifying a group to be used for automatically generated tags. The name of the group
can be up to 256 characters. This parent group provides a root branch to which all automatically generated
tags are added.

Allow Automatically Generated Subgroups:  This property controls whether the server automatically cre-
ates subgroups for the automatically generated tags. This is the default setting. If disabled, the server gen-
erates the device's tags in a flat list without any grouping. In the server project, the resulting tags are named
with the address value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system

automatically increments to the next highest number so that the tag name is not duplicated. For example, if
the generation process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been
modified, Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be
accessed from the System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Device Properties — Variable Import Settings

For more information on CSV files for Modbus Drivers, refer to Creating CSV Files for Modbus Drivers.

Variable Import File: This parameter specifies the exact location of the variable import file that the driver
should use when the Automatic Tag Database Generation feature is enabled.

www.ptc.com

18

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/creating_csv_files_for_kepware_modbus_drivers.pdf?sc_lang=en


Modbus TCP/IP Ethernet Driver

Include Descriptions: When enabled, this option imports tag descriptions (if present in file).

For more information on configuring the Automatic Tag Database Generation feature (and how to create a
variable import file), refer to Automatic Tag Database Generation.

Device Properties — Unsolicited

OPC Quality

OPC Quality Bad until Write: Controls the initial OPC quality of tags attached to this driver. When dis-
abled, all tags have an initial value of 0 and an OPC quality of Good. This is the default condition. When
enabled, all tags have an initial value of 0 and an OPC quality of Bad. The tag's quality remains Bad until all
coils or registers referenced by the tag have been written to by a Modbus client or a client application. For
example, a tag with address 400001 and data type DWord references two holding registers: 400001 and
400002. This tag does not show Good quality until both holding registers have been written.
Note: If the device is not in unsolicited mode, this option is grayed out.

Communications Timeout: Sets the amount of time, in seconds, the driver waits for an incoming request
before setting the device's tag quality to Bad. After the timeout has occurred, the only way to reset the
timeout and allow all the tags to be processed normally is to re-establish communications with the remote
client or disable the communications timeout by setting it to 0. When enabled, the valid range is 1 to 64,800
seconds (18 hours).

Notes:

1. If an incoming request comes for a server device (station ID) that does not exist, the request is dir-
ected to station 0. In this case, the timeout for a server device with station ID 0 does not occur even if
it does not explicitly receive any remote communications for the timeout period.

2. Unsolicited devices require the model to be Modbus and the device ID to be IP_Address.yyy, where IP_
Address can be the local IP address of the PC running the driver. For example, 127.xxx.xxx.xxx, where
xxx=0-255, and yyy (station ID)=0-255.

3. When the first unsolicited request for a server device is received, the Event Log displays the following
informational message: "<date>__<time>__<level>__<source>__<event>". For example, "2/4/2011__
4:53:10 PM__Information__Modbus TCP/IP Ethernet__Created Memory for server Device <server Num-
ber>".

4. For this driver, the terms server and unsolicited are used interchangeably.

www.ptc.com

19



Modbus TCP/IP Ethernet Driver

Modbus Client & Modbus Server Considerations
The following notes pertain to both Modbus Client andModbus Server devices.

l It is not recommended that a Mailbox device and a Modbus device be on the same machine. Because
a client only gets data from one of these devices at a time; it is uncertain from which it gets data.

l It is recommended that client and server devices be placed on separate channels in the server pro-
ject for optimal server device tag processing.

l When an OPC client is connected, the device ID can only be changed if it does not result in change of
mode (client to server or server to client) of the device. The mode is changed by changing the loop-
back or local IP address to a different IP address and vice versa. The loopback address and the local
IP address (of the PC running the driver) indicates server (unsolicited) mode and any other IP address
indicates client mode of the device. When no OPC client is connected, the mode can be changed in
any manner (such as client to client, client to server, server to server, or server to client).
Note: Any address in the format 127.xxx.xxx.xxx, where xxx is in the range 0-255 is loopback

address.

l The Data Encoding group settings must be the same in client and server devices. For example, when
a device configured as a Modbus client is communicating with the device setup as a Modbus server.

l The server project as a whole allows a maximum of 255 server devices, one for each unique server
ID. The same server ID cannot be used across multiple channels.

l The server sees ANY loopback address (127.x.x.x), or localhost IP as a reference back to itself and cre-
ates sharedmemory space unique to the server ID. The same ID in multiple channels is the same
server device using the same register memory.

l If the same server ID must be usedmore than once in a project, choose tag address ranges that do
not coincide with other instances of the same server device IDs. Multiple channels / devices using the
same tag address range in the same server ID experience cross-talk and data corruption.

l For this driver, the terms server and unsolicited are used interchangeably.

Device Properties — Error Handling

Deactivate Tags on Illegal Address: Choose Enable for the driver to stop polling for a block of data if the
device returns Modbus exception code 2 (illegal address) or 3 (illegal data, such as number of points) in
response to a read of that block. Choose Disable for the driver to continue polling the data block despite
errors. The default is enabled.

www.ptc.com

20



Modbus TCP/IP Ethernet Driver

Device Properties — Ethernet

Port: Specifies the port number that the remote device is configured to use. The valid range is 0 to 65535.
The default is 502. This port number is used whenmaking solicited requests to a device.

 If the port system tag is used, the port number setting is changed. For more information, refer to Driver Sys-
tem Tag Addresses.

IP Protocol: Specifies whether the driver should connect to the remote device using the User Datagram Pro-
tocol (UDP) or Transmission Control Protocol (TCP/IP). The client and server settings must match. For
example, if the server's IP protocol setting is TCP/IP, then the client's IP protocol setting for that device must
also be TCP/IP.
Note: This driver requires Winsock V1.1 or higher.

Close Socket on Timeout: Specifies whether the driver should close a TCP socket connection if the device
does not respond within the timeout. When enabled, the default, the driver closes the socket connection on
timeout. When disabled, the driver continues to use the same TCP socket until an error is received, the phys-
ical device closes the socket, or the driver is shutdown.
Note: The Modbus TCP/IP Ethernet Driver closes the socket connection on a socket error.

Device Properties — Settings

Data Access

Zero-Based Addressing: If the address-numbering convention for the device starts at one as opposed to
zero, the value can be specified when defining the device parameters. By default, user-entered addresses

www.ptc.com

21



Modbus TCP/IP Ethernet Driver

have one subtracted when frames are constructed to communicate with a Modbus device. If the device does
not follow this convention, choose disable. The default behavior follows the convention of Modicon PLCs.

Zero-Based Bit Addressing: Within registers, memory types that allow bits within Words can be referenced
as Booleans. The addressing notation is <address>.<bit>, where <bit> represents the bit number within the
Word. This option provides two ways of addressing a bit within a givenWord; zero- or one-based. Zero-based
means that the first bit begins at 0 (range=0-15); one-basedmeans that the first bit begins at 1 (range=1-
16).

Holding Register Bit Writes: When writing to a bit location within a holding register, the driver should only
modify the bit of interest. Some devices support a special command to manipulate a single bit within a
register (function code hex 0x16 or decimal 22). If the device does not support this feature, the driver must
perform a Read / Modify / Write operation to ensure that only the single bit is changed. When enabled, the
driver uses function code 0x16, regardless of this setting for single register writes. When disabled, the driver
uses function code 0x06 or 0x10, depending on the selection for Modbus Function 06 for single register
writes. The default is disabled.
Note: WhenModbus byte order is disabled, the byte order of the masks sent in the command is Intel byte

order.

Modbus Function 06: This driver supports Modbus protocol functions to write holding register data to the
target device. In most cases, the driver switches between functions 06 and 16 based on the number of
registers being written. When writing a single 16-bit register, the driver generally uses Modbus function 06.
When writing a 32-bit value into two registers, the driver uses Modbus function 16. For the standard Modicon
PLC, the use of either of these functions is not a problem. There are, however, a large number of third-party
devices using the Modbus protocol andmany support only Modbus function 16 to write to holding registers.
This selection is enabled by default, allowing the driver to switch between 06 and 16 as needed. If a device
requires all writes to use only Modbus function 16, disable this selection.
Note: For bit within word writes, the Holding Register Bit Writes property takes precedence over this

option. If Holding Register Bit Writes is enabled, function code 0x16 is used regardless of this property. If not
enabled, either function code 0x06 or 0x10 is used for bit within word writes.

Modbus Function 05: This driver supports Modbus protocol functions to write output coil data to the target
device. In most cases, the driver switches between these two functions based on the number of coils being
written. When writing a single coil, the driver uses Modbus function 05. When writing an array of coils, the
driver uses Modbus function 15. For the standard Modicon PLC, the use of these functions is not a problem.
There are, however, many third-party devices that use the Modbus protocol andmany only support the use
of Modbus function 15 to write to output coils regardless of the number of coils. This selection is enabled by
default, allowing the driver to switch between 05 and 15 as needed. If a device requires all writes to use only
Modbus function 15, disable this selection.

CEG Extension: The Modbus driver can communicate with CEG devices that support extended block sizes or
Modbus devices configured with the CEG model. This property is only available for the CEG model. The
default is enabled, indicating the device is a CEG device with extended block sizes. Disabled indicates the
device does not support the extended block sizes.

Note: This property can be modified when an active OPC client connection exists. In this situation, dis-
abling the option causes the block size ranges to change. If any of the block size properties exceed the max-
imum value, they are automatically adjusted to the newmaximum value.

Mailbox Client Privileges: The Modbus driver can communicate with Mailbox clients with the following
options:

www.ptc.com

22



Modbus TCP/IP Ethernet Driver

l Memory Map Read Only: Client applications can only read from a mailbox memory map.

l Memory Map Read-Write: Client applications can read and write to the mailbox memory map.

l Device Write-Memory Map Read: Client applications can only write to a device; reads are from the
memory map.

Data Encoding

Modbus Byte Order: sets the data encoding of each register / 16-bit value. The byte order for can be
changed from the default Modbus byte ordering to Intel byte ordering using this selection. The default is
enabled, which is the normal setting for Modbus-compatible devices. If the device uses Intel byte ordering,
disable this property to read Intel-formatted data.

First Word Low: sets the data encoding of 32-bit values and the double word of 64-bit values. Two con-
secutive registers' addresses in a Modbus device are used for 32-bit data types. The driver can read the first
word as the low or the high word of the 32-bit value based on this option. The default is enabled, first word
low, to follow the convention of the ModiconModsoft programming software.

First DWord Low: sets the data encoding of 64-bit values. Four consecutive registers' addresses in a Mod-
bus device are used for 64-bit data types. The driver can read the first DWord as the low or the high DWord
of the 64-bit value. The default is enabled, first DWord low, to follow the default convention of 32-bit data
types.

Modicon Bit Order: when enabled, the driver reverses the bit order on reads and writes to registers to fol-
low the convention of the ModiconModsoft programming software. For example, a write to address
40001.0/1 affects bit 15/16 in the device when this option is enabled. This option is disabled (disabled) by
default.

For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits, depending on the
driver using zero-based or one-based bit addressing within registers.
MSB = Most Significant Bit
LSB = Least Significant Bit

Modicon Bit Order Enabled

MSB LSB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Modicon Bit Order Disabled

MSB LSB

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Treat Longs as Decimals: when enabled, the driver encodes and decodes double-precision unsigned Long
and DWord data types as values that range from 0 to 99999999. This format specifies that each word rep-
resents a value between 0 and 9999. Values read above the specified range are not clamped, but the beha-
vior is undefined. All read values are decoded using the formula [Read Value] = HighWord * 10000 +
LowWord. Written values greater than 99999999 are clamped to the maximum value. All written values are
encoded using the formula Raw Data = [Written Value]/10000 + [Written Value] % 10000.

Tips on Settings

www.ptc.com

23



Modbus TCP/IP Ethernet Driver

Data Types Modbus Byte Order First Word Low First DWord Low

Word, Short, BCD Applicable N/A N/A

Float, DWord, Long, LBCD Applicable Applicable N/A

Double Applicable Applicable Applicable

If needed, use the following information and the device's documentation to determine the correct settings of
the data encoding options.

The default settings are acceptable for the majority of Modbus devices.

Data Encoding
Option

Data Encoding

Modbus Byte
Order

High Byte (15..8) Low Byte (7..0)

Modbus Byte
Order

Low Byte (7..0) High Byte (15..8)

First Word Low
HighWord (31..16)
HighWord (63..48) of Double Word in
64-bit data types

LowWord (15..0)
LowWord (47..32) of Double Word in 64-
bit data types

First Word Low
LowWord (15..0)
LowWord (47..32) of Double Word in 64-
bit data types

HighWord (31..16)
HighWord (63..48) of Double Word in
64-bit data types

First DWord Low High Double Word (63..32) Low Double Word (31..0)

First DWord Low Low Double Word (31..0) High Double Word (63..32)

Device Properties — Block Sizes

Coils

Output Coils: Specifies the output block size in bits. Coils can be read from 8 to 2000 points (bits) at a time.
The default is 32.

www.ptc.com

24



Modbus TCP/IP Ethernet Driver

Input Coils: Specifies the input block size in bits. Coils can be read from 8 to 2000 points (bits) at a time. The
default is 32.

Registers

Internal Registers: Specifies the internal register block size in bits. From 1 to 120 standard 16-bit Modbus
registers can be read at a time. The default is 32.

Holding Registers: Specifies the holding register block size in bits. From 1 to 120 standard 16-bit Modbus
registers can be read at a time. The default is 32.

Blocks

Block Read Strings: Enables group / block reads of string tags, which are normally read individually. String
tags are grouped together depending on the selected block size. Block reads can only be performed for Mod-
bus model string tags.

Notes:

1. The Instromet, Roxar, and Fluenta models (which support 32-bit and 64-bit registers) require special
consideration. The Modbus protocol constrains the block size to be no larger than 256 bytes. This
translates to a maximum of block size of 64 32-bit registers or 32 64-bit registers for these models.

2. The CEG model supports coil block sizes between 8 and 8000 in multiples of 8 and register block
sizes between 1 and 500. This model must only be used with CEG devices.

3. A bad address in block error can occur if the register block sizes are set above 120 and a 32- or 64-
bit data type is used for any tag. To prevent this, decrease the block size value to 120.

4. Some devices may not support block read operations at the default size. Smaller Modicon PLCs and
non-Modicon devices may not support the maximum data transfer lengths supported by the Mod-
bus Ethernet network.

5. Some devices may contain non-contiguous addresses. In this case, and the driver attempts to read
a block of data that encompasses undefinedmemory, the request may be rejected.

Device Properties — Redundancy

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

www.ptc.com

25

https://ptc-p-001.sitecorecontenthub.cloud/api/public/content/e96f85a9eef84807b06504cdd95b1084?v=3b0e1d04


Modbus TCP/IP Ethernet Driver

Configuration API — Modbus TCP/IP Ethernet Example
For a list of channel and device definitions and enumerations, access the following endpoints with the REST
client or refer to the appendices.

Channel Definitions

Endpoint (GET):

https://<hostname_or_ip>:<-
port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/channels

Device Definitions

Endpoint (GET):

https://<hostname_or_ip>:<-
port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/devices

Create Modbus TCP/IP Ethernet Channel

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels

Body:

{
   "common.ALLTYPES_NAME": "MyChannel",
   "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet"
}

See Also: Appendix for a list of channel properties.

Create Modbus TCP/IP Ethernet Device

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels/MyChannel/devices

Body:

{
   "common.ALLTYPES_NAME": "MyDevice",
   "servermain.DEVICE_ID_STRING": "<IP Address>.<Modbus ID>",
   "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet",
   "servermain.DEVICE_MODEL": <model enumeration>
}

where <IP Address>.<Modbus ID> is the device's IP address and Modbus ID, such as 192.160.0.1.0.

See Also: Device Model Enumerations and Device Properties.

Device ID Update
Update the Device ID using a “PUT” command from a REST client.
The Endpoint example below references the “demo-project.json” project configuration with “ModbusTCPIP”
channel name and “ModbusDevice” device name.

www.ptc.com

26



Modbus TCP/IP Ethernet Driver

Device ID Example

Endpoint (PUT):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/ModbusTCPIP/devices/ModbusDevice

Body:

{
   "project_id": <project_ID_from_GET>,
   "servermain.DEVICE_ID_STRING": "<IP Address>.<Modbus ID>"
}

Create Modbus TCP/IP Ethernet Tags

Endpoint (POST):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/MyChannel/devices/MyDevice/tags

Body:

[
{

      "common.ALLTYPES_NAME": "MyTag1",
      "servermain.TAG_ADDRESS": "40001"
    }

{
      "common.ALLTYPES_NAME": "MyTag2",
      "servermain.TAG_ADDRESS": "40002"
   }
]

See Also: Appendix for a list of tag properties.

See server and driver-specific help for more information on configuring projects over the Configuration API.

Enumerations
Some properties, such as Device Model, have values that are mapped to an enumeration. A valid list of enu-
merations and their values can be found by querying the device endpoint with ‘content=property_definitions
’or the documentation definitions endpoints.

For example, to view the property definitions for a device named “MyDevice” under a channel named
“MyChannel”, the GET request would be sent to:

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/MyChannel/devices/MyDevice/?content=property defin-
itions

Property definitions are also available for other objects such as channels or tags.

Alternatively, if enabled in the settings for the Configuration API, the channel and device property definitions
for the driver can be viewed at:

www.ptc.com

27



Modbus TCP/IP Ethernet Driver

https://<hostname_or_ip>:<port>/config/v1/doc/drivers/<drivername>/Channels

https://<hostname_or_ip>:<port>/config/v1/doc/drivers/<drivername>/Devices

Example Data Type Enumerations
Querying the documentation endpoint for tag data types provides the following enumerations:

{ 
   "Default": -1,
   "String": 0,
   "Boolean": 1,
   "Char": 2,
   "Byte": 3,
   "Short": 4,
   "Word": 5,
   "Long": 6,
   "DWord": 7,
   "Float": 8,
   "Double": 9,
   "BCD": 10,
   "LBCD": 11,
   "Date": 12,
   "LLong": 13,
   "QWord": 14,
   "String Array": 20,
   "Boolean Array": 21,
   "Char Array": 22,
   "Byte Array": 23,
   "Short Array": 24,
   "Word Array": 25,
   "Long Array": 26,
   "DWord Array": 27,
   "Float Array": 28,
   "Double Array": 29,
   "BCD Array": 30,
   "LBCD Array": 31,
   "Date Array": 32,
   "LLong Array": 33,
   " QWord Array": 34
}

Note: Supported data types vary by protocol and driver.

Device Model Enumerations
The Device Model property has values mapped to the following enumerations. The below table is for ref-
erence only; the information at the device endpoint is the complete and current source of information:

https://<hostname_or_ip>:<-
port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/Channels

https://<hostname_or_ip>:<-
port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/Devices

www.ptc.com

28



Modbus TCP/IP Ethernet Driver

Enumeration Device Model

0 Modbus

1 Mailbox

2 Instromet

3 Roxar RFM

4 Fluenta FGM

5 Applicom

6 CEG

www.ptc.com

29



Modbus TCP/IP Ethernet Driver

Automatic Tag Database Generation
This driver supports the Automatic Tag Database Generation, which enables drivers to automatically create
tags that access data points used by the device's ladder program. Depending on the configuration, tag gen-
erationmay start automatically when the server project starts or be initiated manually at some other time.
The Event Log shows when tag generation started, any errors that occurred while processing the variable
import file, and when the process completed. 

For more information, refer to the server help documentation.

Although it is sometimes possible to query a device for the information needed to build a tag database, this
driver must use a Variable Import File instead. Variable import files can be generated using device pro-
gramming applications, such as Concept and ProWORX. The import file must be in semicolon-delimited .txt
format, which is the default export file format of the Concept device programming application.

See Also: Importing from Custom Applications

For specific information on creating the variable import file, consult Technical Note Creating CSV Files for Mod-
bus Drivers.

Importing from Custom Applications
Custom tags can be imported using the following CSV file format:

[Record Type] ; [Variable Name] ; [Data Type] ; [Address] ; [Set Value] ; [Comment]where:

l Record Type: This is a flag used in the Concept software, which is another way to import tags. It can
be N or E: both flags are treated the same.

l Variable Name: This is the name of the Static Tag in the server. It can be up to 256 characters in
length.

l Data Type: This is the tag's data type. Supported data types are as follows:
l BOOL

l DINT

l INT

l REAL (32-bit Float)

l UDINT

l UINT

l WORD

l BYTE

l TIME (treated as a DWord)

l STRING

l Address: This is the tag's Modbus address. It can be up to 16 characters in length.

l Set Value: This is ignored and should be kept blank.

l Comment: This is the description of the tag in the server. It can be up to 255 characters in length.

Examples

l N;Amps;WORD;40001;;Current in

l N;Volts;WORD;40003;;Volts in

l N;Temperature;REAL;40068;;Tank temp

www.ptc.com

30



Modbus TCP/IP Ethernet Driver

Optimizing Communications
The Modbus TCP/IP Ethernet Driver has been designed to provide the best performance with the least
amount of impact on the system's overall performance. While the driver is fast, there are a couple of
guidelines that can be used to control and optimize the application and gain maximum performance.

The server refers to communications protocols like Modbus Ethernet as a channel. Each channel defined in
the application represents a separate path of execution in the server. Once a channel has been defined, a
series of devices must then be defined under that channel. Each of these devices represents a single Mod-
bus controller from which data is collected. While this approach to defining the application provides a high
level of performance, it doesn't take full advantage of the driver or the network. An example of how the
applicationmay appear when configured using a single channel is shown below.

Each device is defined under a single Modbus Ethernet channel. In this con-
figuration, the driver must move from one device to the next as quickly as possible
to gather information at an effective rate. As more devices are added or more
information is requested from a single device, the overall update rate begins to suf-
fer.

If the Modbus TCP/IP Ethernet Driver could only define one single channel, then the example above would be
the only option available; however, the driver can define up to 1024 channels. Using multiple channels dis-
tributes the data collection workload by simultaneously issuing multiple requests to the network. An example
of how the same applicationmay appear when configured using multiple channels to improve performance
is shown below.

Each device can be defined under its own channel. In this configuration, a single
path of execution is dedicated to the task of gathering data from each device. If the
application has 1024 or fewer devices, it can be optimized in this manner.

The performance improves even if the application has more devices. While fewer
devices may be ideal, the application still benefits from additional channels.
Although by spreading the device load across all channels causes the server to
move from device to device again, it can do so with far less devices to process on a
single channel.

Block Size
Block size can affect the performance of the Modbus TCP/IP Ethernet Driver. The block size parameter is
available on each device, defined under the Block Size settings for device properties. The block size refers to
the number of registers or bits that may be requested from a device at one time. The driver's performance
can be refined by configuring the block size to 1 to 120 registers and 8 to 2000 bits.

Tips:

l Additional performance gain can be realized by enabling the Close Socket on Timeout property.

l Additional performance gain can also be realized by adjusting timeouts and timing properties.

For more information, refer to the Ethernet properties, Communication Timeouts, and Timing.

www.ptc.com

31



Modbus TCP/IP Ethernet Driver

Data Types Description

Data Type Description

Boolean Single bit

Word Unsigned 16-bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16-bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32-bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32-bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two-byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD Four-byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.

String
Null-terminated ASCII string

Supported onModbus Model, includes Hi-Lo Lo-Hi byte order selection.

Double*

64-bit floating point value

The driver interprets four consecutive registers as a double precision value by making
the last two registers the high DWord and the first two registers the low DWord.

Double
Example

If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the 64-
bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

Float* 32-bit floating point value

The driver interprets two consecutive registers as a single precision value by making the
last register the high word and the first register the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-bit
data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

*The descriptions assume the default; that is, first DWord low data handling of 64-bit data types and first
word low data handling of 32-bit data types.

www.ptc.com

32



Modbus TCP/IP Ethernet Driver

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain spe-
cific address information for the model of interest.

Applicom Addressing
CEG Addressing
Fluenta Addressing
Instromet Addressing
Mailbox Addressing
Modbus Addressing
Roxar Addressing

Driver System Tag Addressing

Internal Tags
Tag Description Data

Type
Access

Port The Port system tag allows a client application to read and write the Port
Number setting. Writes to this tag cause the driver to disconnect from
the device and attempt to reconnect to the specified port.

Word,
Short,
DWord,
Long

Read/Write

Notes:

l The device port setting is not used by the driver for server communications.

l For this driver, the terms server and unsolicited are used interchangeably.

l Changes to this tag modifies the project, which causes the server to prompt to save the project on
shutdown.

System Tags
Tag Description Data

Type
Access

_CEGExtension This tag is only used for CEG model devices. It allows
the CEG extension device property to be changed
from a client application.

Boolean Read/Write

_InputCoilBlockSize This tag allows the Input Coils block size property to be
changed from a client application.

DWord Read/Write

_OutputCoilBlockSize This tag allows the Output Coils block size property to
be changed from a client application.

DWord Read/Write

_Intern-
alRegisterBlockSize

This tag allows the Internal Registers block size prop-
erty to be changed from a client application.

DWord Read/Write

_Hold-
ingRegisterBlockSize

This tag allows the Holding Registers block size prop-
erty to be changed from a client application.

DWord Read/Write

Note: Changes to these tags modify the project, which causes the server to prompt to save the project on
shutdown.

See Also: Ethernet

www.ptc.com

33



Modbus TCP/IP Ethernet Driver

Function Codes Description
The Function Codes displayed in the table below are supported by the Modbus and Applicom device models.

Decimal Hexadecimal Description

01 0x01 Read Coil Status

02 0x02 Read Input Status

03 0x03 Read Holding Registers

04 0x04 Read Internal Registers

05 0x05 Force Single Coil

06 0x06 Preset Single Register

15 0x0F Force Multiple Coils

16 0x10 Preset Multiple Registers

22 0x16 MaskedWrite Register

Applicom Sub-Model and Addressing
Applicom devices support three Applicom sub-models. Select the appropriate sub-model for the device
being connected. Click on the sub-model link below for address information.

Generic Modbus
TSX Premium
TSX Quantum

Generic Modbus Addressing
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code

Bxxxxx 0-65535 Boolean Read / Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:
Bxxxxx_cols with assumed row count of 1.
Bxxxxx_rows_cols.

www.ptc.com

34



Modbus TCP/IP Ethernet Driver

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot
exceed the output coil block size that was specified for this device.

Input Coils
Address Range Data Type Access Function Code

BIxxxxx 0-65535 Boolean Read Only 02

Array Support
Arrays are supported for the input coil addresses. The syntax for declaring an array is as follows:
BIxxxxx_cols with assumed row count of 1.
BIxxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot
exceed the input coil block size that was specified for the device.

Internal Registers
The default data types are shown in bold.

Arrays are supported for internal register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access
Function
Code

WIxxxxx
0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read
Only

04

WIxxxxx.bb
xxxxx=0-65535
bb=0/1-15/16*

Boolean
Read
Only

04

WIxxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean
Read
Only

04

DIxxxxx 0-65534 DWord
Read
Only

04

FIxxxxx 0-65534 Float
Read
Only

04

WIxxxxx_S 0-65535 Short
Read
Only

04

WIxxxxx_B 0-65535 BCD
Read
Only

04

WIxxxxx_A** 0-65535 String
Read
Only

04

WIxxxxx_X<1, 2, 3>***
0-65535
0-65534

Word, Short, BCD
Float, DWord, Long,
LBCD

Read
Only

04

DIxxxxx_S 0-65534 Long
Read
Only

04

www.ptc.com

35



Modbus TCP/IP Ethernet Driver

Address Range Data Type Access
Function
Code

DIxxxxx_B 0-65534 LBCD
Read
Only

04

DIxxxxx_X<1, 2, 3>*** 0-65534 DWord
Read
Only

04

FIxxxxx_X<1, 2, 3>*** 0-65534 Float
Read
Only

04

M_WIxxxxx_n(H)
String with HiLo Byte Order (H
optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String
Read
Only

04

M_WIxxxxx_nL
String with LoHi Byte Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String
Read
Only

04

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the internal register addresses. The syntax for declaring an array is as follows:
WIxxxxx_cols with assumed row count of 1.
WIxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the internal register block size
that was specified for the device.

Holding Registers
The default data types are shown in bold.

Arrays are supported for holding register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access
Function
Code

Wxxxxx
0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read /
Write

03, 06, 16

Wxxxxx.bb
xxxxx=0-65535
bb=0/1-15/16*

Boolean
Read /
Write

03, 06, 16, 22

Wxxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean
Read /
Write

03, 06, 16, 22

www.ptc.com

36



Modbus TCP/IP Ethernet Driver

Address Range Data Type Access
Function
Code

Dxxxxx 0-65534 DWord
Read /
Write

03, 06, 16

Fxxxxx 0-65534 Float
Read /
Write

03, 06, 16

Wxxxxx_S 0-65535 Short
Read /
Write

03, 06, 16

Wxxxxx_B 0-65535 BCD
Read /
Write

03, 06, 16

Wxxxxx_A** 0-65535 String
Read
Only

03, 16

Wxxxxx_X<1, 2, 3>***
0-65535
0-65534

Word, Short, BCD
Float, DWord, Long,
LBCD

Read /
Write

03, 06, 16

Dxxxxx_S 0-65534 Long
Read /
Write

03, 06, 16

Dxxxxx_B 0-65534 LBCD
Read /
Write

03, 06, 16

Dxxxxx_X<1, 2, 3>*** 0-65534 DWord
Read /
Write

03, 06, 16

Fxxxxx_X<1, 2, 3>*** 0-65534 Float
Read /
Write

03, 06, 16

M_Wxxxxx_n(H)
String with HiLo Byte Order (H
optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String
Read /
Write

03, 16

M_Wxxxxx_nL
String with LoHi Byte Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String
Read /
Write

03, 16

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal
addressing is as follows.
Wxxxxx_cols with assumed row count of 1.
Wxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays; the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the holding register block size
that was specified for the device.

String Support

www.ptc.com

37



Modbus TCP/IP Ethernet Driver

The Applicommodel supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register contains two bytes of ASCII data. The length of the string can
be from 1 to 120 words. For more information on performing a block read on string tags, refer to Block
Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the
error message "Unable to write to address <address> on device<device>: Device responded with exception
code 3" is received in the server event window, the device does not support the string length. To fix this,
shorten the string to a supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit
Float. The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low
are applied. For more information, refer to Settings.

Byte Switching Suffixes can only be used with internal registers and holding registers. For information on the
various types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix
16-Bit Data Types (Word, Short,
BCD)

32-Bit Data Types (DWord, Long, LBCD, Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)

_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)

_X3 O1 O2 -> O2 O1 (Byte switching)
O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes in the
words)

TSX Quantum
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code

0xxxxx 1-65536 Boolean Read/Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:
0xxxxx_cols with assumed row count of 1.
0xxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65536. The total number of coils being requested cannot
exceed the output coil block size that was specified for the device.

Input Coils
Address Range Data Type Access Function Code

1xxxxx 1-65536 Boolean Read Only 02

Array Support
Arrays are supported for the input coil addresses. The syntax for declaring an array is as follows:
1xxxxx_cols with assumed row count of 1.
1xxxxx_rows_cols.

www.ptc.com

38



Modbus TCP/IP Ethernet Driver

The base address+(rows*cols) cannot exceed 65536. The total number of coils being requested cannot
exceed the input coil block size that was specified for the device.

Internal Registers
The default data types are shown in bold.

Arrays are supported for internal register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access
Function
Code

3xxxxx
1-65536
1-65535
1-65533

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read Only 04

3xxxxx.bb
xxxxx=1-65536
bb=0/1-15/16*

Boolean Read Only 04

3xxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read Only 04

D3xxxxx 1-65535 DWord Read Only 04

F3xxxxx 1-65535 Float Read Only 04

3xxxxx_S 1-65536 Short Read Only 04

3xxxxx_B 1-65536 BCD Read Only 04

3xxxxx_A** 1-65536 String Read Only 04

3xxxxx_X<1, 2, 3>***
1-65536
1-65535

Word, Short, BCD
Float, DWord, Long,
LBCD

Read Only 04

D3xxxxx_S 1-65535 Long Read Only 04

D3xxxxx_B 1-65535 LBCD Read Only 04

D3xxxxx_X<1, 2, 3>*** 1-65535 DWord Read Only 04

F3xxxxx_X<1, 2, 3>*** 1-65535 Float Read Only 04

M_3xxxxx_n(H)
String with HiLo Byte Order (H
optional)

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read Only 04

M_3xxxxx_nL
String with LoHi Byte Order

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read Only 04

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support

www.ptc.com

39



Modbus TCP/IP Ethernet Driver

Arrays are supported for the internal register addresses. The syntax for declaring an array is as follows:
3xxxxx_cols with assumed row count of 1.
3xxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65536.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65535.
For all arrays, the total number of registers being requested cannot exceed the internal register block size
that was specified for the device.

Holding Registers
The default data types are shown in bold.

Arrays are supported for holding register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access
Function
Code

4xxxxx
1-65536
1-65535
1-65533

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read/Write 03, 06, 16

4xxxxx.bb
xxxxx=1-65536
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

4xxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

D4xxxxx 1-65535 DWord Read/Write 03, 06, 16

F4xxxxx 1-65535 Float Read/Write 03, 06, 16

4xxxxx_S 1-65536 Short Read/Write 03, 06, 16

4xxxxx_B 1-65536 BCD Read/Write 03, 06, 16

4xxxxx_A** 1-65536 String Read Only 03, 16

4xxxxx_X<1, 2, 3>***
1-65536
1-65535

Word, Short, BCD
Float, DWord, Long,
LBCD

Read/Write 03, 06, 16

D4xxxxx_S 1-65535 Long Read/Write 03, 06, 16

D4xxxxx_B 1-65535 LBCD Read/Write 03, 06, 16

D4xxxxx_X<1, 2, 3>*** 1-65535 DWord Read/Write 03, 06, 16

F4xxxxx_X<1, 2, 3>*** 1-65535 Float Read/Write 03, 06, 16

M_4xxxxx_n(H)
String with HiLo Byte Order (H
optional)

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read/Write 03, 16

M_4xxxxx_nL
String with LoHi Byte Order

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read/Write 03, 16

www.ptc.com

40



Modbus TCP/IP Ethernet Driver

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal
addressing is as follows.

4xxxxx_cols with assumed row count of 1.
4xxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65536.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65535.
For all arrays, the total number of registers being requested cannot exceed the holding register block size
that was specified for the device.

String Support
The Applicommodel supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register contains two bytes of ASCII data. The length of the string can
be from 1 to 120 words.

For information on performing a block read on string tags, refer to Block Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the
error message "Unable to write to address <address> on device <device>: Device responded with exception
code 3" is received in the server event window, the device does not support the string length. To fix this,
shorten the string to a supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit
Float. The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low
are applied. For more information, refer to Settings.

Byte Switching Suffixes can only be used with internal registers and holding registers. For information on the
various types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix
16-Bit Data Types (Word, Short,
BCD)

32-Bit Data Types (DWord, Long, LBCD, Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)

_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)

_X3 O1 O2 -> O2 O1 (Byte switching)
O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes in the
words)

TSX Premium
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code

%MXxxxxx 0-65535 Boolean Read/Write 01, 05, 15

%Mxxxxx 0-65535 Boolean Read/Write 01, 05, 15

www.ptc.com

41



Modbus TCP/IP Ethernet Driver

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:
%MXxxxxx_cols with assumed row count of 1.
%MXxxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot
exceed the output coil block size that was specified for the device.

Holding Registers
The default data types are shown in bold.

Arrays are supported for holding register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access
Function
Code

%MWxxxxx
0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read/Write 03, 06, 16

%MWxxxxx.bb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

%MWxxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

%DWxxxxx
or %MDxxxxx

0-65534 DWord Read/Write 03, 06, 16

%FWxxxxx
or %MFxxxxx

0-65534 Float Read/Write 03, 06, 16

%MWxxxxx_S 0-65535 Short Read/Write 03, 06, 16

%MWxxxxx_B 0-65535 BCD Read/Write 03, 06, 16

%MWxxxxx_A** 0-65535 String Read Only 03, 16

%MWxxxxx_X<1, 2, 3>***
0-65535
0-65534

Word, Short, BCD
Float, DWord, Long,
LBCD

Read/Write 03, 06, 16

%DWxxxxx_S 0-65534 Long Read/Write 03, 06, 16

%DWxxxxx_B 0-65534 LBCD Read/Write 03, 06, 16

%DWxxxxx_X<1, 2, 3>***
or %MDxxxxx_X<1, 2, 3>***

0-65534 DWord Read/Write 03, 06, 16

%FWxxxxx_X<1, 2, 3>***
or %MFxxxxx_X<1, 2, 3>***

0-65534 Float Read/Write 03, 06, 16

M_%MWxxxxx_n(H)
String with HiLo
Byte Order (H optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read/Write 03, 16

M_%MWxxxxx_nL xxxxx=0-65535 String Read/Write 03, 16

www.ptc.com

42



Modbus TCP/IP Ethernet Driver

Address Range Data Type Access
Function
Code

String with LoHi Byte Order
n is string length
range is 1 to 120
words

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal
addressing is as follows:
%MWxxxxx_cols with assumed row count of 1.
%MWxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the holding register block size
that was specified for the device.

String Support
The Applicommodel supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register contains two bytes of ASCII data. The length of the string can
be from 1 to 120 words. For more information on performing block read on string tags, refer to Block Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the
error message "Unable to write to address <address> on device<device>: Device responded with exception
code 3" is received in the server event window, the device does not support the string length. To fix this,
shorten the string to a supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit
Float. The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low
are applied. For more information, refer to Settings.

Byte Switching Suffixes can only be used with internal registers and holding registers. For information on the
various types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix
16-Bit Data Types (Word, Short,
BCD)

32-Bit Data Types (DWord, Long, LBCD, Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)

_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)

_X3 O1 O2 -> O2 O1 (Byte switching)
O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes in the
words)

www.ptc.com

43



Modbus TCP/IP Ethernet Driver

CEG Addressing
Addressing for the CEG device model is the same as that for the Modbus device model.

For more information, refer to Modbus Addressing.

Fluenta Addressing
The default data types are shown in bold.

Address Range Data Type Access

System 400000-409999 Float, Double Read/Write

Output 410000-410999
420000-420999
430000-430999

Float, Double Read Only

User 411000-411999
421000-421999
431000-431999

Float, Double Read/Write

Service 412000-412999
422000-422999
432000-432999

Float, Double Read/Write

Accumulation 413000-413999
423000-423999
433000-433999

Float, Double Read Only

Instromet Addressing
The default data types are shown in bold.

Address Range Data Type Access

Short Integers 400000-400199 Word, Short Read Only

Long Integers 400200-400399 DWord, Long Read Only

Floats 400400-400599 Float Read Only

Mailbox Addressing
The default data types are shown in bold.

Decimal Addressing

Address Range Data Type Access

4xxxxx 1-65536 Word, Short, BCD Read/Write

4xxxxx.bb
xxxxx=1-65536
bb=0-15

Boolean Read/Write

4xxxxx 1-65535 Float, DWord, Long, LBCD Read/Write

Hexadecimal Addressing

www.ptc.com

44



Modbus TCP/IP Ethernet Driver

Address Range Data Type Access

H4yyyyy 1-10000 Word, Short, BCD Read/Write

H4yyyyy.c
yyyyy=1-10000
c=0-F

Boolean Read/Write

H4yyyy 1-FFFF Float, DWord, Long, LBCD Read/Write

Note:Modbus Mailbox does not support function code 22 (0x16). Only 0x10 (Holding Reg Write Multiple)
and 0x6 (Holding Reg Write Single) are supported. It is possible to write to a single bit by turning off Holding
Register Bit Writes in device properties under the settings tab. This forces it to use the Read/Modify/Write
sequence instead of directly writing to the bit. Only the client Modbus device (not the Mailbox) has to change
its setting to get this to work.

Arrays
Arrays are also supported for the holding register addresses. The syntax for declaring an array (using
decimal addressing) is as follows:

4xxxx[cols]with assumed row count of 1.
4xxxx[rows][cols].

For Word, Short and BCD arrays, the base address+(rows*cols) cannot exceed 65536.

For Float, DWord, Long and Long BCD arrays, the base address+(rows*cols* 2) cannot exceed 65535.

For all arrays, the total number of registers being requested cannot exceed the holding register block size
that was specified for this device.

Modbus Addressing
For this driver, the terms server and unsolicited are used interchangeably.

5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits rep-
resent the device's data item. The maximum value of the data item is a two-byte unsigned integer (65,535).
Internally, this driver requires six digits to represent the entire address table and item. It is important to note
that many Modbus devices may not support the full range of the data item. To avoid confusion when enter-
ing an address for such a device, this driver "pads" the address (adds a digit) according to what was entered
in the address field. If a primary table type is followed by up to 4 digits (example: 4x, 4xx, 4xxx or 4xxxx), the
address stays at or pads, with extra zeroes, to five (5) digits. If a primary table type is followed by five (5)
digits (example: 4xxxxx), the address does not change. Internally, addresses entered as 41, 401, 4001,
40001 or 400001 are all equivalent representations of an address specifying primary table type 4 and data
item 1.

Primary Table Description

0 Output Coils

1 Input Coils

3 Internal Registers

4 Holding Registers

Modbus Addressing in Decimal Format

www.ptc.com

45



Modbus TCP/IP Ethernet Driver

The Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Address
Type

Range Data Type Access*
Function
Codes

Output Coils 000001-065536 Boolean Read/Write 01, 05, 15

Input Coils 100001-165536 Boolean Read Only 02

Internal
Registers

300001-365536
300001-365535
300001-365533

xxxxx=1-65536
bb=0/1-15/16**

300001.2H-
365536.240H***

300001.2L-
365536.240L***

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read Only
Read Only
Read Only

Read Only

Read Only

Read Only

04
04
04

04

04

04

Holding
Registers

400001-465536
400001-465535
400001-465533

xxxxx=1-65536
bb=0/1-15/16*

400001.2H-
465536.240H***

400001.2L-
465536.240L***

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read/Write
Read/Write
Read/Write

Read/Write

Read/Write

Read/Write

03, 06, 16
03, 06, 16
03, 06, 16

03, 06, 16, 22

03, 16

03, 16

*For server devices, read-only locations are read / write.
**For more information, refer to Zero-Based Addressing in Settings.
***.Bit is string length, range 2 to 240 bytes.

Modbus Addressing in Hexadecimal Format
Address
Type

Range Data Type Access*

Output Coils H000001-H010000 Boolean Read/Write

Input Coils H100001-H110000 Boolean Read Only

Internal
Registers

H300001-H310000
H300001-H30FFFF
H300001-H30FFFD

yyyyy=1-10000
cc=0/1-F/10

H300001.2H-H3FFFF.240H**

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

Read Only
Read Only
Read Only

Read Only

Read Only

www.ptc.com

46



Modbus TCP/IP Ethernet Driver

Address
Type

Range Data Type Access*

H300001.2L-H3FFFF.240L** String Read Only

Holding
Registers

H400001-H410000
H400001-H40FFFF
H400001-H40FFFD

yyyyy=1-10000
cc=0/1-F/10

H400001.2H-H4FFFF.240H

H400001.2L-H4FFFF.240L

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read/Write
Read/Write
Read/Write

Read/Write

Read/Write

Read/Write

*For server devices, Read Only locations are Read/Write.
**.Bit is string length, range 2 to 240 bytes.

Packed Coils
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is
available for both input coils and output coils when in polled mode only. It is not available to devices that are
configured to access the unsolicited memory map or that are in mailbox mode. The decimal syntax is
0xxxxx#nn, where:
*For server devices, Read Only locations are Read/Write.
**.Bit is string length, range 2 to 240 bytes.

Packed Coils
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is
available for both input coils and output coils when in polled mode only. It is not available to devices that are
configured to access the unsolicited memory map or that are in mailbox mode. The decimal syntax is
0xxxxx#nn, where:

l xxxxx is the address of the first coil (with a range of 000001-065521).

l nn is the number of coils packed into an analog value (with a range of 01-16).

The hexadecimal syntax is H0yyyyy#nn, where:

l yyyyy is the address of the first coil (with a range of H000001-H000FFF1).

l nn is the number of coils packed into an analog value (with a range of 01-16).

Notes:

1. The only valid data type is Word. Output coils have read/write access, whereas input coils have read-
only access. In decimal addressing, output coils support Function Codes 01 and 15, whereas input
coils support Function Code 02.

2. The bit order is such that the start address is the Least Significant Bit (LSB) of analog value.

Write-Only Access
All read / write addresses may be set as write only by prefixing a "W" to the address such as "W40001",
which prevents the driver from reading the register at the specified address. Any attempts by the client to
read a write-only tag results in obtaining the last successful write value to the specified address. If no suc-
cessful writes have occurred, then the client receives 0 / NULL for numeric / string values for an initial value.

www.ptc.com

47



Modbus TCP/IP Ethernet Driver

Caution: Setting the write-only tags client access privileges to read only causes writes to these tags to fail
and the client to always receive 0 / NULL for numeric / string values.

Mailbox Mode
Only holding registers are supported in mailbox mode. When read from a client, the data is read locally from
a cache, not from a physical device. When written to from a client, the data is written to both the local cache
and the physical device as determined by the device ID routing path.
Note: The Double data type is not supported.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data
within a given register can be selected when the string is defined. The length of the string can be from 2 to
240 bytes and is entered in place of a bit number. The length must be entered as an even number. Append-
ing either an "H" or "L" to the address specifies the byte order.

For more information on performing block reads on string tags for the Modbus model, refer to Block Sizes.

Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter
"40200.100H".

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter
"40500.78L".

Note: String length may be limited by the maximum size of the write request allowed by the device. If the
error message "Unable to write to address <address> on device<device>: Device responded with exception
code 3" is received in the server event window, the device did not like the length of the string. If possible, try
shortening the string.

Array Support
Arrays are supported both for internal and holding register locations (including all data types except
Boolean and String) and for input and output coils (Boolean data types). There are two ways to address an
array. The following examples apply to holding registers:
4xxxx [rows] [cols]
4xxxx [cols] with assumed row count of one.

For Word, Short, and BCD arrays; the base address + (rows * cols) cannot exceed 65536. For Float, DWord,
Long, and Long BCD arrays; the base address + (rows * cols * 2) cannot exceed 65535. For all arrays, the
total number of registers being requested cannot exceed the holding register block size that was specified
for this device.

Roxar Addressing
The default data types are shown in bold.

Address Range Data Type Access

Short Integers 403000-403999 Word, Short Read/Write

Floats 407000-407999 Float Read/Write

Floats 409000-409999 Float Read Only

www.ptc.com

48



Modbus TCP/IP Ethernet Driver

Statistics Items
Statistical items use data collected through additional diagnostics information, which is not collected by
default. To use statistical items, Communication Diagnostics must be enabled. To enable Communication
Diagnostics, right-click on the channel in the project view and click Properties | Enable Diagnostics. Altern-
atively, double-click on the channel and select Enable Diagnostics.

Channel-Level Statistics Items
The syntax for channel-level statistics items is <channel>._Statistics.

Note: Statistics at the channel level are the sum of those same items at the device level.

Item Data Type Access Description

_CommFailures DWord Read/Write
The total number of times com-
munication has failed (or has run out of
retries).

_ErrorResponses DWord Read/Write
The total number of valid error
responses received.

_ExpectedResponses DWord Read/Write
The total number of expected responses
received.

_LastResponseTime String Read Only
The time at which the last valid
response was received.

_LateData DWord Read/Write

The total number of times that a tag is
read later than expected (based on the
specified scan rate). This value does not
increase due to a DNR error state. A tag
is not counted as late (even if it was) on
the initial read after a communications
loss. This is by design.

_MsgResent DWord Read/Write
The total number of messages sent as a
retry.

_MsgSent DWord Read/Write
The total number of messages sent ini-
tially.

_MsgTotal DWord Read Only
The total number of messages sent
(both _MsgSent + _MsgResent).

_PercentReturn Float Read Only
The proportion of expected responses
(Received) to initial sends (Sent) as a per-
centage.

_PercentValid Float Read Only

The proportion of total valid responses
received (_TotalResponses) to total
requests sent (_MsgTotal) as a per-
centage.

_Reset Bool Read/Write
Resets all diagnostic counters. Writing to
the _Reset Tag causes all diagnostic
counters to be reset at this level.

_RespBadChecksum* DWord Read/Write
The total number of responses with
checksum errors.

www.ptc.com

49



Modbus TCP/IP Ethernet Driver

Item Data Type Access Description

_RespTimeouts DWord Read/Write
The total number of messages that
failed to receive any kind of response.

_RespTruncated DWord Read/Write
The total number of messages that
received only a partial response.

_TotalResponses DWord Read Only
The total number of valid responses
received (_ErrorResponses + _Expec-
tedResponses).

* The _RespBadChecksum statistic is not implemented; packet checksums are handled by the TCP protocol.

Statistical items are not updated in simulationmode (see device general properties).

Device-Level Statistics Items
The syntax for device-level statistics items is <channel>.<device>._Statistics.

Item Data Type Access Description

_CommFailures DWord Read/Write
The total number of times com-
munication has failed (or has run out of
retries).

_ErrorResponses DWord Read/Write
The total number of valid error
responses received.

_ExpectedResponses DWord Read/Write
The total number of expected responses
received.

_LastResponseTime String Read Only
The time at which the last valid
response was received.

_LateData DWord Read/Write

The total number of times that a tag is
read later than expected (based on the
specified scan rate). This value does not
increase due to a DNR error state. A tag
is not counted as late (even if it was) on
the initial read after a communications
loss. This is by design.

_MsgResent DWord Read/Write
The total number of messages sent as a
retry.

_MsgSent DWord Read/Write
The total number of messages sent ini-
tially.

_MsgTotal DWord Read Only
The total number of messages sent
(both _MsgSent + _MsgResent).

_PercentReturn Float Read Only
The proportion of expected responses
(Received) to initial sends (Sent) as a per-
centage.

_PercentValid Float Read Only

The proportion of total valid responses
received (_TotalResponses) to total
requests sent (_MsgTotal) as a per-
centage.

www.ptc.com

50



Modbus TCP/IP Ethernet Driver

Item Data Type Access Description

_Reset Bool Read/Write
Resets all diagnostic counters. Writing to
the _Reset Tag causes all diagnostic
counters to be reset at this level.

_RespBadChecksum* DWord Read/Write
The total number of responses with
checksum errors.

_RespTimeouts DWord Read/Write
The total number of messages that
failed to receive any kind of response.

_RespTruncated DWord Read/Write
The total number of messages that
received only a partial response.

_TotalResponses DWord Read Only
The total number of valid responses
received (_ErrorResponses + _Expec-
tedResponses).

* The _RespBadChecksum statistic is not implemented; packet checksums are handled by the TCP protocol.

Note: Statistical items are not updated in simulationmode (see device general properties).

www.ptc.com

51



Modbus TCP/IP Ethernet Driver

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Con-
sult the OPC server help on filtering and sorting the Event Log detail view. Server help contains many com-
monmessages, so should also be searched. Generally, the type of message (informational, warning) and
troubleshooting information is provided whenever possible.

Failure to start winsock communications.
Error Type:
Error

Failure to start unsolicited communications.
Error Type:
Error

Possible Cause:
The driver was not able to create a listen socket for unsolicited communications.

Possible Solution:
Verify that the port defined at the channel level is not being used by another application on the system.

 Note:
For this driver, the terms Modbus server and unsolicited are used interchangeably.

Unsolicited mailbox access for undefined device. Closing socket. | IP
address = '<address>'.
Error Type:
Error

Possible Cause:

1. A device with the specified IP address attempted to send a mailbox message to the server. The mes-
sage did not pass validation because there is no device with that IP configured in the Mailbox Project.

2. A device with the specified IP address attempted to send a mailbox message to the server. The mes-
sage did not pass validation because, although a device is configured, there are no clients requesting
data from it.

Possible Solution:
For the server to accept mailbox messages, the specified device IP must be configured in the project. At
least one data item from the device must be requested by a client.

Unsolicited mailbox unsupported request received. | IP address =
'<address>'.
Error Type:
Error

www.ptc.com

52



Modbus TCP/IP Ethernet Driver

Possible Cause:
An unsupported request was received from the specified device IP. The format of the request was invalid
and not within Modbus specification.

Possible Solution:
Verify that the devices configured to sendMailbox data are sending valid requests.

Unsolicited mailbox memory allocation error. | IP address = '<address>'.
Error Type:
Error

Possible Cause:

1. A device with the specified IP address attempted to send a mailbox message to the server. The mes-
sage did not pass validation because there is no device with that IP configured in the Mailbox Project.

2. A device with the specified IP address attempted to send a mailbox message to the server. The mes-
sage did not pass validation because, although a device is configured, there are no clients requesting
data from it.

Possible Solution:
For the server to accept mailbox messages, the specified device IP must be configured in the project. At
least one data item from the device must be requested by a client.

Unable to create a socket connection.
Error Type:
Error

Possible Cause:
The server was unable to establish a TCP/IP socket connection to the specified device, but will continue to
attempt connection.

Possible Solution:

1. Verify that the device is online.

2. Verify that the device IP is within the subnet of the IP to which the server is bound. Verify that a valid
gateway is available that allows a connection to the other network.

Error opening file for tag database import. | OS error = '<error>'.
Error Type:
Error

Bad array. | Array range = <start> to <end>.
Error Type:
Error

www.ptc.com

53



Modbus TCP/IP Ethernet Driver

Possible Cause:
An array of addresses was defined that spans past the end of the address space.

Possible Solution:
Verify the size of the device's memory space and redefine the array length accordingly.

Bad address in block. | Block range = <address> to <address>.
Error Type:
Error

Possible Cause:
The driver attempted to read a location in a PLC that does not exist, perhaps out of range. For example, in a
PLC that only has holding registers 40001 to 41400, requesting address 41405 would generate this error.
Once this error is generated, the driver does not request the specified block of data from the PLC again. Any
other addresses being requested from this same block are considered invalid.

Possible Solution:
Update the client application to request addresses within the range of the device.

 See Also:
Error Handling

Failed to resolve host. | Host name = '<name>'.
Error Type:
Error

Possible Cause:
The device is configured to use a DNS host name rather than an IP address. The host name cannot be
resolved by the server to an IP address.

Possible Solution:
Verify that the device is online and registered with the domain.

Specified output coil block size exceeds maximum block size. | Block size
specified = <number> (coils), Maximum block size = <number> (coils).
Error Type:
Error

Specified input coil block size exceeds maximum block size. | Block size
specified = <number> (coils), Maximum block size = <number> (coils).
Error Type:
Error

www.ptc.com

54



Modbus TCP/IP Ethernet Driver

Specified internal register block size exceeds maximum block size. | Block
size specified = <number> (registers), Maximum block size = <number>
(registers).
Error Type:
Error

Specified holding register block size exceeds maximum block size. | Block
size specified = <number> (registers), Maximum block size = <number>
(registers).
Error Type:
Error

Block request responded with exception. | Block range = <address> to
<address>, Exception = <code>.
Error Type:
Warning

Possible Cause:
The device returned an exception code.

Possible Solution:
Consult the exception codes documentation.

 See Also:
Modbus Exception Codes

Block request responded with exception. | Block range = <address> to
<address>, Function code = <code>, Exception = <code>.
Error Type:
Warning

Possible Cause:
The device returned an exception code.

Possible Solution:
Consult the exception codes documentation.

 See Also:
Modbus Exception Codes

Bad block length received. | Block range = <start> to <end>.
Error Type:
Warning

Possible Cause:

www.ptc.com

55



Modbus TCP/IP Ethernet Driver

The driver attempted to read a block of memory in the PLC. The PLC responded without an error, but did not
provide the driver with the requested block size of data.

Possible Solution:
Ensure that the range of memory exists for the PLC.

Tag import failed due to low memory resources.
Error Type:
Warning

Possible Cause:
The driver could not allocate memory required to process variable import file.

Possible Solution:
Shut down all unnecessary applications and retry.

File exception encountered during tag import.
Error Type:
Warning

Possible Cause:
The variable import file could not be read.

Possible Solution:
Regenerate the variable import file.

Error parsing record in import file. | Record number = <number>, Field =
<field>.
Error Type:
Warning

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or
invalid.

Possible Solution:
Edit the variable import file to change the offending field if possible.

Description truncated for record in import file. | Record number = <num-
ber>.
Error Type:
Warning

Possible Cause:
The tag description given in specified record is too long.

www.ptc.com

56



Modbus TCP/IP Ethernet Driver

Possible Solution:
The driver truncates descriptions as needed. To prevent this error, edit the variable import file to shorten
the description.

Imported tag name is invalid and has been changed. | Tag name = '<tag>',
Changed tag name = '<tag>'.
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Possible Solution:
The driver constructs valid names based on the variable import file. To prevent this error and to maintain
name consistency, change the name of the exported variable.

A tag could not be imported because the data type is not supported. | Tag
name = '<tag>', Unsupported data type = '<type>'.
Error Type:
Warning

Possible Cause:
The data type specified in the variable import file is not one of the types supported by this driver.

Possible Solution:
Change the data type specified in variable import file to one of the supported types. If the variable is for a
structure, manually edit the file to define each tag required for the structure or manually configure the
required tags in the server.

 See Also:
Exporting Variables from Concept

Unable to write to address, device responded with exception. | Address =
'<address>', Exception = <code>.
Error Type:
Warning

Possible Cause:
The device returned an exception code.

Possible Solution:
Consult the exception codes documentation.

 See Also:
Modbus Exception Codes

www.ptc.com

57



Modbus TCP/IP Ethernet Driver

Ethernet Manager started.
Error Type:
Informational

Ethernet Manager stopped.
Error Type:
Informational

Importing tag database. | Source file = '<filename>'.
Error Type:
Informational

A client application has changed the CEG extension via system tag _CEGEx-
tension. | Extension = '<extension>'.
Error Type:
Informational

Possible Cause:
A client application connected to the server changed the CEG extension on the specified device to 0 for Mod-
bus or 1 for CEG.

Possible Solution:
This device property applies only to CEG model devices. Changes do not affect other models. To restrict the
client application from changing this property, disable the client's ability to write to system-level tags
through the OPC DA settings.

Starting unsolicited communication. | Protocol = '<name>', Port = <num-
ber>.
Error Type:
Informational

Created memory for Modbus server device. | Modbus server device ID =
<device>.
Error Type:
Informational

All channels are subscribed to a virtual network or all devices are listen-
ing to remote addresses, stopping unsolicited communication.
Error Type:
Informational

www.ptc.com

58



Modbus TCP/IP Ethernet Driver

Channel is in a virtual network, all devices reverted to use one socket per
device.
Error Type:
Informational

Cannot change device ID from Modbus client mode to server mode with a
client connected.
Error Type:
Informational

Cannot change device ID from Modbus server mode to client mode with a
client connected.
Error Type:
Informational

Modbus server mode not allowed when the channel is in a virtual net-
work. The device ID cannot contain a loop-back or local IP address.
Error Type:
Informational

Mailbox model not allowed when the channel is in a virtual network.
Error Type:
Informational

www.ptc.com

59



Modbus TCP/IP Ethernet Driver

Modbus Exception Codes
The following data is fromModbus Application Protocol Specifications documentation.

Code
Dec/Hex

Name Meaning

01/0x01
ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the
server. This may be because the function code is only applicable to newer
devices, and was not implemented in the unit selected. It could also indic-
ate that the server is in the wrong state to process a request of this type,
for example, because it is unconfigured and is being asked to return
register values.

02/0x02
ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the
server. More specifically, the combination of reference number and trans-
fer length is invalid. For a controller with 100 registers, a request with off-
set 96 and length 4 would succeed. A request with offset 96 and length 5
generates exception 02.

03/0x03
ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for
server. This indicates a fault in the structure of the remainder of a complex
request, such as that the implied length is incorrect. It specifically does not
mean that a data item submitted for storage in a register has a value out-
side the expectation of the application program, since the Modbus protocol
is unaware of the significance of any particular value of any particular
register.

04/0x04
SERVER DEVICE
FAILURE

An unrecoverable error occurred while the server was attempting to per-
form the requested action.

05/0x05 ACKNOWLEDGE

The server has accepted the request and is processing it, but a long dur-
ation of time is required to do so. This response is returned to prevent a
timeout error from occurring in the client. The client can next issue a Poll
Program Complete message to determine if processing is completed.

06/0x06
SERVER DEVICE
BUSY

The server is engaged in processing a long-duration program command.
The client should retransmit the message later when the server is free.

07/0x07
NEGATIVE
ACKNOWLEDGE

The server cannot perform the program function received in the query.
This code is returned for an unsuccessful programming request using func-
tion code 13 or 14 decimal. The client should request diagnostic or error
information from the server.

08/0x08
MEMORY
PARITY ERROR

The server attempted to read extendedmemory, but detected a parity
error in the memory. The client can retry the request, but service may be
required on the server device.

10/0x0A
GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways indicates that the gateway
was unable to allocate an internal communication path from the input port
to the output port for processing the request. This usually means that the
gateway is misconfigured or overloaded.

11/0x0B

GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways indicates that no response
was obtained from the target device. This usually means that the device is
not present on the network.

Note: For this driver, the terms server and unsolicited are used interchangeably.

www.ptc.com

60



Modbus TCP/IP Ethernet Driver

Modbus Ethernet Channel Properties
Below is a full list of all Modbus Ethernet channel-level properties.

{
"common.ALLTYPES_NAME": "MyChannel",
"common.ALLTYPES_DESCRIPTION": "",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet",
"servermain.CHANNEL_DIAGNOSTICS_CAPTURE": false,
"servermain.CHANNEL_UNIQUE_ID": 721923342,
"servermain.CHANNEL_ETHERNET_COMMUNICATIONS_NETWORK_ADAPTER_STRING": "",
"servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
"servermain.CHANNEL_WRITE_OPTIMIZATIONS_DUTY_CYCLE": 10,
"servermain.CHANNEL_NON_NORMALIZED_FLOATING_POINT_HANDLING": 0,
"servermain.CHANNEL_COMMUNICATIONS_SERIALIZATION_VIRTUAL_NETWORK": 0,
"servermain.CHANNEL_COMMUNICATIONS_SERIALIZATION_TRANSACTIONS_PER_CYCLE": 1,
"servermain.CHANNEL_COMMUNICATIONS_SERIALIZATION_NETWORK_MODE": 0,
"modbus_ethernet.CHANNEL_USE_ONE_OR_MORE_SOCKETS_PER_DEVICE": 1,
"modbus_ethernet.CHANNEL_MAXIMUM_SOCKETS_PER_DEVICE": 1
}

Modbus Ethernet Device Properties
Below is a full list of all Modbus Ethernet device-level properties.

{
"common.ALLTYPES_NAME": "MyDevice",
"common.ALLTYPES_DESCRIPTION": "",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet",
"servermain.DEVICE_MODEL": 0,
"servermain.DEVICE_UNIQUE_ID": 70949968,
"servermain.DEVICE_CHANNEL_ASSIGNMENT": "MyChannel",
"servermain.DEVICE_ID_FORMAT": 0,
"servermain.DEVICE_ID_STRING": "<0.0.0.0>.0",
"servermain.DEVICE_ID_HEXADECIMAL": 0,
"servermain.DEVICE_ID_DECIMAL": 0,
"servermain.DEVICE_ID_OCTAL": 0,
"servermain.DEVICE_DATA_COLLECTION": true,
"servermain.DEVICE_SIMULATED": false,
"servermain.DEVICE_SCAN_MODE": 0,
"servermain.DEVICE_SCAN_MODE_RATE_MS": 1000,
"servermain.DEVICE_SCAN_MODE_PROVIDE_INITIAL_UPDATES_FROM_CACHE": false,
"servermain.DEVICE_CONNECTION_TIMEOUT_SECONDS": 3,
"servermain.DEVICE_REQUEST_TIMEOUT_MILLISECONDS": 1000,
"servermain.DEVICE_RETRY_ATTEMPTS": 3,
"servermain.DEVICE_INTER_REQUEST_DELAY_MILLISECONDS": 0,
"servermain.DEVICE_AUTO_DEMOTION_ENABLE_ON_COMMUNICATIONS_FAILURES": false,
"servermain.DEVICE_AUTO_DEMOTION_DEMOTE_AFTER_SUCCESSIVE_TIMEOUTS": 3,
"servermain.DEVICE_AUTO_DEMOTION_PERIOD_MS": 10000,
"servermain.DEVICE_AUTO_DEMOTION_DISCARD_WRITES": false,
"servermain.DEVICE_TAG_GENERATION_ON_STARTUP": 0,
"servermain.DEVICE_TAG_GENERATION_DUPLICATE_HANDLING": 0,
"servermain.DEVICE_TAG_GENERATION_GROUP": "",
"servermain.DEVICE_TAG_GENERATION_ALLOW_SUB_GROUPS": true,
"modbus_ethernet.DEVICE_VARIABLE_IMPORT_FILE": "normal.txt",
"modbus_ethernet.DEVICE_VARIABLE_IMPORT_INCLUDE_DESCRIPTIONS": 1,
"modbus_ethernet.DEVICE_DEACTIVATE_TAGS_ON_ILLEGAL_ADDRESS": 1,

www.ptc.com

61



Modbus TCP/IP Ethernet Driver

"modbus_ethernet.DEVICE_SUB_MODEL": 1,
"modbus_ethernet.DEVICE_ETHERNET_PORT_NUMBER": 502,
"modbus_ethernet.DEVICE_ETHERNET_IP_PROTOCOL": 1,
"modbus_ethernet.DEVICE_ETHERNET_CLOSE_TCP_SOCKET_ON_TIMEOUT": true,
"modbus_ethernet.DEVICE_ZERO_BASED_ADDRESSING": true,
"modbus_ethernet.DEVICE_ZERO_BASED_BIT_ADDRESSING": true,
"modbus_ethernet.DEVICE_HOLDING_REGISTER_BIT_MASK_WRITES": true,
"modbus_ethernet.DEVICE_MODBUS_FUNCTION_06": true,
"modbus_ethernet.DEVICE_MODBUS_FUNCTION_05": true,
"modbus_ethernet.DEVICE_MODBUS_BYTE_ORDER": true,
"modbus_ethernet.DEVICE_FIRST_WORD_LOW": true,
"modbus_ethernet.DEVICE_FIRST_DWORD_LOW": true,
"modbus_ethernet.DEVICE_MODICON_BIT_ORDER": false,
"modbus_ethernet.DEVICE_TREAT_LONGS_AS_DOUBLE_PRECISION_UNSIGNED_DECIMAL": false,
"modbus_ethernet.DEVICE_OUTPUT_COILS": 32,
"modbus_ethernet.DEVICE_INPUT_COILS": 32,
"modbus_ethernet.DEVICE_INTERNAL_REGISTERS": 32,
"modbus_ethernet.DEVICE_HOLDING_REGISTERS": 32,
"modbus_ethernet.DEVICE_PERFORM_BLOCK_READ_ON_STRINGS": 0
}

Note: The servermain.DEVICE_MODEL parameter defaults to the generic Modbus model. If this is not
desired, ensure this parameter is defined correctly.

Modbus Ethernet Tag Properties
Below is a full list of all Modbus Ethernet tag properties.

{
"common.ALLTYPES_NAME": "MyTag",
"common.ALLTYPES_DESCRIPTION": "",
"servermain.TAG_ADDRESS": "400001",
"servermain.TAG_DATA_TYPE": 5,
"servermain.TAG_READ_WRITE_ACCESS": 1,
"servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
"servermain.TAG_AUTOGENERATED": false,
"servermain.TAG_SCALING_TYPE": 0,
"servermain.TAG_SCALING_RAW_LOW": 0,
"servermain.TAG_SCALING_RAW_HIGH": 1000,
"servermain.TAG_SCALING_SCALED_DATA_TYPE": 9,
"servermain.TAG_SCALING_SCALED_LOW": 0,
"servermain.TAG_SCALING_SCALED_HIGH": 1000,
"servermain.TAG_SCALING_CLAMP_LOW": false,
"servermain.TAG_SCALING_CLAMP_HIGH": false,
"servermain.TAG_SCALING_NEGATE_VALUE": false,
"servermain.TAG_SCALING_UNITS": ""
}

www.ptc.com

62



Modbus TCP/IP Ethernet Driver

Index

A

A client application has changed the CEG extension via system tag _CEGExtension. | Extension = '<exten-
sion>'. 58

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsupported
data type = '<type>'. 57

Accumulation 44

Address 30

Address Descriptions 33

All channels are subscribed to a virtual network or all devices are listening to remote addresses, stopping
unsolicited communication. 58

Allow Sub Groups 18

Applicom 29

Applicom Addressing 34

Array Support 34-37, 42-43, 48

Arrays 45

Attempts Before Timeout 15

Auto-Demotion 16

Automatic Tag Database Generation 30

B

Bad address in block. | Block range = <address> to <address>. 54

Bad array. | Array range = <start> to <end>. 53

Bad block length received. | Block range = <start> to <end>. 55

BCD 32

Block Read Strings 25

Block request responded with exception. | Block range = <address> to <address>, Exception =
<code>. 55

Block request responded with exception. | Block range = <address> to <address>, Function code =
<code>, Exception = <code>. 55

Block Sizes 24

BOOL 30

Boolean 32

BYTE 30

Byte Switching Suffixes 38, 43

www.ptc.com

63



Modbus TCP/IP Ethernet Driver

C

Cannot change device ID fromModbus client mode to server mode with a client connected. 59

Cannot change device ID fromModbus server mode to client mode with a client connected. 59

CEG 29

CEG Addressing 44

CEG Extension 22

CEGExtension 33

Channel-Level Settings 10

Channel Assignment 13

Channel is in a virtual network, all devices reverted to use one socket per device. 59

Channel Properties — Advanced 9

Channel Properties — Communication Serialization 10

Channel Properties — Ethernet Communications 8

Channel Properties — General 7

Channel Properties — Write Optimizations 9

Close Socket on Timeout 21

Comment 30

Communications Timeout 19

Communications Timeouts 15

Connect Timeout 15

Create 18

Createdmemory for Modbus server device. | Modbus server device ID = <device>. 58

CSV 30

Custom tags 30

D

Data Access 21

Data Collection 13

Data Encoding 23

Data Types Description 32

Deactivate Tags on Illegal Address 20

Decimal Addressing 44

Delete 18

Demote on Failure 16

Demotion Period 16

Description 13

www.ptc.com

64



Modbus TCP/IP Ethernet Driver

Description truncated for record in import file. | Record number = <number>. 56

Device Properties — Auto-Demotion 16

Device Properties — Redundancy 25

Device Properties — Tag Generation 16

Device Properties — Timing 15

Diagnostics 8, 49

DINT 30

Discard Requests when Demoted 16

Do Not Scan, Demand Poll Only 14

Double 32

Driver 13

Driver System Tag Addressing 33

Duty Cycle 9

DWord 32

E

Enumerations 28

Error Handling 20

Error opening file for tag database import. | OS error = '<error>'. 53

Error parsing record in import file. | Record number = <number>, Field = <field>. 56

Ethernet 11, 21

Ethernet Manager started. 58

Ethernet Manager stopped. 58

Ethernet Settings 8

Ethernet to Modbus Plus Bridge 5

Event Log Messages 52

F

Failed to resolve host. | Host name = '<name>'. 54

Failure to start unsolicited communications. 52

Failure to start winsock communications. 52

File exception encountered during tag import. 56

First DWord Low 23

First Word Low 23

Five-Digit Addressing 45

Float 32

www.ptc.com

65



Modbus TCP/IP Ethernet Driver

Floats 44, 48

Fluenta 6

Fluenta Addressing 44

Fluenta FGM 29

Force Multiple Coils 34

Force Single Coil 34

Function Codes Description 34

G

General 13

Generate 17

Generic Modbus Addressing 34

Global Settings 11

H

Help Contents 5

Hexadecimal Addressing 44

Holding Register Bit Writes 22

Holding Registers 25, 36, 40, 42, 46

HoldingRegisterBlockSize 33

I

ID 13

Identification 7

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name =
'<tag>'. 57

Importing from Custom Applications 30

Importing tag database. | Source file = '<filename>'. 58

Include Descriptions 19

Initial Updates from Cache 15

Input Coils 25, 35, 38, 46

InputCoilBlockSize 33

Instromet 6, 29

Instromet Addressing 44

INT 30

www.ptc.com

66



Modbus TCP/IP Ethernet Driver

Inter-Device Delay 10

Internal Registers 25, 35, 39, 46

Internal Tags 33

InternalRegisterBlockSize 33

IP Protocol 12, 21

L

LBCD 32

Load Balanced 11

Long 32

Long Integers 44

M

Mailbox 6, 29

Mailbox Addressing 44

Mailbox Client Privileges 22

Mailbox Mode 48

Mailbox model not allowed when the channel is in a virtual network. 59

MaskedWrite Register 34

Max Sockets per Device 12

Modbus Addressing 45

Modbus Byte Order 23

Modbus Client 6

Modbus Client & Server Considerations 20

Modbus Exception Codes 60

Modbus Function 05 22

Modbus Function 06 22

Modbus Mailbox 45

Modbus server mode not allowed when the channel is in a virtual network. The device ID cannot contain a
loop-back or local IP address. 59

Modbus Unsolicited 6

Model 13

Models 5

Modicon Bit Order 23

www.ptc.com

67



Modbus TCP/IP Ethernet Driver

N

Name 13

Network 1 - Network 500 11

Network Adapter 8

Network Mode 11

Non-Normalized Float Handling 10

O

On Device Startup 17

On Duplicate Tag 17

On Property Change 17

OPC Quality Bad 19

Optimization Method 9

Optimizing Modbus Ethernet Communications 31

Output 44

Output Coils 24, 34, 38, 41, 46

OutputCoilBlockSize 33

Overview 5

Overwrite 18

P

Parent Group 18

Port 12, 21, 33

Preset Multiple Registers 34

Preset Single Register 34

Priority 11

R

Read Coil Status 34

Read Holding Registers 34

Read Input Status 34

Read Internal Registers 34

REAL 30

Record 30

www.ptc.com

68



Modbus TCP/IP Ethernet Driver

Redundancy 25

Replace with Zero 10

Request Timeout 15

Respect Tag-Specified Scan Rate 14

Roxar 7

Roxar Addressing 48

Roxar RFM 29

S

ScanMode 14

Service 44

Set Value 30

Settings 21

Setup 7

Short 32

Short Integers 44, 48

Simulated 14

Six-Digit Addressing 45

Socket Usage 11

Socket Utilization 12

Specified holding register block size exceeds maximum block size. | Block size specified = <number>
(registers), Maximum block size = <number> (registers). 55

Specified input coil block size exceeds maximum block size. | Block size specified = <number> (coils),
Maximum block size = <number> (coils). 54

Specified internal register block size exceeds maximum block size. | Block size specified = <number>
(registers), Maximum block size = <number> (registers). 55

Specified output coil block size exceeds maximum block size. | Block size specified = <number> (coils),
Maximum block size = <number> (coils). 54

Starting unsolicited communication. | Protocol = '<name>', Port = <number>. 58

Statistics Items 49

String 32

STRING 30

String Support 37, 43, 48

Supported 5

System 44

System Tags 33

www.ptc.com

69



Modbus TCP/IP Ethernet Driver

T

Tag Counts 8

Tag Generation 16

Tag import failed due to lowmemory resources. 56

TIME 30

Timeouts to Demote 16

Timing 15

Transactions per Cycle 11

Treat Longs as Decimals 23

TSX Premium 41

TSX Quantum 38

U

UDINT 30

UINT 30

Unable to create a socket connection. 53

Unable to write to address, device responded with exception. | Address = '<address>', Exception =
<code>. 57

Unmodified 10

Unsolicited 19

Unsolicited mailbox access for undefined device. Closing socket. | IP address = '<address>'. 52

Unsolicited mailbox memory allocation error. | IP address = '<address>'. 53

Unsolicited mailbox unsupported request received. | IP address = '<address>'. 52

User 44

V

Variable 30

Variable Import Settings 18

Virtual Network 11

W

Word 32

WORD 30

Write-Only Access 47

www.ptc.com

70



Modbus TCP/IP Ethernet Driver

Write All Values for All Tags 9

Write Only Latest Value for All Tags 9

Write Only Latest Value for Non-Boolean Tags 9

Z

Zero-Based Addressing 21

Zero-Based Bit Addressing 22

www.ptc.com

71


	Modbus TCP/IP Ethernet Driver
	Table of Contents
	Modbus TCP/IP Ethernet Driver

	Overview
	Supported Device Models
	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Ethernet Communications
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Communication Serialization
	Channel Properties — Ethernet
	Device Properties — General
	Device Properties — Scan Mode
	Device Properties — Timing
	Device Properties — Auto-Demotion
	Device Properties — Tag Generation
	Device Properties — Variable Import Settings
	Device Properties — Unsolicited
	Modbus Client & Modbus Server Considerations

	Device Properties — Error Handling
	Device Properties — Ethernet
	Device Properties — Settings
	Device Properties — Block Sizes
	Device Properties — Redundancy
	Configuration API — Modbus TCP/IP Ethernet Example
	Enumerations
	Device Model Enumerations



	Automatic Tag Database Generation
	Importing from Custom Applications
	Optimizing Communications

	Data Types Description
	Address Descriptions
	Driver System Tag Addressing
	Function Codes Description
	Applicom Sub-Model and Addressing
	Generic Modbus Addressing
	TSX Quantum
	TSX Premium
	CEG Addressing
	Fluenta Addressing
	Instromet Addressing
	Mailbox Addressing
	Modbus Addressing
	Roxar Addressing
	Statistics Items

	Event Log Messages
	Failure to start winsock communications.
	Failure to start unsolicited communications.
	Unsolicited mailbox access for undefined device. Closing socket. | IP address...
	Unsolicited mailbox unsupported request received. | IP address = '<address>'.
	Unsolicited mailbox memory allocation error. | IP address = '<address>'.
	Unable to create a socket connection.
	Error opening file for tag database import. | OS error = '<error>'.
	Bad array. | Array range = <start> to <end>.
	Bad address in block. | Block range = <address> to <address>.
	Failed to resolve host. | Host name = '<name>'.
	Specified output coil block size exceeds maximum block size. | Block size spe...
	Specified input coil block size exceeds maximum block size. | Block size spec...
	Specified internal register block size exceeds maximum block size. | Block si...
	Specified holding register block size exceeds maximum block size. | Block siz...
	Block request responded with exception. | Block range = <address> to <address...
	Block request responded with exception. | Block range = <address> to <address...
	Bad block length received. | Block range = <start> to <end>.
	Tag import failed due to low memory resources.
	File exception encountered during tag import.
	Error parsing record in import file. | Record number = <number>, Field = <fie...
	Description truncated for record in import file. | Record number = <number>.
	Imported tag name is invalid and has been changed. | Tag name = '<tag>', Chan...
	A tag could not be imported because the data type is not supported. | Tag nam...
	Unable to write to address, device responded with exception. | Address = '<ad...
	Ethernet Manager started.
	Ethernet Manager stopped.
	Importing tag database. | Source file = '<filename>'.
	A client application has changed the CEG extension via system tag _CEGExtensi...
	Starting unsolicited communication. | Protocol = '<name>', Port = <number>.
	Created memory for Modbus server device. | Modbus server device ID = <device>.
	All channels are subscribed to a virtual network or all devices are listening...
	Channel is in a virtual network, all devices reverted to use one socket per d...
	Cannot change device ID from Modbus client mode to server mode with a client ...
	Cannot change device ID from Modbus server mode to client mode with a client ...
	Modbus server mode not allowed when the channel is in a virtual network. The ...
	Mailbox model not allowed when the channel is in a virtual network.
	Modbus Exception Codes
	Modbus Ethernet Channel Properties
	Modbus Ethernet Device Properties
	Modbus Ethernet Tag Properties

	Index

