
Modbus TCP/IP Ethernet Driver

© 2025 PTC Inc. All Rights Reserved.

Modbus TCP/IP Ethernet Driver

Table of Contents

Modbus TCP/IP Ethernet Driver 1

Table of Contents 2

Modbus TCP/IP Ethernet Driver 5

Overview 5

Supported Device Models 6

Setup 7

Channel Properties — General 8

Tag Counts 8

Channel Properties — Ethernet Communications 9

Channel Properties — Write Optimizations 9

Channel Properties — Advanced 10

Channel Properties — Communication Serialization 10

Channel Properties — Ethernet 11

Device Properties — General 13

Device Properties — Scan Mode 14

Device Properties — Timing 14

Device Properties — Auto-Demotion 15

Device Properties — Tag Generation 16

Device Properties — Variable Import Settings 17

Device Properties — Unsolicited 18

Modbus Client & Modbus Server Considerations 18

Device Properties — Error Handling 19

Device Properties — Ethernet 19

Device Properties — Settings 20

Device Properties — Block Sizes 22

Device Properties — Redundancy 23

Configuration API — Modbus TCP/IP Ethernet Example 24

Enumerations 25

Device Model Enumerations 26

Automatic Tag Database Generation 27

Importing from Custom Applications 27

Optimizing Communications 28

Data Types Description 30

Address Descriptions 31

Driver System Tag Addressing 31

Function Codes Description 31

Applicom Sub-Model and Addressing 32

Generic Modbus Addressing 32

TSX Quantum 35

TSX Premium 38

CEG Addressing 40

www. ptc.com

2

Modbus TCP/IP Ethernet Driver

Fluenta Addressing 40

Instromet Addressing 40

Mailbox Addressing 40

Modbus Addressing 41

Roxar Addressing 44

Statistics Items 44

Event Log Messages 46

Failure to start winsock communications. 46

Failure to start unsolicited communications. 46

Unsolicited mailbox access for undefined device. Closing socket. | IP address = '<address>'. 46

Unsolicited mailbox unsupported request received. | IP address = '<address>'. 46

Unsolicited mailbox memory allocation error. | IP address = '<address>'. 47

Unable to create a socket connection. 47

Error opening file for tag database import. | OS error = '<error>'. 47

Bad array. | Array range = <start> to <end>. 47

Bad address in block. | Block range = <address> to <address>. 47

Failed to resolve host. | Host name = '<name>'. 48

Specified output coil block size exceeds maximum block size. | Block size specified = <number> (coils),
Maximum block size = <number> (coils). 48

Specified input coil block size exceeds maximum block size. | Block size specified = <number> (coils),
Maximum block size = <number> (coils). 48

Specified internal register block size exceeds maximum block size. | Block size specified = <number>
(registers), Maximum block size = <number> (registers). 48

Specified holding register block size exceeds maximum block size. | Block size specified = <number>
(registers), Maximum block size = <number> (registers). 48

Block request responded with exception. | Block range = <address> to <address>, Exception = <code>. 48

Block request responded with exception. | Block range = <address> to <address>, Function code =
<code>, Exception = <code>. 49

Bad block length received. | Block range = <start> to <end>. 49

Tag import failed due to low memory resources. 49

File exception encountered during tag import. 49

Error parsing record in import file. | Record number = <number>, Field = <field>. 49

Description truncated for record in import file. | Record number = <number>. 50

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name = '<tag>'.50

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsupported
data type = '<type>'. 50

Unable to write to address, device responded with exception. | Address = '<address>', Exception =
<code>. 50

Ethernet Manager started. 51

Ethernet Manager stopped. 51

Importing tag database. | Source file = '<filename>'. 51

A client application has changed the CEG extension via system tag _CEGExtension. | Extension =
'<extension>'. 51

Starting unsolicited communication. | Protocol = '<name>', Port = <number>. 51

Created memory for Modbus server device. | Modbus server device ID = <device>. 51

All channels are subscribed to a virtual network or all devices are listening to remote addresses, stop- 51

www. ptc.com

3

Modbus TCP/IP Ethernet Driver

ping unsolicited communication.

Channel is in a virtual network, all devices reverted to use one socket per device. 51

Cannot change device ID from Modbus client mode to server mode with a client connected. 51

Cannot change device ID from Modbus server mode to client mode with a client connected. 52

Modbus server mode not allowed when the channel is in a virtual network. The device ID cannot contain
a loop-back or local IP address. 52

Mailbox model not allowed when the channel is in a virtual network. 52

Modbus Exception Codes 53

Modbus Ethernet Channel Properties 54

Modbus Ethernet Device Properties 54

Modbus Ethernet Tag Properties 55

Index 56

www. ptc.com

4

Modbus TCP/IP Ethernet Driver

Modbus TCP/IP Ethernet Driver
Help version 1.158

CONTENTS

Overview
What is the Modbus TCP/IP Ethernet Driver?

Setup
How do I configure a channel and device for use with this driver?

Configuration via API
How do I configure a channel and device using the Configuration API?

Automatic Tag Database Generation
How can I configure tags for the Modbus TCP/IP Ethernet Driver?

Optimizing Communications
How do I get the best performance from the Modbus TCP/IP Ethernet Driver?

Data Types Description
What data types does the Modbus TCP/IP Ethernet Driver support?

Address Descriptions
How do I reference a data location in a Modbus Ethernet device?

Event Log Messages
What messages does the Modbus TCP/IP Ethernet Driver produce?

Overview
The Modbus TCP/IP Ethernet Driver provides a reliable way to connect Modbus Ethernet devices to client applic-
ations; including HMI, SCADA, Historian, MES, ERP, and countless custom applications. Users must install
TCP/IP properly to use this driver. For more information on setup, refer to the Windows documentation.

Note: The driver posts messages when a failure occurs during operation.

www. ptc.com

5

Modbus TCP/IP Ethernet Driver

Supported Device Models

Applicom
This model supports Applicom addressing syntax for Generic Modbus, TSX Premium, and TSX Quantum devices.

Ethernet to Modbus Plus Bridge
The driver also has the ability to talk to Modbus Plus devices via an Ethernet to Modbus Plus Bridge. The Device ID
used should be the IP address of the bridge along with the Modbus Plus Bridge Index. For example, Bridge IP
205.167.7.12, Bridge Index 5 equates to a Device ID of 205.167.7.12.5. Consult the Modicon/Schneider Auto-
mation distributor on obtaining and setting up a MBE to MBP Bridge.

CEG
This model supports the extended block size of CEG devices.

Fluenta
This model supports the non-standard Modbus mapping of the Fluenta FGM 100/130 Flow Computer.

Instromet
This model supports the non-standard Modbus mapping of Instromet devices.

Mailbox
This model affects the way unsolicited requests are handled. By defining a mailbox device, the driver does not act
like a PLC on the network. Instead, it acts as a storage area for every mailbox device that is defined. When the
driver receives an unsolicited command, the driver detects the IP address the message came from and places the
data in the storage area allocated for the device. If the message comes from a device with an IP address that has
not been defined as a mailbox device, the message is not processed. Any client application that reads or writes to
this type of device reads or writes to the storage area in the driver and not the physical device.

For information on sending unsolicited requests to the Modbus TCP/IP Ethernet Driver, consult the Modicon
Documentation on the MSTR instruction.
Note: Modbus Mailbox does not support function code 22 (0x16). Only 0x10 (Holding Reg Write Multiple) and

0x6 (Holding Reg Write Single) are supported. Users can write to a single bit by disabling Holding Register Bit
Writes in the device properties. This forces it to use the Read/Modify/Write sequence instead of directly writing to
the bit. Only the client Modbus device (not the Mailbox) has to change its setting to get this to work.
Mailbox Client Privileges for Mailbox Device Model

Modbus Client
Most projects are configured to function as a Modbus client. In this mode, the driver accesses a physical device
(such as the TSX Quantum or any other Modbus Open Ethernet compatible device).

Modbus Unsolicited or Server Mode
The Modbus TCP/IP Ethernet Driver acts as a device on the network when Modbus is the selected model and is
configured with a device ID equivalent to the host machine's IP address. The driver accepts all unsolicited com-
mands that are received and attempts to process them as if it were just another PLC. Any Modbus client on the net-
work can communicate with this simulated device using its IP address.

The device ID for a Modbus server device is specified as YYY.YYY.YYY.YYY.XXX. The YYY can either be the loop-
back address or the local IP address of the PC that is running the driver. The XXX designates the Modbus server's
Station ID and can be in the range 0 to 255.

Multiple Modbus server devices can have the same Station ID. In this scenario, all the devices that share the Sta-
tion ID point to one common simulated device. If the remote Modbus client requests data from a Modbus server
device (Station ID) that does not exist, the response contains data from station 0. Once a Modbus server device is
created in the project, that Modbus server is enabled and stays enabled until the server is shut down. Changing the
Station ID enables a new Modbus server device that stays enabled until the server is shut down.

Addresses 1 to 65536 are implemented for output coils, input coils, internal registers, and holding registers. In
Unsolicited Mode, the driver responds to any valid request to read or write these values from external devices
(Function Codes [decimal] 01, 02, 03, 04, 05, 06, 15, and 16). Furthermore, loopback (also known as Function
code 08, sub code 00) has been implemented in this driver. These locations can be accessed locally by the host
PC as tags assigned to the Modbus server device.

www. ptc.com

6

Modbus TCP/IP Ethernet Driver

Note: Write-only access is not allowed for unsolicited devices.

Roxar
This model supports the non-standard Modbus mapping of the Roxar RFMWater Cut meter.
See Also: Device Model Enumerations and Device Properties.

Setup

Channel and Device Limits
The maximum number of channels supported by this driver is 1024. The maximum number of devices supported by
this driver is 8192 per channel.

Tip: Channel-level settings apply to all devices that have been configured on this channel.

Note: The Modbus TCP/IP Ethernet Driver requires Winsock V1.1 or higher.

Communication Serialization
The Modbus TCP/IP Ethernet Driver supports Communication Serialization, which specifies whether data trans-
missions should be limited to one channel at a time.
 For more information, refer to Communication Serialization.

Notes:

l When Channel Serialization is enabled, Unsolicited communications and the Max Sockets per Device
property is disabled. Mailbox Model is unavailable for Channel Serialization.

l Not all properties are available and applicable for all models.

See Also: Configuring a device with Configuration API commands, API Example with Modbus

www. ptc.com

7

Device_API_Commands_Common.htm

Modbus TCP/IP Ethernet Driver

Channel Properties — General
This server supports the use of multiple simultaneous communications drivers. Each protocol or driver used in a
server project is called a channel. A server project may consist of many channels with the same communications
driver or with unique communications drivers. A channel acts as the basic building block of an OPC link. This group
is used to specify general channel properties, such as the identification attributes and operating mode.

Identification

Name: Specify the user-defined identity of this channel. In each server project, each channel name must be
unique. Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information. The property is
required for creating a channel.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: Specify user-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Specify the protocol / driver for this channel. Specify the device driver that was selected during channel cre-
ation. It is a disabled setting in the channel properties. The property is required for creating a channel.

Note: With the server's online full-time operation, these properties can be changed at any time. This includes
changing the channel name to prevent clients from registering data with the server. If a client has already acquired
an item from the server before the channel name is changed, the items are unaffected. If, after the channel name
has been changed, the client application releases the item and attempts to re-acquire using the old channel name,
the item is not accepted. Changes to the properties should not be made once a large client application has been
developed. Utilize proper user role and privilege management to prevent operators from changing properties or
accessing server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to OPC
applications. Because the server's diagnostic features require a minimal amount of overhead processing, it is
recommended that they be utilized when needed and disabled when not. The default is disabled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to Communication Diagnostics in the server help.

Tag Counts

Static Tags: Provides the total number of defined static tags at this level (device or channel). This information can
be helpful in troubleshooting and load balancing.

www. ptc.com

8

Modbus TCP/IP Ethernet Driver

Channel Properties — Ethernet Communications
Ethernet Communication can be used to communicate with devices.

Ethernet Settings

Network Adapter: Specify the network adapter to bind. When left blank or Default is selected, the operating sys-
tem selects the default adapter.

Channel Properties — Write Optimizations
The server must ensure that the data written from the client application gets to the device on time. Given this goal,
the server provides optimization properties to meet specific needs or improve application responsiveness.

Write Optimizations

Optimization Method: Controls how write data is passed to the underlying communications driver. The options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the controller.
In this mode, the server continues to gather write requests and add them to the server's internal write
queue. The server processes the write queue and attempts to empty it by writing data to the device as
quickly as possible. This mode ensures that everything written from the client applications is sent to the tar-
get device. This mode should be selected if the write operation order or the write item's content must
uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can accu-
mulate in the write queue due to the time required to actually send the data to the device. If the server
updates a write value that has already been placed in the write queue, far fewer writes are needed to reach
the same final output value. In this way, no extra writes accumulate in the server's queue. When the user
stops moving the slide switch, the value in the device is at the correct value at virtually the same time. As
the mode states, any value that is not a Boolean value is updated in the server's internal write queue and
sent to the device at the next possible opportunity. This can greatly improve the application performance.
Note: This option does not attempt to optimize writes to Boolean values. It allows users to optimize the

operation of HMI data without causing problems with Boolean operations, such as a momentary push but-
ton.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization mode
and applies it to all tags. It is especially useful if the application only needs to send the latest value to the
device. This mode optimizes all writes by updating the tags currently in the write queue before they are
sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for every
one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read operation.
Although the application is performing a large number of continuous writes, it must be ensured that read data is still
given time to process. A setting of one results in one read operation for every write operation. If there are no write
operations to perform, reads are processed continuously. This allows optimization for applications with continuous
writes versus a more balanced back and forth data flow.
Note: It is recommended that the application be characterized for compatibility with the write optimization

enhancements before being used in a production environment.

www. ptc.com

9

Modbus TCP/IP Ethernet Driver

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the Advanced
group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as a
Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may default to
Unmodified. Non-normalized float handling allows users to specify how a driver handles non-normalized IEEE-754
floating point data. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point values
with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-number, and
infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating-point values or if it only supports the option
that is displayed. According to the channel's float normalization setting, only real-time driver tags (such as values
and arrays) are subject to float normalization. For example, EFM data is not affected by this setting.

For more information on the floating-point values, refer to "How To ... Work with Non-Normalized Floating-Point
Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to the
next device after data is received from the current device on the same channel. Zero (0) disables the delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Communication Serialization
The server's multi-threading architecture allows channels to communicate with devices in parallel. Although this is
efficient, communication can be serialized in cases with physical network restrictions (such as Ethernet radios).
Communication serialization limits communication to one channel at a time within a virtual network.

The term "virtual network" describes a collection of channels and associated devices that use the same pipeline for
communications. For example, the pipeline of an Ethernet radio is the client radio. All channels using the same cli-
ent radio associate with the same virtual network. Channels are allowed to communicate each in turn, in a "round-
robin" manner. By default, a channel can process one transaction before handing communications off to another
channel. A transaction can include one or more tags. If the controlling channel contains a device that is not respond-
ing to a request, the channel cannot release control until the transaction times out. This results in data update
delays for the other channels in the virtual network.

Channel-Level Settings

Virtual Network: Specify the channel's mode of communication serialization. Options include None and Network 1
- Network 500. The default is None. Descriptions of the options are as follows:

l None: This option disables communication serialization for the channel.
l Network 1 - Network 500: This option specifies the virtual network to which the channel is assigned.

www. ptc.com

10

Modbus TCP/IP Ethernet Driver

Transactions per Cycle: Specify the number of single blocked/non-blocked read/write transactions that can occur
on the channel. When a channel is given the opportunity to communicate, this is the number of transactions attemp-
ted. The valid range is 1 to 99. The default is 1.

Global Settings

Network Mode: This property is used to control how channel communication is delegated. In Load Balanced
mode, each channel is given the opportunity to communicate in turn, one at a time. In Priority mode, channels are
given the opportunity to communicate according to the following rules (highest to lowest priority):

1. Channels with pending writes have the highest priority.

2. Channels with pending explicit reads (through internal plug-ins or external client interfaces) are prioritized
based on the read's priority.

3. Scanned reads and other periodic events (driver specific).

The default is Load Balanced and affects all virtual networks and channels.
 Devices that rely on unsolicited responses should not be placed in a virtual network. In situations where com-

munications must be serialized, it is recommended that Auto-Demotion be enabled.

Due to differences in the way that drivers read and write data (such as in single, blocked, or non-blocked trans-
actions); the application's Transactions per cycle property may need to be adjusted. When doing so, consider the
following factors:

l How many tags must be read from each channel?
l How often is data written to each channel?
l Is the channel using a serial or Ethernet driver?
l Does the driver read tags in separate requests, or are multiple tags read in a block?
l Have the device's Timing properties (such as Request timeout and Fail after x successive timeouts) been

optimized for the virtual network's communication medium?

Channel Properties — Ethernet

Socket Usage

Socket Utilization: Specify if the driver should share a single socket across all devices on this channel or use mul-
tiple sockets to communicate with devices.

l One or More Sockets per Device: Specifies that the driver uses one or more sockets for each device on
the network and maintains that socket as an active connection. This is the default setting and behavior.

l One Socket per Channel: Specifies that the driver use only a single socket to provide communications for
each device in the channel.

Max. Sockets per Device: Specifies the maximum number of sockets available to the device. The default is 1.

For more information on how these settings impact performance, refer to Optimizing Communications.

Unsolicited Settings
Unsolicited settings apply to both Modbus client and Modbus server modes.

www. ptc.com

11

Modbus TCP/IP Ethernet Driver

Port: Specifies the port number that the driver uses when listening for unsolicited requests. The valid range is 0 to
65535. The default is 502.

IP Protocol: Specifies the protocol that the driver uses when listening for unsolicited request. Options include User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP/IP). The default is TCP/IP.

Notes:

1. Modbus client mode is enabled when any external IP is used as the Device ID. When the driver is in client
mode, it can accept unsolicited requests. The driver starts a listening thread for unsolicited data once the
driver is loaded by the OPC server. This thread is global to all channels configured in the OPC server. For
example, if an OPC server project has three channels defined and either setting is changed in one chan-
nel, that same change made is made to the other two channels. The listening thread is restarted once the
change is applied. The Event Log posts an event for the restart.

2. Modbus server mode is enabled when the model is set to Modbus and the Device ID is set to IP_
Address.yyy, where IP_Address can be the local IP address of the network adapter assigned in the chan-
nel or the local loopback IP address of the PC running the driver. For example, 127.0.0.1.1 or
127.xxx.xxx.xxx, where xxx=0-255 and yyy (station ID)=0-255. When the driver is in Modbus server mode,
it starts a single listening thread for unsolicited data once the driver is loaded by the OPC server. This
thread listens on a single port and is global to all channels configured in the OPC server. Multiple devices
in a server project can be set to act as Modbus servers, but while all Modbus server devices in the project
can be accessed individually using unique device IDs, all Modbus servers in the same project listen, or
are reached, on the same port.

For more information on unsolicited mode, refer to Modbus Unsolicited or Server Mode.

www. ptc.com

12

Modbus TCP/IP Ethernet Driver

Device Properties — General

Identification

Name: User-defined identity of this device.

Description: User-defined information about this device.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.
For more information on a specific device model, see Supported Device Models.

Model: The specific version of the device.

ID: Specify the device IP address along with a Modbus Bridge Index on the Ethernet network. Device IDs are spe-
cified as <HOST>.XXX, where HOST is a standard UNC/DNS name or an IP address. The XXX designates the
Modbus Server ID of the device and can be in the range of 0 to 255. If no bridge is used, the index should be set to
0. Depending on the model and device ID, a device cam be configured to act as a client or server.

For more information on unsolicited mode, refer to Modbus Unsolicited or Server Mode.

Examples

1. When requesting data from a Modicon TSX Quantum device with IP address 205.167.7.19, the device ID
should be entered as 205.167.7.19.0.

2. When requesting data from a Modbus Plus device connected to bridge index 5 of a Modbus Ethernet
Bridge with an IP address of 205.167.7.50, the device ID should be entered as 205.167.7.50.5.

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are enabled by
default, this property can be used to disable a physical device. Communications are not attempted when a device is
disabled. From a client standpoint, the data is marked as invalid and write operations are not accepted. This prop-
erty can be changed at any time through this property or the device system tags.

Simulated: This option places the device into Simulation Mode. In this mode, the driver does not attempt to com-
municate with the physical device, but the server continues to return valid OPC data. Simulated stops physical com-
munications with the device, but allows OPC data to be returned to the OPC client as valid data. While in
Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated device is read
back and each OPC item is treated individually. The item's memory map is based on the group Update Rate. The
data is not saved if the server removes the item (such as when the server is reinitialized). The default is No.

Notes:

www. ptc.com

13

Modbus TCP/IP Ethernet Driver

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System tag
allows this property to be monitored from the client.

2. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for OPC
clients or Scan Rate for native and DDE interfaces). This means that two clients that reference the same
item with different update rates return different data.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production environment.

See Also: Configuring a device with Configuration API commands, API Example with Modbus

Device Properties — Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device communications.
Synchronous and asynchronous device reads and writes are processed as soon as possible; unaffected by the
Scan Mode properties.

Scan Mode: Specify how tags in the device are scanned for updates sent to subscribing clients. Descriptions of the
options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the value set as the maximum scan rate.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is increased,

the changes take effect immediately. When the scan rate value is decreased, the changes do not take
effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for subscribed
clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the device nor
perform a read to get an item's initial value once it becomes active. It is the OPC client's responsibility to
poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device reads for individual
items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified in
their static configuration tag properties. Dynamic tags are scanned at the client-specified scan rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for newly activ-
ated tag references from stored (cached) data. Cache updates can only be provided when the new item reference
shares the same address, scan rate, data type, client access, and scaling properties. A device read is used for the
initial update for the first client reference only. The default is disabled; any time a client activates a tag reference the
server attempts to read the initial value from the device.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the application's
needs. In many cases, the environment requires changes to these properties for optimum performance. Factors
such as electrically generated noise, modem delays, and poor physical connections can influence how many errors
or timeouts a communications driver encounters. Timing properties are specific to each configured device.

Communications Timeouts

www. ptc.com

14

Device_API_Commands_Common.htm

Modbus TCP/IP Ethernet Driver

Connect Timeout: This property (which is used primarily by Ethernet based drivers) controls the amount of time
required to establish a socket connection to a remote device. The device's connection time often takes longer than
normal communications requests to that same device. The valid range is 1 to 30 seconds. The default is typically 3
seconds, but can vary depending on the driver's specific nature. If this setting is not supported by the driver, it is dis-
abled.
Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when com-

municating via UDP.

Request Timeout: Specify an interval used by all drivers to determine how long the driver waits for a response
from the target device to complete. The valid range is 50 to 9999999 milliseconds (167 minutes). The default is usu-
ally 1000 milliseconds, but can vary depending on the driver. The default timeout for most serial drivers is based on
a baud rate of 9600 baud or better. When using a driver at lower baud rates, increase the timeout to compensate
for the increased time required to acquire data.

Attempts Before Timeout: Specify how many times the driver issues a communications request before con-
sidering the request to have failed and the device to be in error. The valid range is 1 to 10. The default is typically 3,
but can vary depending on the driver's specific nature. The number of attempts configured for an application
depends largely on the communications environment. This property applies to both connection attempts and
request attempts.

Timing

Inter-Request Delay: Specify how long the driver waits before sending the next request to the target device. It over-
rides the normal polling frequency of tags associated with the device, as well as one-time reads and writes. This
delay can be useful when dealing with devices with slow turnaround times and in cases where network load is a
concern. Configuring a delay for a device affects communications with all other devices on the channel. It is recom-
mended that users separate any device that requires an inter-request delay to a separate channel if possible. Other
communications properties (such as communication serialization) can extend this delay. The valid range is 0 to
300,000 milliseconds; however, some drivers may limit the maximum value due to a function of their particular
design. The default is 0, which indicates no delay between requests with the target device.
Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not responding.
By placing a non-responsive device offline for a specific time period, the driver can continue to optimize its com-
munications with other devices on the same channel. After the time period has been reached, the driver re-
attempts to communicate with the non-responsive device. If the device is responsive, the device is placed on-scan;
otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted system tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the device
is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

www. ptc.com

15

Modbus TCP/IP Ethernet Driver

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is reached. Dur-
ing this period, no read requests are sent to the device and all data associated with the read requests are set to bad
quality. When this period expires, the driver places the device on-scan and allows for another attempt at com-
munications. The valid range is 100 to 3600000 milliseconds. The default is 10000 milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the off-scan
period. Disable to always send write requests regardless of the demotion period. Enable to discard writes; the
server automatically fails any write request received from a client and does not post a message to the Event Log.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation. Select
communications drivers can be configured to automatically build a list of tags that correspond to device-specific
data. These automatically generated tags (which depend on the nature of the supporting driver) can be browsed
from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and uses the
data to generate tags within the server. If the device does not natively support named tags, the driver creates a list
of tags based on driver-specific information. An example of these two conditions is as follows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the tag
names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/O module types, the communications
driver automatically generates tags in the server that are based on the types of I/O modules plugged into
the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more information,
refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the On
Property Change option is shown. It is set to Yes by default, but it can be set to No to control over when tag gen-
eration is performed. In this case, the Create tags action must be manually invoked to perform tag generation.

On Device Startup: Specify when OPC tags are automatically generated. Descriptions of the options are as fol-
lows:

l Do Not Generate on Startup: This option prevents the driver from adding any OPC tags to the tag space of
the server. This is the default setting.

l Always Generate on Startup: This option causes the driver to evaluate the device for tag information. It
also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup: This option causes the driver to evaluate the target device for tag information
the first time the project is run. It also adds any OPC tags to the server tag space as needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save from
the Tools | Options menu.

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to do with
the tags that it may have previously added or with tags that have been added or modified after the communications
driver since their original creation. This setting controls how the server handles OPC tags that were automatically

www. ptc.com

16

Modbus TCP/IP Ethernet Driver

generated and currently exist in the project. It also prevents automatically generated tags from accumulating in the
server.

For example, if a user changes the I/O modules in the rack with the server configured to Always Generate on Star-
tup, new tags would be added to the server every time the communications driver detected a new I/O module. If the
old tags were not removed, many unused tags could accumulate in the server's tag space. The options are:

l Delete on Create: This option deletes any tags that were previously added to the tag space before any
new tags are added. This is the default setting.

l Overwrite as Necessary: This option instructs the server to only remove the tags that the communications
driver is replacing with new tags. Any tags that are not being overwritten remain in the server's tag space.

l Do not Overwrite: This option prevents the server from removing any tags that were previously generated
or already existed in the server. The communications driver can only add tags that are completely new.

l Do not Overwrite, Log Error: This option has the same effect as the prior option, and also posts an error
message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the communications
driver as well as any tags that have been added using names that match generated tags. Users should avoid
adding tags to the server using names that may match tags that are automatically generated by the driver.

Parent Group: This property keeps automatically generated tags from mixing with tags that have been entered
manually by specifying a group to be used for automatically generated tags. The name of the group can be up to
256 characters. This parent group provides a root branch to which all automatically generated tags are added.

Allow Automatically Generated Subgroups: This property controls whether the server automatically creates sub-
groups for the automatically generated tags. This is the default setting. If disabled, the server generates the
device's tags in a flat list without any grouping. In the server project, the resulting tags are named with the address
value. For example, the tag names are not retained during the generation process.
Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system auto-

matically increments to the next highest number so that the tag name is not duplicated. For example, if the gen-
eration process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been modified,
Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be accessed from the
System tags allows a client application to initiate tag database creation.
Note: Create tags is disabled if the Configuration edits a project offline.

Device Properties — Variable Import Settings

For more information on CSV files for Modbus Drivers, refer to Creating CSV Files for Modbus Drivers.

Variable Import File: This parameter specifies the exact location of the variable import file that the driver should
use when the Automatic Tag Database Generation feature is enabled.

Include Descriptions: When enabled, this option imports tag descriptions (if present in file).

www. ptc.com

17

https://www.ptc.com/support/-/media/support/refdocs/ThingWorx_Kepware_Server/6,-d-,13/creating_csv_files_for_kepware_modbus_drivers.pdf?sc_lang=en

Modbus TCP/IP Ethernet Driver

For more information on configuring the Automatic Tag Database Generation feature (and how to create a vari-
able import file), refer to Automatic Tag Database Generation.

Device Properties — Unsolicited

OPC Quality

OPC Quality Bad until Write: Controls the initial OPC quality of tags attached to this driver. When disabled, all tags
have an initial value of 0 and an OPC quality of Good. This is the default condition. When enabled, all tags have an
initial value of 0 and an OPC quality of Bad. The tag's quality remains Bad until all coils or registers referenced by
the tag have been written to by a Modbus client or a client application. For example, a tag with address 400001 and
data type DWord references two holding registers: 400001 and 400002. This tag does not show Good quality until
both holding registers have been written.
Note: If the device is not in server mode, this option is grayed out.

Communications Timeout: Sets the amount of time, in seconds, the driver waits for an incoming request before
setting the device's tag quality to Bad. After the timeout has occurred, the only way to reset the timeout and allow all
the tags to be processed normally is to re-establish communications with the remote client or disable the com-
munications timeout by setting it to 0. When enabled, the valid range is 1 to 64,800 seconds (18 hours).

Notes:

1. If an incoming request comes for a server device (station ID) that does not exist, the request is directed to
station 0. In this case, the timeout for a server device with station ID 0 does not occur even if it does not
explicitly receive any remote communications for the timeout period.

2. Server devices require the model to be Modbus and the Device ID to be IP_Address.yyy, where IP_
Address can be the IP address of the network adapter assigned in the channel or the local IP loopback IP
address of the PC running the driver. For example, 127.0.0.1.1 or 127.xxx.xxx.xxx, where xxx=0-255 and
yyy (station ID)=0-255.

3. When the first unsolicited request for a server device is received, the Event Log displays the following
informational message: "<date>__<time>__<level>__<source>__<event>". For example, "2/4/2011__
4:53:10 PM__Information__Modbus TCP/IP Ethernet__Created Memory for server Device <server Num-
ber>".

Modbus Client & Modbus Server Considerations
The following notes pertain to both Modbus Client and Modbus Server devices.

l It is not recommended that a Mailbox device and a Modbus device be on the same machine. Because a cli-
ent only gets data from one of these devices at a time; it is uncertain from which it gets data.

l It is recommended that client and server devices be placed on separate channels in the server project for
optimal server device tag processing.

www. ptc.com

18

Modbus TCP/IP Ethernet Driver

l When an OPC client is connected, the device ID can only be changed if it does not result in change of mode
(client to server or server to client) of the device. The mode is changed by changing the loopback or local IP
address to a different IP address and vice versa. The loopback address and the local IP address (of the PC
running the driver) indicates server (unsolicited) mode and any other IP address indicates client mode of
the device. When no OPC client is connected, the mode can be changed in any manner (such as client to
client, client to server, server to server, or server to client).
Note: Any address in the format 127.xxx.xxx.xxx, where xxx is in the range 0-255 is loopback address.

l The Data Encoding group settings must be the same in client and server devices. For example, when a
device configured as a Modbus client is communicating with the device setup as a Modbus server.

l The server project as a whole allows a maximum of 255 server devices, one for each unique server ID. The
same server ID cannot be used across multiple channels.

l The server sees ANY loopback address (127.x.x.x), or localhost IP as a reference back to itself and creates
shared memory space unique to the server ID. The same ID in multiple channels is the same server device
using the same register memory.

l If the same server ID must be used more than once in a project, choose tag address ranges that do not coin-
cide with other instances of the same server device IDs. Multiple channels / devices using the same tag
address range in the same server ID experience cross-talk and data corruption.

l For this driver, the terms server and unsolicited are used interchangeably.

Device Properties — Error Handling

Deactivate Tags on Illegal Address: Choose Enable for the driver to stop polling for a block of data if the device
returns Modbus exception code 2 (illegal address) or 3 (illegal data, such as number of points) in response to a
read of that block. Choose Disable for the driver to continue polling the data block despite errors. The default is
enabled.

Device Properties — Ethernet

www. ptc.com

19

Modbus TCP/IP Ethernet Driver

Port: Specifies the port number that the remote device is configured to use. The valid range is 0 to 65535. The
default is 502. This port number is used when the device object is in Modbus client mode and making solicited
requests to a device.
 If the port system tag is used, the port number setting is changed. For more information, refer to Driver System

Tag Addresses.

IP Protocol: Specifies whether the driver should connect to the remote device using the User Datagram Protocol
(UDP) or Transmission Control Protocol (TCP/IP). The client and server settings must match. For example, if the
server's IP protocol setting is TCP/IP, then the client's IP protocol setting for that device must also be TCP/IP.
Note: This driver requires Winsock V1.1 or higher.

Close Socket on Timeout: Specifies whether the driver should close a TCP socket connection if the device does
not respond within the timeout. When enabled, the default, the driver closes the socket connection on timeout.
When disabled, the driver continues to use the same TCP socket until an error is received, the physical device
closes the socket, or the driver is shutdown.
Note: The Modbus TCP/IP Ethernet Driver closes the socket connection on a socket error.

Device Properties — Settings

Data Access

Zero-Based Addressing: If the address-numbering convention for the device starts at one as opposed to zero, the
value can be specified when defining the device parameters. By default, user-entered addresses have one sub-
tracted when frames are constructed to communicate with a Modbus device. If the device does not follow this con-
vention, choose disable. The default behavior follows the convention of Modicon PLCs.

Zero-Based Bit Addressing: Within registers, memory types that allow bits within Words can be referenced as
Booleans. The addressing notation is <address>.<bit>, where <bit> represents the bit number within the Word.
This option provides two ways of addressing a bit within a given Word; zero- or one-based. Zero-based means that
the first bit begins at 0 (range=0-15); one-based means that the first bit begins at 1 (range=1-16).

Holding Register Bit Writes: When writing to a bit location within a holding register, the driver should only modify
the bit of interest. Some devices support a special command to manipulate a single bit within a register (function
code hex 0x16 or decimal 22). If the device does not support this feature, the driver must perform a Read / Modify /
Write operation to ensure that only the single bit is changed. When enabled, the driver uses function code 0x16,
regardless of this setting for single register writes. When disabled, the driver uses function code 0x06 or 0x10,
depending on the selection for Modbus Function 06 for single register writes. The default is disabled.
Note: When Modbus byte order is disabled, the byte order of the masks sent in the command is Intel byte order.

Modbus Function 06: This driver supports Modbus protocol functions to write holding register data to the target
device. In most cases, the driver switches between functions 06 and 16 based on the number of registers being writ-
ten. When writing a single 16-bit register, the driver generally uses Modbus function 06. When writing a 32-bit value
into two registers, the driver uses Modbus function 16. For the standard Modicon PLC, the use of either of these
functions is not a problem. There are, however, a large number of third-party devices using the Modbus protocol
and many support only Modbus function 16 to write to holding registers. This selection is enabled by default,

www. ptc.com

20

Modbus TCP/IP Ethernet Driver

allowing the driver to switch between 06 and 16 as needed. If a device requires all writes to use only Modbus func-
tion 16, disable this selection.
Note: For bit within word writes, the Holding Register Bit Writes property takes precedence over this option. If

Holding Register Bit Writes is enabled, function code 0x16 is used regardless of this property. If not enabled, either
function code 0x06 or 0x10 is used for bit within word writes.

Modbus Function 05: This driver supports Modbus protocol functions to write output coil data to the target device.
In most cases, the driver switches between these two functions based on the number of coils being written. When
writing a single coil, the driver uses Modbus function 05. When writing an array of coils, the driver uses Modbus
function 15. For the standard Modicon PLC, the use of these functions is not a problem. There are, however, many
third-party devices that use the Modbus protocol and many only support the use of Modbus function 15 to write to
output coils regardless of the number of coils. This selection is enabled by default, allowing the driver to switch
between 05 and 15 as needed. If a device requires all writes to use only Modbus function 15, disable this selection.

CEG Extension: The Modbus driver can communicate with CEG devices that support extended block sizes or Mod-
bus devices configured with the CEGmodel. This property is only available for the CEGmodel. The default is
enabled, indicating the device is a CEG device with extended block sizes. Disabled indicates the device does not
support the extended block sizes.

Note: This property can be modified when an active OPC client connection exists. In this situation, disabling the
option causes the block size ranges to change. If any of the block size properties exceed the maximum value, they
are automatically adjusted to the new maximum value.

Mailbox Client Privileges: The Modbus driver can communicate with Mailbox clients with the following options:

l Memory Map Read Only: Client applications can only read from a mailbox memory map.
l Memory Map Read-Write: Client applications can read and write to the mailbox memory map.
l Device Write-Memory Map Read: Client applications can only write to a device; reads are from the

memory map.

Data Encoding

Modbus Byte Order: sets the data encoding of each register / 16-bit value. The byte order for can be changed from
the default Modbus byte ordering to Intel byte ordering using this selection. The default is enabled, which is the nor-
mal setting for Modbus-compatible devices. If the device uses Intel byte ordering, disable this property to read Intel-
formatted data.

First Word Low: sets the data encoding of 32-bit values and the double word of 64-bit values. Two consecutive
registers' addresses in a Modbus device are used for 32-bit data types. The driver can read the first word as the low
or the high word of the 32-bit value based on this option. The default is enabled, first word low, to follow the con-
vention of the Modicon Modsoft programming software.

First DWord Low: sets the data encoding of 64-bit values. Four consecutive registers' addresses in a Modbus
device are used for 64-bit data types. The driver can read the first DWord as the low or the high DWord of the 64-bit
value. The default is enabled, first DWord low, to follow the default convention of 32-bit data types.

Modicon Bit Order: when enabled, the driver reverses the bit order on reads and writes to registers to follow the
convention of the Modicon Modsoft programming software. For example, a write to address 40001.0/1 affects bit
15/16 in the device when this option is enabled. This option is disabled (disabled) by default.

For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits, depending on the driver
using zero-based or one-based bit addressing within registers.
MSB = Most Significant Bit
LSB = Least Significant Bit

Modicon Bit Order Enabled

MSB LSB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Modicon Bit Order Disabled

www. ptc.com

21

Modbus TCP/IP Ethernet Driver

MSB LSB
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Treat Longs as Decimals: when enabled, the driver encodes and decodes double-precision unsigned Long and
DWord data types as values that range from 0 to 99999999. This format specifies that each word represents a
value between 0 and 9999. Values read above the specified range are not clamped, but the behavior is undefined.
All read values are decoded using the formula [Read Value] = HighWord * 10000 + LowWord. Written values
greater than 99999999 are clamped to the maximum value. All written values are encoded using the formula Raw
Data = [Written Value]/10000 + [Written Value] % 10000.

Tips on Settings
Data Types Modbus Byte Order First Word Low First DWord Low
Word, Short, BCD Applicable N/A N/A

Float, DWord, Long,
LBCD Applicable Applicable N/A

Double Applicable Applicable Applicable

If needed, use the following information and the device's documentation to determine the correct settings of the
data encoding options.

The default settings are acceptable for the majority of Modbus devices.

Data Encoding Option Data Encoding
Modbus Byte Order High Byte (15..8) Low Byte (7..0)

Modbus Byte Order Low Byte (7..0) High Byte (15..8)

First Word Low

High Word (31..16)
High Word (63..48) of
Double Word in 64-bit data
types

LowWord (15..0)
LowWord (47..32) of Double Word in 64-bit data
types

First Word Low

LowWord (15..0)
LowWord (47..32) of
Double Word in 64-bit data
types

High Word (31..16)
High Word (63..48) of Double Word in 64-bit data
types

First DWord Low High Double Word (63..32) Low Double Word (31..0)

First DWord Low Low Double Word (31..0) High Double Word (63..32)

Device Properties — Block Sizes

Coils

www. ptc.com

22

Modbus TCP/IP Ethernet Driver

Output Coils: Specifies the output block size in bits. Coils can be read from 8 to 2000 points (bits) at a time. The
default is 32.

Input Coils: Specifies the input block size in bits. Coils can be read from 8 to 2000 points (bits) at a time. The
default is 32.

Registers

Internal Registers: Specifies the internal register block size in bits. From 1 to 120 standard 16-bit Modbus registers
can be read at a time. The default is 32.

Holding Registers: Specifies the holding register block size in bits. From 1 to 120 standard 16-bit Modbus registers
can be read at a time. The default is 32.

Blocks

Block Read Strings: Enables group / block reads of string tags, which are normally read individually. String tags
are grouped together depending on the selected block size. Block reads can only be performed for Modbus model
string tags.

Notes:

1. The Instromet, Roxar, and Fluenta models (which support 32-bit and 64-bit registers) require special con-
sideration. The Modbus protocol constrains the block size to be no larger than 256 bytes. This translates
to a maximum of block size of 64 32-bit registers or 32 64-bit registers for these models.

2. The CEGmodel supports coil block sizes between 8 and 8000 in multiples of 8 and register block sizes
between 1 and 500. This model must only be used with CEG devices.

3. A bad address in block error can occur if the register block sizes are set above 120 and a 32- or 64-bit
data type is used for any tag. To prevent this, decrease the block size value to 120.

4. Some devices may not support block read operations at the default size. Smaller Modicon PLCs and non-
Modicon devices may not support the maximum data transfer lengths supported by the Modbus Ethernet
network.

5. Some devices may contain non-contiguous addresses. In this case, and the driver attempts to read a
block of data that encompasses undefined memory, the request may be rejected.

Device Properties — Redundancy

Redundancy is available with the Media-Level Redundancy Plug-In.
Consult the website, a sales representative, or the user manual for more information.

www. ptc.com

23

https://ptc-p-001.sitecorecontenthub.cloud/api/public/content/e96f85a9eef84807b06504cdd95b1084?v=3b0e1d04

Modbus TCP/IP Ethernet Driver

Configuration API — Modbus TCP/IP Ethernet Example
For a list of channel and device definitions and enumerations, access the following endpoints with the REST client
or refer to the appendices.

Channel Definitions

Endpoint (GET):

https://<hostname_or_ip>:<-
port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/channels

Device Definitions

Endpoint (GET):

https://<hostname_or_ip>:<port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/devices

Create Modbus TCP/IP Ethernet Channel

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels

Body:

{
 "common.ALLTYPES_NAME": "MyChannel",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet"
}

See Also: Appendix for a list of channel properties.

Create Modbus TCP/IP Ethernet Device

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels/MyChannel/devices

Body:

{
 "common.ALLTYPES_NAME": "MyDevice",
 "servermain.DEVICE_ID_STRING": "<IP Address>.<Modbus ID>",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet",
 "servermain.DEVICE_MODEL": <model enumeration>
}

where <IP Address>.<Modbus ID> is the device's IP address and Modbus ID, such as 192.160.0.1.0.

See Also: Device Model Enumerations and Device Properties.

Device ID Update
Update the Device ID using a “PUT” command from a REST client.
The Endpoint example below references the “demo-project.json” project configuration with “ModbusTCPIP” chan-
nel name and “ModbusDevice” device name.

Device ID Example

Endpoint (PUT):

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/ModbusTCPIP/devices/ModbusDevice

www. ptc.com

24

Modbus TCP/IP Ethernet Driver

Body:

{
 "project_id": <project_ID_from_GET>,
 "servermain.DEVICE_ID_STRING": "<IP Address>.<Modbus ID>"
}

Create Modbus TCP/IP Ethernet Tags

Endpoint (POST):

https://<hostname_or_ip>:<port>/config/v1/project/channels/MyChannel/devices/MyDevice/tags

Body:

[
{

 "common.ALLTYPES_NAME": "MyTag1",
 "servermain.TAG_ADDRESS": "40001"
 }

{
 "common.ALLTYPES_NAME": "MyTag2",
 "servermain.TAG_ADDRESS": "40002"
 }
]

See Also: Appendix for a list of tag properties.

See server and driver-specific help for more information on configuring projects over the Configuration API.

Enumerations
Some properties, such as Device Model, have values that are mapped to an enumeration. A valid list of enu-
merations and their values can be found by querying the device endpoint with ‘content=property_definitions ’or the
documentation definitions endpoints.

For example, to view the property definitions for a device named “MyDevice” under a channel named “MyChannel”,
the GET request would be sent to:

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/MyChannel/devices/MyDevice/?content=property definitions

Property definitions are also available for other objects such as channels or tags.

Alternatively, if enabled in the settings for the Configuration API, the channel and device property definitions for the
driver can be viewed at:

https://<hostname_or_ip>:<port>/config/v1/doc/drivers/<drivername>/Channels

https://<hostname_or_ip>:<port>/config/v1/doc/drivers/<drivername>/Devices

Example Data Type Enumerations
Querying the documentation endpoint for tag data types provides the following enumerations:

{
 "Default": -1,
 "String": 0,
 "Boolean": 1,
 "Char": 2,
 "Byte": 3,
 "Short": 4,

www. ptc.com

25

Modbus TCP/IP Ethernet Driver

 "Word": 5,
 "Long": 6,
 "DWord": 7,
 "Float": 8,
 "Double": 9,
 "BCD": 10,
 "LBCD": 11,
 "Date": 12,
 "LLong": 13,
 "QWord": 14,
 "String Array": 20,
 "Boolean Array": 21,
 "Char Array": 22,
 "Byte Array": 23,
 "Short Array": 24,
 "Word Array": 25,
 "Long Array": 26,
 "DWord Array": 27,
 "Float Array": 28,
 "Double Array": 29,
 "BCD Array": 30,
 "LBCD Array": 31,
 "Date Array": 32,
 "LLong Array": 33,
 " QWord Array": 34
}

Note: Supported data types vary by protocol and driver.

Device Model Enumerations
The Device Model property has values mapped to the following enumerations. The below table is for reference
only; the information at the device endpoint is the complete and current source of information:

https://<hostname_or_ip>:<-
port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/Channels

https://<hostname_or_ip>:<port>/config/v1/doc/drivers/Modbus%20TCP%2FIP%20Ethernet/Devices

Enumeration Device Model
0 Modbus

1 Mailbox

2 Instromet

3 Roxar RFM

4 Fluenta FGM

5 Applicom

6 CEG

www. ptc.com

26

Modbus TCP/IP Ethernet Driver

Automatic Tag Database Generation
This driver supports the Automatic Tag Database Generation, which enables drivers to automatically create tags
that access data points used by the device's ladder program. Depending on the configuration, tag generation may
start automatically when the server project starts or be initiated manually at some other time. The Event Log shows
when tag generation started, any errors that occurred while processing the variable import file, and when the pro-
cess completed.

For more information, refer to the server help documentation.

Although it is sometimes possible to query a device for the information needed to build a tag database, this driver
must use a Variable Import File instead. Variable import files can be generated using device programming applic-
ations, such as Concept and ProWORX. The import file must be in semicolon-delimited .txt format, which is the
default export file format of the Concept device programming application.

See Also: Importing from Custom Applications

For specific information on creating the variable import file, consult Technical Note Creating CSV Files for Mod-
bus Drivers.

Importing from Custom Applications
Custom tags can be imported using the following CSV file format:

[Record Type] ; [Variable Name] ; [Data Type] ; [Address] ; [Set Value] ; [Comment] where:

l Record Type: This is a flag used in the Concept software, which is another way to import tags. It can be N
or E: both flags are treated the same.

l Variable Name: This is the name of the Static Tag in the server. It can be up to 256 characters in length.
l Data Type: This is the tag's data type. Supported data types are as follows:

l BOOL
l DINT
l INT
l REAL (32-bit Float)
l UDINT
l UINT
l WORD
l BYTE
l TIME (treated as a DWord)
l STRING

l Address: This is the tag's Modbus address. It can be up to 16 characters in length.
l Set Value: This is ignored and should be kept blank.
l Comment: This is the description of the tag in the server. It can be up to 255 characters in length.

Examples

l N;Amps;WORD;40001;;Current in
l N;Volts;WORD;40003;;Volts in
l N;Temperature;REAL;40068;;Tank temp

www. ptc.com

27

Modbus TCP/IP Ethernet Driver

Optimizing Communications
The Modbus TCP/IP Ethernet Driver has been designed to provide the best performance with the least amount of
impact on the system's overall performance. While the driver is fast, there are a couple of guidelines that can be
used to control and optimize the application and gain maximum performance.

The server refers to communications protocols like Modbus Ethernet as a channel. Each channel defined in the
application represents a separate path of execution in the server. Once a channel has been defined, a series of
devices must then be defined under that channel. Each of these devices represents a single Modbus controller
from which data is collected. While this approach to defining the application provides a high level of performance, it
doesn't take full advantage of the driver or the network. An example of how the application may appear when con-
figured using a single channel is shown below.

Each device is defined under a single Modbus Ethernet channel. In this configuration,
the driver must move from one device to the next as quickly as possible to gather inform-
ation at an effective rate. As more devices are added or more information is requested
from a single device, the overall update rate begins to suffer.

If the Modbus TCP/IP Ethernet Driver could only define one single channel, then the example above would be the
only option available; however, the driver can define up to 1024 channels. Using multiple channels distributes the
data collection workload by simultaneously issuing multiple requests to the network. An example of how the same
application may appear when configured using multiple channels to improve performance is shown below.

Each device can be defined under its own channel. In this configuration, a single path of
execution is dedicated to the task of gathering data from each device. If the application
has 1024 or fewer devices, it can be optimized in this manner.

The performance improves even if the application has more devices. While fewer
devices may be ideal, the application still benefits from additional channels. Although by
spreading the device load across all channels causes the server to move from device to
device again, it can do so with far less devices to process on a single channel.

Block Size
Block size can affect the performance of the Modbus TCP/IP Ethernet Driver. The block size parameter is available
on each device, defined under the Block Size settings for device properties. The block size refers to the number of
registers or bits that may be requested from a device at one time. The driver's performance can be refined by con-
figuring the block size to 1 to 120 registers and 8 to 2000 bits.

Tips:

l Additional performance gain can be realized by enabling the Close Socket on Timeout property and by
adjusting timeouts and timing properties.

l Performance is also impacted by socket usage, discussed below.

For more information, refer to the Ethernet properties, Communication Timeouts, and Timing.

Socket Usage
Users can specify if the driver should share a single socket across all devices on a channel or use multiple sockets
to communicate with devices on a single channel. If the driver is using a port, no other system may access the tar-
get device, so balancing access to devices may need to be considered in some environments. If it is undesirable for
the driver to maintain a connection or if the device has a limited number of connections available, the user can limit
the number of sockets the driver can use.

www. ptc.com

28

Modbus TCP/IP Ethernet Driver

The ability to put the driver into single-socket mode is important when using the driver to communicate with a Mod-
bus-Ethernet-to-Modbus-RTU bridge product. Most of these products allow connecting multiple RS-485 serial-
based devices to a single Modbus-Ethernet-to-Modbus-RTU bridge. This be done by setting One Socket per Chan-
nel or by setting One or More Sockets per Device with the Max Sockets per Device set to 1 (see Channel Ethernet
settings).

When more than one socket is configured for use, the driver spreads the data to read or write operations to a target
device across all of the available sockets in use with the target device. The driver uses only the number of sockets
needed to process the data, up to the maximum number specified.

If device objects under a channel target different IP addresses and/or ports, the socket is closed and reopened only
as needed. This is recommended if an Ethernet to serial gateway device is handling a number of serial devices.
Gateways (and devices) typically limit the number of simultaneous connections to protect against communications
conflicts. Avoid exceeding these limits. If these limits are exceeded, the driver posts failure-to-connect messages.

Device response messages may be received by the driver at the same time. The device’s responses are processed
sequentially by the single thread at the channel-level; however, this processing of data at the channel-level can
occur very fast (milliseconds) and therefore, when configured to use more than one socket, a significant per-
formance improvement can be achieved.

Tip: Performance is also impacted by block size, discussed above, which can affect the data transfer across the
sockets.

www. ptc.com

29

Modbus TCP/IP Ethernet Driver

Data Types Description

Data Type Description
Boolean Single bit

Word Unsigned 16-bit value
bit 0 is the low bit
bit 15 is the high bit

Short Signed 16-bit value
bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32-bit value
bit 0 is the low bit
bit 31 is the high bit

Long Signed 32-bit value
bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two-byte packed BCD
Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD Four-byte packed BCD
Value range is 0-99999999. Behavior is undefined for values beyond this range.

String
Null-terminated ASCII string
Supported on Modbus Model, includes Hi-Lo Lo-Hi byte order selection.

Double*
64-bit floating point value
The driver interprets four consecutive registers as a double precision value by making
the last two registers the high DWord and the first two registers the low DWord.

Double Example If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the 64-
bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

Float* 32-bit floating point value
The driver interprets two consecutive registers as a single precision value by making the
last register the high word and the first register the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-bit
data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

*The descriptions assume the default; that is, first DWord low data handling of 64-bit data types and first word low
data handling of 32-bit data types.

www. ptc.com

30

Modbus TCP/IP Ethernet Driver

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain specific
address information for the model of interest.

Applicom Addressing
CEG Addressing
Fluenta Addressing
Instromet Addressing
Mailbox Addressing
Modbus Addressing
Roxar Addressing

Driver System Tag Addressing

Internal Tags
Tag Description Data

Type
Access

Port The Port system tag allows a client application to read
and write the Port Number setting. Writes to this tag
cause the driver to disconnect from the device and
attempt to reconnect to the specified port.

Word,
Short,
DWord,
Long

Read/Write

Notes:

l The device port setting is not used by the driver for server communications.
l For this driver, the terms server and unsolicited are used interchangeably.
l Changes to this tag modifies the project, which causes the server to prompt to save the project on shut-

down.

System Tags
Tag Description Data

Type
Access

_CEGExtension This tag is only used for CEGmodel devices. It
allows the CEG extension device property to be
changed from a client application.

Boolean Read/Write

_InputCoilBlockSize This tag allows the Input Coils block size property to
be changed from a client application.

DWord Read/Write

_OutputCoilBlockSize This tag allows the Output Coils block size property
to be changed from a client application.

DWord Read/Write

_InternalRegisterBlockSize This tag allows the Internal Registers block size prop-
erty to be changed from a client application.

DWord Read/Write

_HoldingRegisterBlockSize This tag allows the Holding Registers block size prop-
erty to be changed from a client application.

DWord Read/Write

Note: Changes to these tags modify the project, which causes the server to prompt to save the project on shut-
down.

See Also: Ethernet

Function Codes Description
The Function Codes displayed in the table below are supported by the Modbus and Applicom device models.

Decimal Hexadecimal Description
01 0x01 Read Coil Status

02 0x02 Read Input Status

www. ptc.com

31

Modbus TCP/IP Ethernet Driver

Decimal Hexadecimal Description
03 0x03 Read Holding Registers

04 0x04 Read Internal Registers

05 0x05 Force Single Coil

06 0x06 Preset Single Register

15 0x0F Force Multiple Coils

16 0x10 Preset Multiple Registers

22 0x16 Masked Write Register

Applicom Sub-Model and Addressing
Applicom devices support three Applicom sub-models. Select the appropriate sub-model for the device being con-
nected. Click on the sub-model link below for address information.

Generic Modbus
TSX Premium
TSX Quantum

Generic Modbus Addressing
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code
Bxxxxx 0-65535 Boolean Read / Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:
Bxxxxx_cols with assumed row count of 1.
Bxxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot exceed the
output coil block size that was specified for this device.

Input Coils
Address Range Data Type Access Function Code
BIxxxxx 0-65535 Boolean Read Only 02

Array Support
Arrays are supported for the input coil addresses. The syntax for declaring an array is as follows:
BIxxxxx_cols with assumed row count of 1.
BIxxxxx_rows_cols.

www. ptc.com

32

Modbus TCP/IP Ethernet Driver

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot exceed the
input coil block size that was specified for the device.

Internal Registers
The default data types are shown in bold.

Arrays are supported for internal register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access Function Code

WIxxxxx
0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read Only 04

WIxxxxx.bb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read Only 04

WIxxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read Only 04

DIxxxxx 0-65534 DWord Read Only 04

FIxxxxx 0-65534 Float Read Only 04

WIxxxxx_S 0-65535 Short Read Only 04

WIxxxxx_B 0-65535 BCD Read Only 04

WIxxxxx_A** 0-65535 String Read Only 04

WIxxxxx_X<1, 2,
3>***

0-65535
0-65534

Word, Short, BCD
Float, DWord, Long,
LBCD

Read Only 04

DIxxxxx_S 0-65534 Long Read Only 04

DIxxxxx_B 0-65534 LBCD Read Only 04

DIxxxxx_X<1, 2,
3>*** 0-65534 DWord Read Only 04

FIxxxxx_X<1, 2,
3>*** 0-65534 Float Read Only 04

M_WIxxxxx_n(H)
String with HiLo Byte
Order (H optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read Only 04

M_WIxxxxx_nL
String with LoHi Byte
Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read Only 04

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the internal register addresses. The syntax for declaring an array is as follows:
WIxxxxx_cols with assumed row count of 1.
WIxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the internal register block size that was
specified for the device.

www. ptc.com

33

Modbus TCP/IP Ethernet Driver

Holding Registers
The default data types are shown in bold.

Arrays are supported for holding register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access Function Code

Wxxxxx
0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read / Write 03, 06, 16

Wxxxxx.bb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read / Write 03, 06, 16, 22

Wxxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read / Write 03, 06, 16, 22

Dxxxxx 0-65534 DWord Read / Write 03, 06, 16

Fxxxxx 0-65534 Float Read / Write 03, 06, 16

Wxxxxx_S 0-65535 Short Read / Write 03, 06, 16

Wxxxxx_B 0-65535 BCD Read / Write 03, 06, 16

Wxxxxx_A** 0-65535 String Read Only 03, 16

Wxxxxx_X<1, 2,
3>***

0-65535
0-65534

Word, Short, BCD
Float, DWord, Long,
LBCD

Read / Write 03, 06, 16

Dxxxxx_S 0-65534 Long Read / Write 03, 06, 16

Dxxxxx_B 0-65534 LBCD Read / Write 03, 06, 16

Dxxxxx_X<1, 2,
3>*** 0-65534 DWord Read / Write 03, 06, 16

Fxxxxx_X<1, 2,
3>*** 0-65534 Float Read / Write 03, 06, 16

M_Wxxxxx_n(H)
String with HiLo Byte
Order (H optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read / Write 03, 16

M_Wxxxxx_nL
String with LoHi Byte
Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read / Write 03, 16

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal address-
ing is as follows.
Wxxxxx_cols with assumed row count of 1.
Wxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays; the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the holding register block size that was
specified for the device.

String Support

www. ptc.com

34

Modbus TCP/IP Ethernet Driver

The Applicom model supports reading and writing holding register memory as an ASCII string. When using holding
registers for string data, each register contains two bytes of ASCII data. The length of the string can be from 1 to
120 words. For more information on performing a block read on string tags, refer to Block Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device<device>: Device responded with exception code 3" is
received in the server event window, the device does not support the string length. To fix this, shorten the string to a
supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit Float.
The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low are applied.
For more information, refer to Settings.

Byte Switching Suffixes can only be used with internal registers and holding registers. For information on the vari-
ous types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix 16-Bit Data Types (Word, Short, BCD)
32-Bit Data Types (DWord, Long, LBCD,
Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)

_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)

_X3 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes
in the words)

TSX Quantum
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code
0xxxxx 1-65536 Boolean Read/Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:
0xxxxx_cols with assumed row count of 1.
0xxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65536. The total number of coils being requested cannot exceed the
output coil block size that was specified for the device.

Input Coils
Address Range Data Type Access Function Code
1xxxxx 1-65536 Boolean Read Only 02

Array Support
Arrays are supported for the input coil addresses. The syntax for declaring an array is as follows:
1xxxxx_cols with assumed row count of 1.
1xxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65536. The total number of coils being requested cannot exceed the
input coil block size that was specified for the device.

Internal Registers
The default data types are shown in bold.

Arrays are supported for internal register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

www. ptc.com

35

Modbus TCP/IP Ethernet Driver

Address Range Data Type Access Function Code

3xxxxx
1-65536
1-65535
1-65533

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read Only 04

3xxxxx.bb
xxxxx=1-65536
bb=0/1-15/16*

Boolean Read Only 04

3xxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read Only 04

D3xxxxx 1-65535 DWord Read Only 04

F3xxxxx 1-65535 Float Read Only 04

3xxxxx_S 1-65536 Short Read Only 04

3xxxxx_B 1-65536 BCD Read Only 04

3xxxxx_A** 1-65536 String Read Only 04

3xxxxx_X<1, 2,
3>***

1-65536
1-65535

Word, Short, BCD
Float, DWord, Long,
LBCD

Read Only 04

D3xxxxx_S 1-65535 Long Read Only 04

D3xxxxx_B 1-65535 LBCD Read Only 04

D3xxxxx_X<1, 2,
3>*** 1-65535 DWord Read Only 04

F3xxxxx_X<1, 2,
3>*** 1-65535 Float Read Only 04

M_3xxxxx_n(H)
String with HiLo Byte
Order (H optional)

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read Only 04

M_3xxxxx_nL
String with LoHi Byte
Order

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read Only 04

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the internal register addresses. The syntax for declaring an array is as follows:
3xxxxx_cols with assumed row count of 1.
3xxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65536.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65535.
For all arrays, the total number of registers being requested cannot exceed the internal register block size that was
specified for the device.

Holding Registers
The default data types are shown in bold.

Arrays are supported for holding register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access Function Code
4xxxxx 1-65536 Word, Short, BCD Read/Write 03, 06, 16

www. ptc.com

36

Modbus TCP/IP Ethernet Driver

Address Range Data Type Access Function Code

1-65535
1-65533

Float, DWord, Long,
LBCD
Double

4xxxxx.bb
xxxxx=1-65536
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

4xxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

D4xxxxx 1-65535 DWord Read/Write 03, 06, 16

F4xxxxx 1-65535 Float Read/Write 03, 06, 16

4xxxxx_S 1-65536 Short Read/Write 03, 06, 16

4xxxxx_B 1-65536 BCD Read/Write 03, 06, 16

4xxxxx_A** 1-65536 String Read Only 03, 16

4xxxxx_X<1, 2,
3>***

1-65536
1-65535

Word, Short, BCD
Float, DWord, Long,
LBCD

Read/Write 03, 06, 16

D4xxxxx_S 1-65535 Long Read/Write 03, 06, 16

D4xxxxx_B 1-65535 LBCD Read/Write 03, 06, 16

D4xxxxx_X<1, 2,
3>*** 1-65535 DWord Read/Write 03, 06, 16

F4xxxxx_X<1, 2,
3>*** 1-65535 Float Read/Write 03, 06, 16

M_4xxxxx_n(H)
String with HiLo Byte
Order (H optional)

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read/Write 03, 16

M_4xxxxx_nL
String with LoHi Byte
Order

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read/Write 03, 16

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal address-
ing is as follows.

4xxxxx_cols with assumed row count of 1.
4xxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65536.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65535.
For all arrays, the total number of registers being requested cannot exceed the holding register block size that was
specified for the device.

String Support
The Applicom model supports reading and writing holding register memory as an ASCII string. When using holding
registers for string data, each register contains two bytes of ASCII data. The length of the string can be from 1 to
120 words.

For information on performing a block read on string tags, refer to Block Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device <device>: Device responded with exception code 3" is

www. ptc.com

37

Modbus TCP/IP Ethernet Driver

received in the server event window, the device does not support the string length. To fix this, shorten the string to a
supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit Float.
The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low are applied.
For more information, refer to Settings.

Byte Switching Suffixes can only be used with internal registers and holding registers. For information on the vari-
ous types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix
16-Bit Data Types (Word, Short,
BCD)

32-Bit Data Types (DWord, Long,
LBCD, Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switch-
ing)

_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word
switching)

_X3 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching
bytes in the words)

TSX Premium
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code
%MXxxxxx 0-65535 Boolean Read/Write 01, 05, 15

%Mxxxxx 0-65535 Boolean Read/Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:
%MXxxxxx_cols with assumed row count of 1.
%MXxxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot exceed the
output coil block size that was specified for the device.

Holding Registers
The default data types are shown in bold.

Arrays are supported for holding register locations for all data types except for Boolean and strings.

Note: For server devices, read-only locations are read / write.

Address Range Data Type Access Function Code

%MWxxxxx
0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read/Write 03, 06, 16

%MWxxxxx.bb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

%MWxxxxx:Xbb
xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

%DWxxxxx
or %MDxxxxx

0-65534 DWord Read/Write 03, 06, 16

%FWxxxxx 0-65534 Float Read/Write 03, 06, 16

www. ptc.com

38

Modbus TCP/IP Ethernet Driver

Address Range Data Type Access Function Code
or %MFxxxxx

%MWxxxxx_S 0-65535 Short Read/Write 03, 06, 16

%MWxxxxx_B 0-65535 BCD Read/Write 03, 06, 16

%MWxxxxx_A** 0-65535 String Read Only 03, 16

%MWxxxxx_X<1, 2,
3>***

0-65535
0-65534

Word, Short, BCD
Float, DWord, Long,
LBCD

Read/Write 03, 06, 16

%DWxxxxx_S 0-65534 Long Read/Write 03, 06, 16

%DWxxxxx_B 0-65534 LBCD Read/Write 03, 06, 16

%DWxxxxx_X<1, 2,
3>***
or %MDxxxxx_X<1,
2, 3>***

0-65534 DWord Read/Write 03, 06, 16

%FWxxxxx_X<1, 2,
3>***
or %MFxxxxx_X<1,
2, 3>***

0-65534 Float Read/Write 03, 06, 16

M_%MWxxxxx_n(H)
String with HiLo
Byte Order (H
optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read/Write 03, 16

M_%MWxxxxx_nL
String with LoHi Byte
Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read/Write 03, 16

*For more information, refer to Zero-Based Bit Addressing under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal address-
ing is as follows:
%MWxxxxx_cols with assumed row count of 1.
%MWxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the holding register block size that was
specified for the device.

String Support
The Applicom model supports reading and writing holding register memory as an ASCII string. When using holding
registers for string data, each register contains two bytes of ASCII data. The length of the string can be from 1 to
120 words. For more information on performing block read on string tags, refer to Block Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device<device>: Device responded with exception code 3" is
received in the server event window, the device does not support the string length. To fix this, shorten the string to a
supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit Float.
The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low are applied.
For more information, refer to Settings.

www. ptc.com

39

Modbus TCP/IP Ethernet Driver

Byte Switching Suffixes can only be used with internal registers and holding registers. For information on the vari-
ous types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix 16-Bit Data Types (Word, Short, BCD)
32-Bit Data Types (DWord, Long, LBCD,
Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)

_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)

_X3 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes
in the words)

CEG Addressing
Addressing for the CEG device model is the same as that for the Modbus device model.

For more information, refer to Modbus Addressing.

Fluenta Addressing
The default data types are shown in bold.

Address Range Data Type Access
System 400000-409999 Float, Double Read/Write

Output 410000-410999
420000-420999
430000-430999

Float, Double Read Only

User 411000-411999
421000-421999
431000-431999

Float, Double Read/Write

Service 412000-412999
422000-422999
432000-432999

Float, Double Read/Write

Accumulation 413000-413999
423000-423999
433000-433999

Float, Double Read Only

Instromet Addressing
The default data types are shown in bold.

Address Range Data Type Access
Short Integers 400000-400199 Word, Short Read Only

Long Integers 400200-400399 DWord, Long Read Only

Floats 400400-400599 Float Read Only

Mailbox Addressing
The default data types are shown in bold.

Decimal Addressing

Address Range Data Type Access
4xxxxx 1-65536 Word, Short, BCD Read/Write

4xxxxx.bb
xxxxx=1-65536
bb=0-15

Boolean Read/Write

4xxxxx 1-65535 Float, DWord, Long, Read/Write

www. ptc.com

40

Modbus TCP/IP Ethernet Driver

Address Range Data Type Access
LBCD

Hexadecimal Addressing

Address Range Data Type Access
H4yyyyy 1-10000 Word, Short, BCD Read/Write

H4yyyyy.c
yyyyy=1-10000
c=0-F

Boolean Read/Write

H4yyyy 1-FFFF Float, DWord, Long,
LBCD Read/Write

Note: Modbus Mailbox does not support function code 22 (0x16). Only 0x10 (Holding Reg Write Multiple) and
0x6 (Holding Reg Write Single) are supported. It is possible to write to a single bit by turning off Holding Register
Bit Writes in device properties under the settings tab. This forces it to use the Read/Modify/Write sequence instead
of directly writing to the bit. Only the client Modbus device (not the Mailbox) has to change its setting to get this to
work.

Arrays
Arrays are also supported for the holding register addresses. The syntax for declaring an array (using decimal
addressing) is as follows:

4xxxx[cols] with assumed row count of 1.
4xxxx[rows][cols].

For Word, Short and BCD arrays, the base address+(rows*cols) cannot exceed 65536.

For Float, DWord, Long and Long BCD arrays, the base address+(rows*cols* 2) cannot exceed 65535.

For all arrays, the total number of registers being requested cannot exceed the holding register block size that was
specified for this device.

Modbus Addressing
For this driver, the terms server and unsolicited are used interchangeably.

5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits represent the
device's data item. The maximum value of the data item is a two-byte unsigned integer (65,535). Internally, this
driver requires six digits to represent the entire address table and item. It is important to note that many Modbus
devices may not support the full range of the data item. To avoid confusion when entering an address for such a
device, this driver "pads" the address (adds a digit) according to what was entered in the address field. If a primary
table type is followed by up to 4 digits (example: 4x, 4xx, 4xxx or 4xxxx), the address stays at or pads, with extra zer-
oes, to five (5) digits. If a primary table type is followed by five (5) digits (example: 4xxxxx), the address does not
change. Internally, addresses entered as 41, 401, 4001, 40001 or 400001 are all equivalent representations of an
address specifying primary table type 4 and data item 1.

Primary Table Description
0 Output Coils

1 Input Coils

3 Internal Registers

4 Holding Registers

Modbus Addressing in Decimal Format
The Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

www. ptc.com

41

Modbus TCP/IP Ethernet Driver

Address Type Range Data Type Access* Function Codes
Output Coils 000001-065536 Boolean Read/Write 01, 05, 15

Input Coils 100001-165536 Boolean Read Only 02

Internal Registers

300001-365536
300001-365535
300001-365533
xxxxx=1-65536
bb=0/1-15/16**
300001.2H-
365536.240H***
300001.2L-
365536.240L***

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean
String
String

Read Only
Read Only
Read Only
Read Only
Read Only
Read Only

04
04
04
04
04
04

Holding Registers

400001-465536
400001-465535
400001-465533
xxxxx=1-65536
bb=0/1-15/16*
400001.2H-
465536.240H***
400001.2L-
465536.240L***

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean
String
String

Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

03, 06, 16
03, 06, 16
03, 06, 16
03, 06, 16, 22
03, 16
03, 16

*For server devices, read-only locations are read / write.
**For more information, refer to Zero-Based Addressing in Settings.
***.Bit is string length, range 2 to 240 bytes.

Modbus Addressing in Hexadecimal Format
Address Type Range Data Type Access*
Output Coils H000001-H010000 Boolean Read/Write

Input Coils H100001-H110000 Boolean Read Only

Internal Registers

H300001-H310000
H300001-H30FFFF
H300001-H30FFFD
yyyyy=1-10000
cc=0/1-F/10
H300001.2H-
H3FFFF.240H**
H300001.2L-
H3FFFF.240L**

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean
String
String

Read Only
Read Only
Read Only
Read Only
Read Only
Read Only

Holding Registers

H400001-H410000
H400001-H40FFFF
H400001-H40FFFD
yyyyy=1-10000
cc=0/1-F/10
H400001.2H-
H4FFFF.240H
H400001.2L-
H4FFFF.240L

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean
String
String

Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

*For server devices, Read Only locations are Read/Write.
**.Bit is string length, range 2 to 240 bytes.

Packed Coils

www. ptc.com

42

Modbus TCP/IP Ethernet Driver

The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is avail-
able for both input coils and output coils when in polled mode only. It is not available to devices that are configured
to access the unsolicited memory map or that are in mailbox mode. The decimal syntax is 0xxxxx#nn, where:
*For server devices, Read Only locations are Read/Write.
**.Bit is string length, range 2 to 240 bytes.

Packed Coils
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is avail-
able for both input coils and output coils when in polled mode only. It is not available to devices that are configured
to access the unsolicited memory map or that are in mailbox mode. The decimal syntax is 0xxxxx#nn, where:

l xxxxx is the address of the first coil (with a range of 000001-065521).
l nn is the number of coils packed into an analog value (with a range of 01-16).

The hexadecimal syntax is H0yyyyy#nn, where:

l yyyyy is the address of the first coil (with a range of H000001-H000FFF1).
l nn is the number of coils packed into an analog value (with a range of 01-16).

Notes:

1. The only valid data type is Word. Output coils have read/write access, whereas input coils have read-only
access. In decimal addressing, output coils support Function Codes 01 and 15, whereas input coils support
Function Code 02.

2. The bit order is such that the start address is the Least Significant Bit (LSB) of analog value.

Write-Only Access
All read / write addresses may be set as write only by prefixing a "W" to the address such as "W40001", which pre-
vents the driver from reading the register at the specified address. Any attempts by the client to read a write-only
tag results in obtaining the last successful write value to the specified address. If no successful writes have
occurred, then the client receives 0 / NULL for numeric / string values for an initial value.
Caution: Setting the write-only tags client access privileges to read only causes writes to these tags to fail and

the client to always receive 0 / NULL for numeric / string values.

Mailbox Mode
Only holding registers are supported in mailbox mode. When read from a client, the data is read locally from a
cache, not from a physical device. When written to from a client, the data is written to both the local cache and the
physical device as determined by the device ID routing path.
Note: The Double data type is not supported.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using holding
registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data within a given
register can be selected when the string is defined. The length of the string can be from 2 to 240 bytes and is
entered in place of a bit number. The length must be entered as an even number. Appending either an "H" or "L" to
the address specifies the byte order.
 For more information on performing block reads on string tags for the Modbus model, refer to Block Sizes.

Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter "40200.100H".

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter "40500.78L".

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device<device>: Device responded with exception code 3" is
received in the server event window, the device did not like the length of the string. If possible, try shortening the
string.

Array Support

www. ptc.com

43

Modbus TCP/IP Ethernet Driver

Arrays are supported both for internal and holding register locations (including all data types except Boolean and
String) and for input and output coils (Boolean data types). There are two ways to address an array. The following
examples apply to holding registers:
4xxxx [rows] [cols]
4xxxx [cols] with assumed row count of one.

For Word, Short, and BCD arrays; the base address + (rows * cols) cannot exceed 65536. For Float, DWord, Long,
and Long BCD arrays; the base address + (rows * cols * 2) cannot exceed 65535. For all arrays, the total number of
registers being requested cannot exceed the holding register block size that was specified for this device.

Roxar Addressing
The default data types are shown in bold.

Address Range Data Type Access
Short Integers 403000-403999 Word, Short Read/Write

Floats 407000-407999 Float Read/Write

Floats 409000-409999 Float Read Only

Statistics Items
Statistical items use data collected through additional diagnostics information, which is not collected by default. To
use statistical items, Communication Diagnostics must be enabled. To enable Communication Diagnostics, right-
click on the channel in the project view and click Properties | Enable Diagnostics. Alternatively, double-click on
the channel and select Enable Diagnostics.

Channel-Level Statistics Items
The syntax for channel-level statistics items is <channel>._Statistics.

Note: Statistics at the channel level are the sum of those same items at the device level.

Item
Data
Type

Access Description

_CommFailures DWord Read/Write The total number of times communication has failed (or has run
out of retries).

_ErrorResponses DWord Read/Write The total number of valid error responses received.

_Expec-
tedResponses DWord Read/Write The total number of expected responses received.

_LastResponseTime String Read Only The time at which the last valid response was received.

_LateData DWord Read/Write

The total number of times that a tag is read later than expected
(based on the specified scan rate). This value does not increase
due to a DNR error state. A tag is not counted as late (even if it
was) on the initial read after a communications loss. This is by
design.

_MsgResent DWord Read/Write The total number of messages sent as a retry.

_MsgSent DWord Read/Write The total number of messages sent initially.

_MsgTotal DWord Read Only The total number of messages sent (both _MsgSent + _
MsgResent).

_PercentReturn Float Read Only The proportion of expected responses (Received) to initial
sends (Sent) as a percentage.

_PercentValid Float Read Only The proportion of total valid responses received (_TotalRe-
sponses) to total requests sent (_MsgTotal) as a percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to the _Reset Tag
causes all diagnostic counters to be reset at this level.

_RespBadCheck-
sum* DWord Read/Write The total number of responses with checksum errors.

www. ptc.com

44

Modbus TCP/IP Ethernet Driver

Item
Data
Type

Access Description

_RespTimeouts DWord Read/Write The total number of messages that failed to receive any kind of
response.

_RespTruncated DWord Read/Write The total number of messages that received only a partial
response.

_TotalResponses DWord Read Only The total number of valid responses received (_ErrorResponses
+ _ExpectedResponses).

* The _RespBadChecksum statistic is not implemented; packet checksums are handled by the TCP protocol.

Statistical items are not updated in simulation mode (see device general properties).

Device-Level Statistics Items
The syntax for device-level statistics items is <channel>.<device>._Statistics.

Item
Data
Type

Access Description

_CommFailures DWord Read/Write The total number of times communication has failed (or has run
out of retries).

_ErrorResponses DWord Read/Write The total number of valid error responses received.

_Expec-
tedResponses DWord Read/Write The total number of expected responses received.

_LastResponseTime String Read Only The time at which the last valid response was received.

_LateData DWord Read/Write

The total number of times that a tag is read later than expected
(based on the specified scan rate). This value does not increase
due to a DNR error state. A tag is not counted as late (even if it
was) on the initial read after a communications loss. This is by
design.

_MsgResent DWord Read/Write The total number of messages sent as a retry.

_MsgSent DWord Read/Write The total number of messages sent initially.

_MsgTotal DWord Read Only The total number of messages sent (both _MsgSent + _
MsgResent).

_PercentReturn Float Read Only The proportion of expected responses (Received) to initial
sends (Sent) as a percentage.

_PercentValid Float Read Only The proportion of total valid responses received (_TotalRe-
sponses) to total requests sent (_MsgTotal) as a percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to the _Reset Tag
causes all diagnostic counters to be reset at this level.

_RespBadCheck-
sum* DWord Read/Write The total number of responses with checksum errors.

_RespTimeouts DWord Read/Write The total number of messages that failed to receive any kind of
response.

_RespTruncated DWord Read/Write The total number of messages that received only a partial
response.

_TotalResponses DWord Read Only The total number of valid responses received (_ErrorResponses
+ _ExpectedResponses).

* The _RespBadChecksum statistic is not implemented; packet checksums are handled by the TCP protocol.

Note: Statistical items are not updated in simulation mode (see device general properties).

www. ptc.com

45

Modbus TCP/IP Ethernet Driver

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface. Consult the
OPC server help on filtering and sorting the Event Log detail view. Server help contains many common messages,
so should also be searched. Generally, the type of message (informational, warning) and troubleshooting inform-
ation is provided whenever possible.

Tip: Messages that originate from a data source (such as third-party software, including databases) are presen-
ted through the Event Log. Troubleshooting steps should include researching those messages online and in
vendor documentation.

Failure to start winsock communications.
Error Type:
Error

Failure to start unsolicited communications.
Error Type:
Error

Possible Cause:
The driver was not able to create a listen socket for unsolicited communications.

Possible Solution:
Verify that the port defined at the channel level is not being used by another application on the system.

 Note:
For this driver, the terms Modbus server and unsolicited are used interchangeably.

Unsolicited mailbox access for undefined device. Closing socket. | IP address =
'<address>'.
Error Type:
Error

Possible Cause:

1. A device with the specified IP address attempted to send a mailbox message to the server. The message
did not pass validation because there is no device with that IP configured in the Mailbox Project.

2. A device with the specified IP address attempted to send a mailbox message to the server. The message
did not pass validation because, although a device is configured, there are no clients requesting data from
it.

Possible Solution:
For the server to accept mailbox messages, the specified device IP must be configured in the project. At least one
data item from the device must be requested by a client.

Unsolicited mailbox unsupported request received. | IP address = '<address>'.
Error Type:
Error

Possible Cause:
An unsupported request was received from the specified device IP. The format of the request was invalid and not
within Modbus specification.

Possible Solution:

www. ptc.com

46

Modbus TCP/IP Ethernet Driver

Verify that the devices configured to send Mailbox data are sending valid requests.

Unsolicited mailbox memory allocation error. | IP address = '<address>'.
Error Type:
Error

Possible Cause:

1. A device with the specified IP address attempted to send a mailbox message to the server. The message
did not pass validation because there is no device with that IP configured in the Mailbox Project.

2. A device with the specified IP address attempted to send a mailbox message to the server. The message
did not pass validation because, although a device is configured, there are no clients requesting data from
it.

Possible Solution:
For the server to accept mailbox messages, the specified device IP must be configured in the project. At least one
data item from the device must be requested by a client.

Unable to create a socket connection.
Error Type:
Error

Possible Cause:
The server was unable to establish a TCP/IP socket connection to the specified device, but will continue to attempt
connection.

Possible Solution:

1. Verify that the device is online.

2. Verify that the device IP is within the subnet of the IP to which the server is bound. Verify that a valid gate-
way is available that allows a connection to the other network.

Error opening file for tag database import. | OS error = '<error>'.
Error Type:
Error

Bad array. | Array range = <start> to <end>.
Error Type:
Error

Possible Cause:
An array of addresses was defined that spans past the end of the address space.

Possible Solution:
Verify the size of the device's memory space and redefine the array length accordingly.

Bad address in block. | Block range = <address> to <address>.
Error Type:
Error

Possible Cause:
The driver attempted to read a location in a PLC that does not exist, perhaps out of range. For example, in a PLC
that only has holding registers 40001 to 41400, requesting address 41405 would generate this error. Once this

www. ptc.com

47

Modbus TCP/IP Ethernet Driver

error is generated, the driver does not request the specified block of data from the PLC again. Any other addresses
being requested from this same block are considered invalid.

Possible Solution:
Update the client application to request addresses within the range of the device.

 See Also:
Error Handling

Failed to resolve host. | Host name = '<name>'.
Error Type:
Error

Possible Cause:
The device is configured to use a DNS host name rather than an IP address. The host name cannot be resolved by
the server to an IP address.

Possible Solution:
Verify that the device is online and registered with the domain.

Specified output coil block size exceeds maximum block size. | Block size spe-
cified = <number> (coils), Maximum block size = <number> (coils).
Error Type:
Error

Specified input coil block size exceeds maximum block size. | Block size specified
= <number> (coils), Maximum block size = <number> (coils).
Error Type:
Error

Specified internal register block size exceeds maximum block size. | Block size
specified = <number> (registers), Maximum block size = <number> (registers).
Error Type:
Error

Specified holding register block size exceeds maximum block size. | Block size
specified = <number> (registers), Maximum block size = <number> (registers).
Error Type:
Error

Block request responded with exception. | Block range = <address> to <address>,
Exception = <code>.
Error Type:
Warning

Possible Cause:
The device returned an exception code.

Possible Solution:
Consult the exception codes documentation.

 See Also:
Modbus Exception Codes

www. ptc.com

48

Modbus TCP/IP Ethernet Driver

Block request responded with exception. | Block range = <address> to <address>,
Function code = <code>, Exception = <code>.
Error Type:
Warning

Possible Cause:
The device returned an exception code.

Possible Solution:
Consult the exception codes documentation.

 See Also:
Modbus Exception Codes

Bad block length received. | Block range = <start> to <end>.
Error Type:
Warning

Possible Cause:
The driver attempted to read a block of memory in the PLC. The PLC responded without an error, but did not
provide the driver with the requested block size of data.

Possible Solution:
Ensure that the range of memory exists for the PLC.

Tag import failed due to low memory resources.
Error Type:
Warning

Possible Cause:
The driver could not allocate memory required to process variable import file.

Possible Solution:
Shut down all unnecessary applications and retry.

File exception encountered during tag import.
Error Type:
Warning

Possible Cause:
The variable import file could not be read.

Possible Solution:
Regenerate the variable import file.

Error parsing record in import file. | Record number = <number>, Field = <field>.
Error Type:
Warning

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or invalid.

Possible Solution:
Edit the variable import file to change the offending field if possible.

www. ptc.com

49

Modbus TCP/IP Ethernet Driver

Description truncated for record in import file. | Record number = <number>.
Error Type:
Warning

Possible Cause:
The tag description given in specified record is too long.

Possible Solution:
The driver truncates descriptions as needed. To prevent this error, edit the variable import file to shorten the
description.

Imported tag name is invalid and has been changed. | Tag name = '<tag>',
Changed tag name = '<tag>'.
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Possible Solution:
The driver constructs valid names based on the variable import file. To prevent this error and to maintain name con-
sistency, change the name of the exported variable.

A tag could not be imported because the data type is not supported. | Tag name =
'<tag>', Unsupported data type = '<type>'.
Error Type:
Warning

Possible Cause:
The data type specified in the variable import file is not one of the types supported by this driver.

Possible Solution:
Change the data type specified in variable import file to one of the supported types. If the variable is for a structure,
manually edit the file to define each tag required for the structure or manually configure the required tags in the
server.

 See Also:
Exporting Variables from Concept

Unable to write to address, device responded with exception. | Address =
'<address>', Exception = <code>.
Error Type:
Warning

Possible Cause:
The device returned an exception code.

Possible Solution:
Consult the exception codes documentation.

 See Also:
Modbus Exception Codes

www. ptc.com

50

Modbus TCP/IP Ethernet Driver

Ethernet Manager started.
Error Type:
Informational

Ethernet Manager stopped.
Error Type:
Informational

Importing tag database. | Source file = '<filename>'.
Error Type:
Informational

A client application has changed the CEG extension via system tag _CEGEx-
tension. | Extension = '<extension>'.
Error Type:
Informational

Possible Cause:
A client application connected to the server changed the CEG extension on the specified device to 0 for Modbus or
1 for CEG.

Possible Solution:
This device property applies only to CEGmodel devices. Changes do not affect other models. To restrict the client
application from changing this property, disable the client's ability to write to system-level tags through the OPC DA
settings.

Starting unsolicited communication. | Protocol = '<name>', Port = <number>.
Error Type:
Informational

Created memory for Modbus server device. | Modbus server device ID = <device>.

Error Type:
Informational

All channels are subscribed to a virtual network or all devices are listening to
remote addresses, stopping unsolicited communication.
Error Type:
Informational

Channel is in a virtual network, all devices reverted to use one socket per device.
Error Type:
Informational

Cannot change device ID from Modbus client mode to server mode with a client
connected.
Error Type:
Informational

www. ptc.com

51

Modbus TCP/IP Ethernet Driver

Cannot change device ID from Modbus server mode to client mode with a client
connected.
Error Type:
Informational

Modbus server mode not allowed when the channel is in a virtual network. The
device ID cannot contain a loop-back or local IP address.
Error Type:
Informational

Mailbox model not allowed when the channel is in a virtual network.
Error Type:
Informational

www. ptc.com

52

Modbus TCP/IP Ethernet Driver

Modbus Exception Codes
The following data is from Modbus Application Protocol Specifications documentation.

Code
Dec/Hex

Name Meaning

01/0x01 ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the
server. This may be because the function code is only applicable to newer
devices, and was not implemented in the unit selected. It could also indicate
that the server is in the wrong state to process a request of this type, for
example, because it is unconfigured and is being asked to return register val-
ues.

02/0x02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the
server. More specifically, the combination of reference number and transfer
length is invalid. For a controller with 100 registers, a request with offset 96 and
length 4 would succeed. A request with offset 96 and length 5 generates excep-
tion 02.

03/0x03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for server.
This indicates a fault in the structure of the remainder of a complex request,
such as that the implied length is incorrect. It specifically does not mean that a
data item submitted for storage in a register has a value outside the expect-
ation of the application program, since the Modbus protocol is unaware of the
significance of any particular value of any particular register.

04/0x04
SERVER
DEVICE
FAILURE

An unrecoverable error occurred while the server was attempting to perform
the requested action.

05/0x05 ACKNOWLEDGE

The server has accepted the request and is processing it, but a long duration of
time is required to do so. This response is returned to prevent a timeout error
from occurring in the client. The client can next issue a Poll Program Complete
message to determine if processing is completed.

06/0x06 SERVER
DEVICE BUSY

The server is engaged in processing a long-duration program command. The
client should retransmit the message later when the server is free.

07/0x07 NEGATIVE
ACKNOWLEDGE

The server cannot perform the program function received in the query. This
code is returned for an unsuccessful programming request using function code
13 or 14 decimal. The client should request diagnostic or error information from
the server.

08/0x08 MEMORY
PARITY ERROR

The server attempted to read extended memory, but detected a parity error in
the memory. The client can retry the request, but service may be required on
the server device.

10/0x0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways indicates that the gateway was
unable to allocate an internal communication path from the input port to the out-
put port for processing the request. This usually means that the gateway is mis-
configured or overloaded.

11/0x0B

GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways indicates that no response was
obtained from the target device. This usually means that the device is not
present on the network.

Note: For this driver, the terms server and unsolicited are used interchangeably.

www. ptc.com

53

Modbus TCP/IP Ethernet Driver

Modbus Ethernet Channel Properties
Below is a full list of all Modbus Ethernet channel-level properties.

{
"common.ALLTYPES_NAME": "MyChannel",
"common.ALLTYPES_DESCRIPTION": "",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet",
"servermain.CHANNEL_DIAGNOSTICS_CAPTURE": false,
"servermain.CHANNEL_UNIQUE_ID": 721923342,
"servermain.CHANNEL_ETHERNET_COMMUNICATIONS_NETWORK_ADAPTER_STRING": "",
"servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
"servermain.CHANNEL_WRITE_OPTIMIZATIONS_DUTY_CYCLE": 10,
"servermain.CHANNEL_NON_NORMALIZED_FLOATING_POINT_HANDLING": 0,
"servermain.CHANNEL_COMMUNICATIONS_SERIALIZATION_VIRTUAL_NETWORK": 0,
"servermain.CHANNEL_COMMUNICATIONS_SERIALIZATION_TRANSACTIONS_PER_CYCLE": 1,
"servermain.CHANNEL_COMMUNICATIONS_SERIALIZATION_NETWORK_MODE": 0,
"modbus_ethernet.CHANNEL_USE_ONE_OR_MORE_SOCKETS_PER_DEVICE": 1,
"modbus_ethernet.CHANNEL_MAXIMUM_SOCKETS_PER_DEVICE": 1
}

Modbus Ethernet Device Properties
Below is a full list of all Modbus Ethernet device-level properties.

{
"common.ALLTYPES_NAME": "MyDevice",
"common.ALLTYPES_DESCRIPTION": "",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Modbus TCP/IP Ethernet",
"servermain.DEVICE_MODEL": 0,
"servermain.DEVICE_UNIQUE_ID": 70949968,
"servermain.DEVICE_CHANNEL_ASSIGNMENT": "MyChannel",
"servermain.DEVICE_ID_FORMAT": 0,
"servermain.DEVICE_ID_STRING": "<0.0.0.0>.0",
"servermain.DEVICE_ID_HEXADECIMAL": 0,
"servermain.DEVICE_ID_DECIMAL": 0,
"servermain.DEVICE_ID_OCTAL": 0,
"servermain.DEVICE_DATA_COLLECTION": true,
"servermain.DEVICE_SIMULATED": false,
"servermain.DEVICE_SCAN_MODE": 0,
"servermain.DEVICE_SCAN_MODE_RATE_MS": 1000,
"servermain.DEVICE_SCAN_MODE_PROVIDE_INITIAL_UPDATES_FROM_CACHE": false,
"servermain.DEVICE_CONNECTION_TIMEOUT_SECONDS": 3,
"servermain.DEVICE_REQUEST_TIMEOUT_MILLISECONDS": 1000,
"servermain.DEVICE_RETRY_ATTEMPTS": 3,
"servermain.DEVICE_INTER_REQUEST_DELAY_MILLISECONDS": 0,
"servermain.DEVICE_AUTO_DEMOTION_ENABLE_ON_COMMUNICATIONS_FAILURES": false,
"servermain.DEVICE_AUTO_DEMOTION_DEMOTE_AFTER_SUCCESSIVE_TIMEOUTS": 3,
"servermain.DEVICE_AUTO_DEMOTION_PERIOD_MS": 10000,
"servermain.DEVICE_AUTO_DEMOTION_DISCARD_WRITES": false,
"servermain.DEVICE_TAG_GENERATION_ON_STARTUP": 0,
"servermain.DEVICE_TAG_GENERATION_DUPLICATE_HANDLING": 0,
"servermain.DEVICE_TAG_GENERATION_GROUP": "",
"servermain.DEVICE_TAG_GENERATION_ALLOW_SUB_GROUPS": true,
"modbus_ethernet.DEVICE_VARIABLE_IMPORT_FILE": "normal.txt",
"modbus_ethernet.DEVICE_VARIABLE_IMPORT_INCLUDE_DESCRIPTIONS": 1,
"modbus_ethernet.DEVICE_DEACTIVATE_TAGS_ON_ILLEGAL_ADDRESS": 1,
"modbus_ethernet.DEVICE_SUB_MODEL": 1,

www. ptc.com

54

Modbus TCP/IP Ethernet Driver

"modbus_ethernet.DEVICE_ETHERNET_PORT_NUMBER": 502,
"modbus_ethernet.DEVICE_ETHERNET_IP_PROTOCOL": 1,
"modbus_ethernet.DEVICE_ETHERNET_CLOSE_TCP_SOCKET_ON_TIMEOUT": true,
"modbus_ethernet.DEVICE_ZERO_BASED_ADDRESSING": true,
"modbus_ethernet.DEVICE_ZERO_BASED_BIT_ADDRESSING": true,
"modbus_ethernet.DEVICE_HOLDING_REGISTER_BIT_MASK_WRITES": true,
"modbus_ethernet.DEVICE_MODBUS_FUNCTION_06": true,
"modbus_ethernet.DEVICE_MODBUS_FUNCTION_05": true,
"modbus_ethernet.DEVICE_MODBUS_BYTE_ORDER": true,
"modbus_ethernet.DEVICE_FIRST_WORD_LOW": true,
"modbus_ethernet.DEVICE_FIRST_DWORD_LOW": true,
"modbus_ethernet.DEVICE_MODICON_BIT_ORDER": false,
"modbus_ethernet.DEVICE_TREAT_LONGS_AS_DOUBLE_PRECISION_UNSIGNED_DECIMAL": false,
"modbus_ethernet.DEVICE_OUTPUT_COILS": 32,
"modbus_ethernet.DEVICE_INPUT_COILS": 32,
"modbus_ethernet.DEVICE_INTERNAL_REGISTERS": 32,
"modbus_ethernet.DEVICE_HOLDING_REGISTERS": 32,
"modbus_ethernet.DEVICE_PERFORM_BLOCK_READ_ON_STRINGS": 0
}

Note: The servermain.DEVICE_MODEL parameter defaults to the generic Modbus model. If this is not desired,
ensure this parameter is defined correctly.

Modbus Ethernet Tag Properties
Below is a full list of all Modbus Ethernet tag properties.

{
"common.ALLTYPES_NAME": "MyTag",
"common.ALLTYPES_DESCRIPTION": "",
"servermain.TAG_ADDRESS": "400001",
"servermain.TAG_DATA_TYPE": 5,
"servermain.TAG_READ_WRITE_ACCESS": 1,
"servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
"servermain.TAG_AUTOGENERATED": false,
"servermain.TAG_SCALING_TYPE": 0,
"servermain.TAG_SCALING_RAW_LOW": 0,
"servermain.TAG_SCALING_RAW_HIGH": 1000,
"servermain.TAG_SCALING_SCALED_DATA_TYPE": 9,
"servermain.TAG_SCALING_SCALED_LOW": 0,
"servermain.TAG_SCALING_SCALED_HIGH": 1000,
"servermain.TAG_SCALING_CLAMP_LOW": false,
"servermain.TAG_SCALING_CLAMP_HIGH": false,
"servermain.TAG_SCALING_NEGATE_VALUE": false,
"servermain.TAG_SCALING_UNITS": ""
}

www. ptc.com

55

Modbus TCP/IP Ethernet Driver

Index

A

A client application has changed the CEG extension via system tag _CEGExtension. | Extension = '<exten-
sion>'. 51

A tag could not be imported because the data type is not supported. | Tag name = '<tag>', Unsupported data
type = '<type>'. 50

Accumulation 40

Address 27

Address Descriptions 31

All channels are subscribed to a virtual network or all devices are listening to remote addresses, stopping unso-
licited communication. 51

Allow Sub Groups 17

Applicom 26

Applicom Addressing 32

Array Support 32-34, 38-39, 43

Arrays 41

Attempts Before Timeout 15

Auto-Demotion 15

Automatic Tag Database Generation 27

B

Bad address in block. | Block range = <address> to <address>. 47

Bad array. | Array range = <start> to <end>. 47

Bad block length received. | Block range = <start> to <end>. 49

BCD 30

Block Read Strings 23

Block request responded with exception. | Block range = <address> to <address>, Exception = <code>. 48

Block request responded with exception. | Block range = <address> to <address>, Function code = <code>,
Exception = <code>. 49

Block Sizes 22

BOOL 27

Boolean 30

BYTE 27

Byte Switching Suffixes 35, 39

C

Cannot change device ID from Modbus client mode to server mode with a client connected. 51

Cannot change device ID from Modbus server mode to client mode with a client connected. 52

CEG 26

CEG Addressing 40

www. ptc.com

56

Modbus TCP/IP Ethernet Driver

CEG Extension 21

CEGExtension 31

Channel-Level Settings 10

Channel Assignment 13

Channel is in a virtual network, all devices reverted to use one socket per device. 51

Channel Properties — Advanced 10

Channel Properties — Communication Serialization 10

Channel Properties — Ethernet Communications 9

Channel Properties — General 8

Channel Properties — Write Optimizations 9

Close Socket on Timeout 20

Comment 27

Communications Timeout 18

Communications Timeouts 14

Connect Timeout 15

Create 17

Created memory for Modbus server device. | Modbus server device ID = <device>. 51

CSV 27

Custom tags 27

D

Data Access 20

Data Collection 13

Data Encoding 21

Data Types Description 30

Deactivate Tags on Illegal Address 19

Decimal Addressing 40

Delete 17

Demote on Failure 15

Demotion Period 16

Description 13

Description truncated for record in import file. | Record number = <number>. 50

Device Properties — Auto-Demotion 15

Device Properties — Redundancy 23

Device Properties — Tag Generation 16

Device Properties — Timing 14

Diagnostics 8, 44

DINT 27

Discard Requests when Demoted 16

Do Not Scan, Demand Poll Only 14

Double 30

Driver 13

Driver System Tag Addressing 31

www. ptc.com

57

Modbus TCP/IP Ethernet Driver

Duty Cycle 9

DWord 30

E

Enumerations 26

Error Handling 19

Error opening file for tag database import. | OS error = '<error>'. 47

Error parsing record in import file. | Record number = <number>, Field = <field>. 49

Ethernet 11, 19

Ethernet Manager started. 51

Ethernet Manager stopped. 51

Ethernet Settings 9

Ethernet to Modbus Plus Bridge 6

Event Log Messages 46

F

Failed to resolve host. | Host name = '<name>'. 48

Failure to start unsolicited communications. 46

Failure to start winsock communications. 46

File exception encountered during tag import. 49

First DWord Low 21

First Word Low 21

Five-Digit Addressing 41

Float 30

Floats 40, 44

Fluenta 6

Fluenta Addressing 40

Fluenta FGM 26

Force Multiple Coils 32

Force Single Coil 32

Function Codes Description 31

G

General 13

Generate 16

Generic Modbus Addressing 32

Global Settings 11

www. ptc.com

58

Modbus TCP/IP Ethernet Driver

H

Help Contents 5

Hexadecimal Addressing 41

Holding Register Bit Writes 20

Holding Registers 23, 34, 36, 38, 42

HoldingRegisterBlockSize 31

I

ID 13

Identification 8

Imported tag name is invalid and has been changed. | Tag name = '<tag>', Changed tag name = '<tag>'. 50

Importing from Custom Applications 27

Importing tag database. | Source file = '<filename>'. 51

Include Descriptions 17

Initial Updates from Cache 14

Input Coils 23, 32, 35, 42

InputCoilBlockSize 31

Instromet 6, 26

Instromet Addressing 40

INT 27

Inter-Device Delay 10

Internal Registers 23, 33, 35, 42

Internal Tags 31

InternalRegisterBlockSize 31

IP Protocol 12, 20

L

LBCD 30

Load Balanced 11

Long 30

Long Integers 40

M

Mailbox 6, 26

Mailbox Addressing 40

Mailbox Client Privileges 21

Mailbox Mode 43

Mailbox model not allowed when the channel is in a virtual network. 52

Masked Write Register 32

www. ptc.com

59

Modbus TCP/IP Ethernet Driver

Max Sockets per Device 11

Modbus Addressing 41

Modbus Byte Order 21

Modbus Client 6

Modbus Client & Server Considerations 18

Modbus Exception Codes 53

Modbus Function 05 21

Modbus Function 06 20

Modbus Mailbox 41

Modbus server mode not allowed when the channel is in a virtual network. The device ID cannot contain a loop-
back or local IP address. 52

Modbus Unsolicited 6

Model 13

Models 6

Modicon Bit Order 21

N

Name 13

Network 1 - Network 500 10

Network Adapter 9

Network Mode 11

Non-Normalized Float Handling 10

O

On Device Startup 16

On Duplicate Tag 17

On Property Change 16

OPC Quality Bad 18

Optimization Method 9

Optimizing Modbus Ethernet Communications 28

Output 40

Output Coils 23, 32, 35, 38, 42

OutputCoilBlockSize 31

Overview 5

Overwrite 17

P

Parent Group 17

Port 12, 20, 31

Preset Multiple Registers 32

www. ptc.com

60

Modbus TCP/IP Ethernet Driver

Preset Single Register 32

Priority 11

R

Read Coil Status 31

Read Holding Registers 32

Read Input Status 31

Read Internal Registers 32

REAL 27

Record 27

Redundancy 23

Replace with Zero 10

Request Timeout 15

Respect Tag-Specified Scan Rate 14

Roxar 7

Roxar Addressing 44

Roxar RFM 26

S

Scan Mode 14

Service 40

Set Value 27

Settings 20

Setup 7

Short 30

Short Integers 40, 44

Simulated 13

Six-Digit Addressing 41

Socket Usage 11, 28

Specified holding register block size exceeds maximum block size. | Block size specified = <number>
(registers), Maximum block size = <number> (registers). 48

Specified input coil block size exceeds maximum block size. | Block size specified = <number> (coils), Max-
imum block size = <number> (coils). 48

Specified internal register block size exceeds maximum block size. | Block size specified = <number>
(registers), Maximum block size = <number> (registers). 48

Specified output coil block size exceeds maximum block size. | Block size specified = <number> (coils), Max-
imum block size = <number> (coils). 48

Starting unsolicited communication. | Protocol = '<name>', Port = <number>. 51

Statistics Items 44

String 30

STRING 27

String Support 34, 39, 43

Supported 6

www. ptc.com

61

Modbus TCP/IP Ethernet Driver

System 40

System Tags 31

T

Tag Counts 8

Tag Generation 16

Tag import failed due to low memory resources. 49

TIME 27

Timeouts to Demote 15

Timing 14

Transactions per Cycle 11

Treat Longs as Decimals 22

TSX Premium 38

TSX Quantum 35

U

UDINT 27

UINT 27

Unable to create a socket connection. 47

Unable to write to address, device responded with exception. | Address = '<address>', Exception = <code>. 50

Unmodified 10

Unsolicited 18

Unsolicited mailbox access for undefined device. Closing socket. | IP address = '<address>'. 46

Unsolicited mailbox memory allocation error. | IP address = '<address>'. 47

Unsolicited mailbox unsupported request received. | IP address = '<address>'. 46

User 40

V

Variable 27

Variable Import Settings 17

Virtual Network 10

W

Word 30

WORD 27

Write-Only Access 43

Write All Values for All Tags 9

Write Only Latest Value for All Tags 9

Write Only Latest Value for Non-Boolean Tags 9

www. ptc.com

62

Modbus TCP/IP Ethernet Driver

Z

Zero-Based Addressing 20

Zero-Based Bit Addressing 20

www. ptc.com

63

	Modbus TCP/IP Ethernet Driver
	Table of Contents
	Modbus TCP/IP Ethernet Driver

	Overview
	Supported Device Models
	Setup
	Channel Properties — General
	Tag Counts

	Channel Properties — Ethernet Communications
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Communication Serialization
	Channel Properties — Ethernet
	Device Properties — General
	Device Properties — Scan Mode
	Device Properties — Timing
	Device Properties — Auto-Demotion
	Device Properties — Tag Generation
	Device Properties — Variable Import Settings
	Device Properties — Unsolicited
	Modbus Client & Modbus Server Considerations

	Device Properties — Error Handling
	Device Properties — Ethernet
	Device Properties — Settings
	Device Properties — Block Sizes
	Device Properties — Redundancy
	Configuration API — Modbus TCP/IP Ethernet Example
	Enumerations
	Device Model Enumerations

	Automatic Tag Database Generation
	Importing from Custom Applications

	Optimizing Communications
	Data Types Description
	Address Descriptions
	Driver System Tag Addressing
	Function Codes Description
	Applicom Sub-Model and Addressing
	Generic Modbus Addressing
	TSX Quantum
	TSX Premium
	CEG Addressing
	Fluenta Addressing
	Instromet Addressing
	Mailbox Addressing
	Modbus Addressing
	Roxar Addressing
	Statistics Items

	Event Log Messages
	Failure to start winsock communications.
	Failure to start unsolicited communications.
	Unsolicited mailbox access for undefined device. Closing socket. | IP address...
	Unsolicited mailbox unsupported request received. | IP address = '<address>'.
	Unsolicited mailbox memory allocation error. | IP address = '<address>'.
	Unable to create a socket connection.
	Error opening file for tag database import. | OS error = '<error>'.
	Bad array. | Array range = <start> to <end>.
	Bad address in block. | Block range = <address> to <address>.
	Failed to resolve host. | Host name = '<name>'.
	Specified output coil block size exceeds maximum block size. | Block size spe...
	Specified input coil block size exceeds maximum block size. | Block size spec...
	Specified internal register block size exceeds maximum block size. | Block si...
	Specified holding register block size exceeds maximum block size. | Block siz...
	Block request responded with exception. | Block range = <address> to <address...
	Block request responded with exception. | Block range = <address> to <address...
	Bad block length received. | Block range = <start> to <end>.
	Tag import failed due to low memory resources.
	File exception encountered during tag import.
	Error parsing record in import file. | Record number = <number>, Field = <fie...
	Description truncated for record in import file. | Record number = <number>.
	Imported tag name is invalid and has been changed. | Tag name = '<tag>', Chan...
	A tag could not be imported because the data type is not supported. | Tag nam...
	Unable to write to address, device responded with exception. | Address = '<ad...
	Ethernet Manager started.
	Ethernet Manager stopped.
	Importing tag database. | Source file = '<filename>'.
	A client application has changed the CEG extension via system tag _CEGExtensi...
	Starting unsolicited communication. | Protocol = '<name>', Port = <number>.
	Created memory for Modbus server device. | Modbus server device ID = <device>.
	All channels are subscribed to a virtual network or all devices are listening...
	Channel is in a virtual network, all devices reverted to use one socket per d...
	Cannot change device ID from Modbus client mode to server mode with a client ...
	Cannot change device ID from Modbus server mode to client mode with a client ...
	Modbus server mode not allowed when the channel is in a virtual network. The ...
	Mailbox model not allowed when the channel is in a virtual network.
	Modbus Exception Codes
	Modbus Ethernet Channel Properties
	Modbus Ethernet Device Properties
	Modbus Ethernet Tag Properties

	Index

